ON CURVATURES OF SPACES WITH NORMAL GENERAL CONNECTIONS, II

By Tominosuke Otsuki

In this paper, the author makes a formula (§2) related to the curvature tensors of a normal general connection γ and $B\gamma B$, where B is a tensor field of type (1, 1) satisfying some conditions, making use of the results in a previous paper [14], and then he shows that the formula applied to the case in which γ is a classical affine connection is a generalization of the Gauss' equations in the theory of subspaces of Riemannian geometry (§4). He also shows that regarding the set of general connections as a vector space over the algebra of all tensor fields of type (1, 1), the calculations in connection with the above purpose can be simplified.

§1. Preliminaries.

Let \mathfrak{X} be an *n*-dimensional differentiable manifold. Let γ be a general connection given on \mathfrak{X} which is written in terms of local coordinates u^{ι} of \mathfrak{X} as

(1.1)
$$\gamma = \partial u_j \otimes (P_i^j d^2 u^i + \Gamma_{ih}^j du^i \otimes du^h),$$

where $\partial u_j = \partial/\partial u^j$. We denote the tensor of type (1, 1) with local components P_i^i by $\lambda(\gamma)$ and denote the components P_i^j , Γ_{ih}^j of γ with respect to u^i by $P_i^j(\gamma)$, $\Gamma_{ih}^j(\gamma)$ respectively, in case of treating several general connections. Let $Q = \partial u_j \otimes Q_i^j du^i$ be a tensor of type (1, 1), then the products $Q\gamma$ and γQ of γ and Q are general connections given by

(1.2)
$$Q_{\gamma} = \partial u_k Q_j^k \otimes (P_i^j d^2 u^i + \Gamma_{ih}^j du^i \otimes du^h)$$

and

(1.3)
$$\gamma Q = \partial u_j \otimes (P_k^j d(Q_i^k du^i) + \Gamma_{kh}^j (Q_i^k du^i) \otimes du^h),^{1)}$$

that is

(1.2')
$$P_i^j(Q\gamma) = Q_k^j P_i^k(\gamma), \ \Gamma_{ih}^j(Q\gamma) = Q_k^j \Gamma_{ih}^k(\gamma)$$

and

(1.3')
$$P_{i}^{j}(\gamma Q) = P_{k}^{j}(\gamma)Q_{i}^{k}, \ \Gamma_{ih}^{j}(\gamma Q) = \Gamma_{kh}^{j}(\gamma)Q_{i}^{k} + P_{k}^{j}(\gamma)\frac{\partial Q_{i}^{k}}{\partial u^{h}}.$$

LEMMA 1.1. Let γ be a general connection and $Q = \partial u_j \otimes Q_i^j du^{\nu}$ be a tensor field. The covariant derivatives $Q_{i,h}^j$ of Q_i^j with respect to γ can be written as

Received July 17, 1963.

¹⁾ See [11], §1.

(1.4)
$$Q_{i,h}^{j} = \Gamma_{ih}^{j} (\gamma Q \lambda(\gamma) - \lambda(\gamma) Q \gamma).$$

Proof. By virture of (2.15) in [7], we have by definition

$$Q_{i,h}^{j} = P_{i}^{j} \frac{\partial Q_{k}^{i}}{\partial u^{h}} P_{i}^{k} + \Gamma_{ih}^{j} Q_{k}^{i} P_{i}^{k} - P_{i}^{j} Q_{k}^{i} \Lambda_{ih}^{k},$$

where we put

$$\Lambda^{j}_{ih}(\gamma) = \Gamma^{j}_{ih}(\gamma) - \frac{\partial P^{j}_{i}(\gamma)}{\partial u^{h}} .$$

The right of the above equation can be written as

$$\Gamma^{j}_{lh}Q^{l}_{k}P^{k}_{i} + P^{j}_{l}\frac{\partial(Q^{l}_{k}P^{k}_{i})}{\partial u^{h}} - P^{j}_{l}Q^{l}_{k}\Gamma^{k}_{ih}$$
$$= \Gamma^{j}_{ih}(\gamma QP) - \Gamma^{j}_{ih}(PQ\gamma) = \Gamma^{j}_{ih}(\gamma Q\lambda(\gamma) - \lambda(\gamma)Q\gamma). \qquad \text{q.e.d.}$$

LEMMA 1.2. A necessary and sufficient condition in order that the tensor field I with the components δ_i^j is covariantly constant with respect to a general connection γ is that γ is commutative with $\lambda(\gamma)$.

