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TOTALLY UMBILICAL HYPERSURFACES OF A LOCALLY
PRODUCT RIEMANNIAN MANIFOLD

BY MASAFUMI OKUMURA

Introduction. It is well known that a totally umbilical hypersurface with
non-vanishing mean curvature of a Euclidean space is isometric with a sphere. To
prove this theorem we use, among others, the fact that in a Euclidean space the
mean curvature of a totally umbilical hypersurface is a constant.

In more general Riemannian manifolds, however, there does not exist the posi-
tion vector and so the validity of the similar theorem to the above mentioned one
can not always be expected, even if we assume that the mean curvature of the
hypersurface is a constant.

Now it is natural to ask for what Riemannian manifold we can prove a totally
umbilical hypersurface to be isometric with a sphere. In the present paper, the
author tries to prove the above theorem in a locally product Riemannian manifold
using the results which were obtained by Obata recently.

In § 1 we give definitions of a locally product Riemannian manifold and of
some types of locally product Riemannian manifolds.

In § 2 we give preliminaries of the theory of hypersurface. In this paragraph
we introduce some tensor fields which satisfy analogous conditions to that of
Sasaki's almost contact structured However, in this paper, the theory of these
tensor fields is not studied in detail because we study it in another paper.

In § 3 we prove the above stated theorem under the additional condition that
the hypersurface has constant mean curvature.

In § 4 we show non-existence of umbilical hypersurface with constant mean
curvature in certain locally product Riemannian manifolds.

§ 1. Locally product Riemannian manifold.

An (n+1)-dimensional Riemannian manifold Mn+1 is called a locally product
Riemannian manifold if there exists a system of coordinate neighbourhoods {Ua}a£A

such that in each Ua the first fundamental form of Mn+ι is given by

(1.1) ds*=GκidXκdX>= Σ Gab(Xc)dXadXb+ Σ Gts{Xr)dXldX\
a, δ=l t,s=i

and in Ua Π Uβ the coordinate transformation
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χt'=χt'{

If we define Fxκ by

(1.3)
- 1

0
- 1 /

in each U*,Fiκ is a tensor field over Mn+1 and satisfies

(1.4) Fι'Fμ*=δ'μ,
def

(1.5) Fχκ=GμκFxμ=Fκx,

(1.6) FμFχ'=0,

where V denotes the operator of the covariant differentiation with respect to the
Riemannian metric Gχκ. The tensor field Fx' is called an almost product structure
of Mn+ιP

Suppose that Mp and Mq are both Einstein spaces and that the first funda-
mental form of a locally product Riemannian manifold Mn+1 be identical with that
of MpxMq, then we have

for certain constants λ and μ. The above equations can be written in the form

(1.7) Rι*=AGx*+BFχ*,

where A=(Xβ){λ+μ\ B=a/2)(λ~μ).
Conversely suppose that the Ricci tensor of a locally product Riemannian mani-

fold has the form (1. 7). If we choose a coordinate system in which the first funda-
mental form takes the form (1.1), (1. 7) gives

Rab=(A+B)Gab, Rts=(A-B)Gts.

Thus, if p>2, q>% then Gab, Gts are both Riemannian metrics of Einstein spaces
and A+B, A—B are both constants. We call the locally product Riemannian mani-
fold with the Ricci tensor of the form (1. 7) a separately Einstein space.3)

2) Legrand [1], [2].
3) Tachibana [5]. Some writers called this manifold an almost Einstein space [6].
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We next suppose that Mp and Mq are both spaces of constant curvature, then
in MpxMq we get

Rdcba = Λ\GCbGda — GcaGdb), Rtsrq = μ{GSrGtq — GtrGgq)

for certain constants λ and μ. This equation can be written in the form

RVμλ* = A(GVκGμλ -GvλGμκ + FvtFμλ ~FμκFVλ)
(1.8)

+B(FvκGμx-FμκGvχ+GvκFμx - Gμ*Fvι),

where A=(ll±)(λ+μ), B=(l/A)(λ-μ).
Conversely suppose that the metric tensor of a locally product Riemannian

manifold has the form (1.1), equation (1. 8) gives

Rdcba = 2(A + B)(GdaGcb — GcaGdb), Rtsrq = 2{A — B) (GsrGtq ~ GtrGSq).

Thus, if p>2, q>2, then Mp and Mq are both spaces of constant curvature. We
call such a Riemannian manifold a space of separately constant curvature.4)

§ 2. Hypersurfaces of locally product Riemannian manifolds.

Let Mn+1 be a locally product orientable Riemannian manifold with local
coordinates {Xκ} and Mn be its orientable hypersurf ace represented parametrically
by the equation

(2.1) Xκ=Xκ(xh),

where {xh} be local coordinates of Mn. We put Biκ=dXκ/dx\ then B{ (£=1,2, ••-, ή)
are linearly independent tangent vectors at each point of Mn.

The induced Riemannian metric gμ of the hypersurface is given by

(2.2) gji^Gi.B/Bi"

Since the Riemannian manifold Mn+ι and the hypersurface Mn are both orientable,
we choose a unit normal vector Cκ to the hypersurface in such a way that C\Bi
form the positive sense of Mn+1 and that B{ form the positive sense of Mn. Then
we get

(2.3) G*<Bh

ιC'=0, GuCλC'=l.

The transform Fi'Bi* of Bt

x by iV and FιCι of CA by Λ f can be expressed
as linear combinations of Bf and C\ we put

(2.4) Fz'Biι=fiΛ

(2.5) Fι<C*=f*B

4) Tachibana [5], Some writers called this manifold a space of almost constant
curvature [6],
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from which we have obviously

(2.6) W=BKFι'Bi\

(2.7) f*=C<Fι'Bΐ=qh%f\

(2.8) f=C*FxκC\

where we denote by (Bι

κ, C*) the dual basis of (Z?/, Cκ).
The tensor field FXK being symmetric with respect to its indices, we can easily

see that

(2.9) fji=gihfj
h=U

Transforming again the both members of (2. 4) and (2. 5) by F and taking
account of (2. 4) and (2. 5), we find

and

Cμ=fh<Jh

%Bi

μ+fhC
μ)+f(fiBi

μ+fCμ)9

from which we have

(2.10)

(2.11)

(2.12) Λ / * = l - / 2 .

Since we denote by (B\, Cκ) the dual basis of (Biκ, Cκ), we have

(2.13) tt=FS-f=(p-q)-f.

Now denoting V3 the symbol of covariant differentiation along the hypersurface,
we have the equation of Gauss

ΛΛ= -//„ PAh=-ff\

(2.14)

where {$} are the Christoffel symbol formed from the induced Riemannian metric
and Hjt are components of the second fundamental tensor of the hypersurface.

We have also the equation of Weingarten.

(2.15)

where Hf=gίhHjh.
We differentiate (2. 4) and (2. 5) covariantly along the hypersurface and obtain
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(2.17) ^jfh-fHJ^H/mBh

κ+(FJf+2f^HJh)σ=0ί

from which, transvecting with BkKy

(2.18) V3U

(2.19) V3fh

and transvecting with C*,

{Δ. Δ\)) V jj — ώj lljh

§3. Totally umbilical hypersurface.

When, at each point of the hypersurface Mn, the second fundamental tensor is
proportional to the first fundamental tensor of Mn, that is, when it satisfies that

(3.1) Hji=HgJi9

the hypersurface is called a totally umbilical hypersurface. The proportional factor
H is the mean curvature of the hypersurface. A totally umbilical hypersurface
with the vanishing mean curvature is called a totally geodesic hypersurface.

First of all, we prove the

LEMMA 3.1. Let Mn be a totally umbilical hypersurface of a locally product
Riemannian manifold. If the mean curvature H does not vanish at each point of
Mn, the function f is not constant.

Proof. Since Mn is totally umbilical, because of (2. 20), we have

(3.2) V,f=-2Hf,.

Suppose that / is a constant. Then, from our assumptions, it follows that fj=0
and so

(3.3) / = ± 1 ,

because of (2.12). On the other hand, making use of (2.19), we have

(3.4) fih=fΰih.

These imply that

Substituting (3. 5) into (2. 4) and (2. 5) and regarding that Λ=0, we have

FxκCλ=±Cκ (resp.),
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from which

Fχκ=±δl

This contradicts the fact that Fxκ is a non-trivial almost product structure over
Mn+1. So / can not be constant over Mn. This completes the proof.

Let Mn be a totally umbilical hypersurface with constant mean curvature of
Mn+1. Differentiating (3. 2) covariantly and making use of (2.19), we have

(3.6) F , F Λ / = 2 ^ 2 ( Λ ~ / ^ ) .

Again, differentiating covariantly, we get by (2.18),

(3. 7) FjFiFhf= -H\2 V3fgίh+V%fgjh+Vhfgji).

From the last equation and the Ricci's identity with respect to Phf, we have

\def(
?. \
Jl \

This means that the gradient vector Vhf is an infinitesimal projective transfor-
mation^ over Mn. Thus we have, from Lemma 3.1, the

THEOREM 3. 2. Let Mn be a totally umbilical hypersurface with constant mean
curvature of a locally product Riemannian manifold. If Mn is not totally geodesic,
the gradient vector field of f is an infinitesimal projective transformation.

On the other hand, owing to Obata,6) we know that if, in a complete simply
connected Riemannian manifold, there exists a scalar function / which satisfies
(3. 7), the Riemannian manifold is isometric with a sphere of radius 1/H. Since
Lemma 3.1 shows us that / is not constant we have the

THEOREM 3.3. Let Mn be a complete, simply connected totally umbilical
hypersurface of a locally product Riemannian manifold. If Mn has a non-zero
constant mean curvature H, Mn is isometric with a sphere of radius 1/H.

Now, regarding that a Euclidean space En+1 is a product Riemannian manifold
EpxEq (p+q=n+ΐ), we consider the vector field V%f on a sphere Sn in En+1.

Suppose that Sn be defined by the equation

(3.9) Sn: Σ W - I
κ=l

Then, the unit normal vector Cκ to Sn has the components

(3.10) CK=(X\ -,-X"n+1),

5) Yano [6].
6) Obata [3].
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and so we get

(3. li) f=c*Fxκo= Σ (Xλγ- "Σ (Xλ)2=2 Σ (xλ)2-i,
λ=l * = p+l *=1

from which, we have

(3.12) V,f=(AX\-,4X*,Q,~.,ϋ).

COROLLARY 3. 4. Let Sn be a unit sphere of En+1. Then, for any p, Kp<n+1,
the vector field defined by the components (X1, •••, Xp, 0, •••,0) is an infinitesimal
projectiυe transformation over Sn.

§4. Totally umbilical hypersurfaces of certain locally product Riemannian
manifolds.

In this paragraph we obtain some results on totally umbilical hypersurfaces of
special kind of locally product Riemannian manifolds.

At first we consider a totally umbilical hypersurface with constant mean curva-
ture of a separately Einstein space. Then, from the Codazzi equation of the
hypersurface

(4.1) FJHih-FiHjh=B/Bi

μBh

iC'Rvμuf

we have

From (1. 7) this can be rewritten as

Since the hypersurface is umbilical and has constant mean curvature we get B=0
because of Lemma 3.1. Thus we have the

THEOREM 4.1. //, in a separately Einstein space, there exists a totally umbilical
hypersurface with non-zero constant mean curvature, the separately Einstein space
is an Einstein space.

COROLLARY 4. 2. Let Mn+i be a separately Einstein space. If Mn+1 is not an
Einstein space, there is no totally umbilical hypersurface with non-zero mean curva-
ture.

Next we consider a totally umbilical hypersurface with non-zero constant mean
curvature of a space of separately constant curvature.

Substituting (1. 8) into (4.1), we have

Since the hypersurface has constant mean curvature and is umbilical we have
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(4.2) AifjU-fJjύ+Bίgtofj

from which, together with (2.11) and (2.13), we get

(4.3) {A(p-q)+B(n-ΐ)}f,=0.

On the other hand, transvecting (4.2) with fih and making use of (2.10),
(2.11), (2.12) and (2.13), we have easily

(4.4) {A(n-V)+B{p-q))f3=0.

According to Lemma 3.1, fj*0. So (4. 3) and (4. 4) imply that, for A q>2, A=B=0.

Thus we have the

THEOREM 4. 3. In a space of separately constant curvature, if there exists a

totally umbilical hypersurface with non-zero constant mean curvature, the space of

separately constant curvature is a locally Euclidean space.

COROLLARY 4. 4. Let Mn+1 be a space of separately constant curvature. If

Mn+1 is not a locally Euclidean space, there is no totally umbilical hypersurface

with non-zero constant mean curvature.
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