Proof. By means of LEMMA 1.1, we have

(1.5)
$$\delta_{i,h}^{j} = \Gamma_{ih}^{j}(\gamma \lambda(\gamma) - \lambda(\gamma)\gamma) = \Gamma_{ih}^{j}(\gamma P - P\gamma)$$

and

$$\lambda(\gamma P - P\gamma) = 0.$$

These relations lead to the assertion of this lemma.

By (6.28) in [7], the components of the curvature tensor of γ are given by

(1.6)

$$R_{i}^{j}{}_{hk} = \left\{ P_{l}^{j} \left(\frac{\partial \Gamma_{mk}^{i}}{\partial u^{h}} - \frac{\partial \Gamma_{mh}^{l}}{\partial u^{k}} \right) + \Gamma_{lh}^{j} \Gamma_{mk}^{l} - \Gamma_{lk}^{j} \Gamma_{mh}^{l} \right\} P_{i}^{m}$$

$$- \delta_{m,h}^{j} \Lambda_{ik}^{m} + \delta_{m,k}^{j} \Lambda_{ih}^{m}.$$

Now, let γ be normal and let Q be the tensor such that Q is the inverse of P on its image and identical with P on its kernel regarding P as a homomorphism of the tangent bundle $T(\mathfrak{X})$ of \mathfrak{X} . Then the components $R_{i'hk}$ and $R_{i'hk}$ of the curvature tensors of the contravariant part $\gamma = Q\gamma$ and the covariant part $\gamma = \gamma Q$ of γ can be written respectively as²

(1.7)
$${}^{\prime}R_{i}{}^{j}{}_{hk} = A_{i}^{j} \left(\frac{\partial' \Lambda_{mk}^{l}}{\partial u^{h}} - \frac{\partial' \Lambda_{mh}^{l}}{\partial u^{k}} + {}^{\prime}\Lambda_{th}^{l} \Lambda_{mk}^{t} - {}^{\prime}\Lambda_{tk}^{l} \Lambda_{mh}^{t} \right) A_{i}^{m}$$

and

(1.8)
$${}^{\prime\prime}R_{i}{}^{\prime}{}_{hk} = A_{i}^{j} \left(\frac{\partial {}^{\prime\prime}\Gamma_{mk}^{l}}{\partial u^{h}} - \frac{\partial {}^{\prime\prime}\Gamma_{mk}^{l}}{\partial u^{k}} + {}^{\prime\prime}\Gamma_{lh}^{l}{}^{\prime\prime}\Gamma_{mk}^{t} - {}^{\prime\prime}\Gamma_{lk}^{l}{}^{\prime\prime}\Gamma_{mh}^{t} \right) A_{i}^{m},$$

2) See [14], LEMMAS 2.1 and 2.2.

where we put $T_{ih}^{j} = \Gamma_{ih}^{j}(\gamma)$, $T_{ih}^{j} = \Gamma_{ih}^{j}(\gamma)$ and A = PQ = QP is the canonical projection of the normal general connection γ .

Putting N=1-A, we have

(1.9) $'N_{ih}^{j} = N_{i}^{j}\Gamma_{ih}^{i} = \Gamma_{ih}^{j}(N\gamma) \text{ and } "N_{ih}^{j} = \Lambda_{ih}^{j}N_{i}^{i} = \Gamma_{ih}^{j}(\gamma N).$

Let 'D and "D be the covariant differential operators of ' γ and " γ respectively. By means of LEMMA 1.1 and $\lambda(\gamma) = \lambda(\gamma) = A$, we have

$$\frac{{}^{\prime}DP_{i}}{\partial u^{\hbar}} = \Gamma_{i\hbar}^{j}(\gamma \cdot P\lambda(\gamma) - \lambda(\gamma)P \cdot \gamma) = \Gamma_{i\hbar}^{j}(\gamma \cdot PA - AP \cdot \gamma)$$

and

$$\frac{{}^{\prime\prime}DP_{i}^{j}}{\partial u^{h}} = \Gamma_{ih}^{j}({}^{\prime\prime}\gamma \cdot P\lambda({}^{\prime\prime}\gamma) - \lambda({}^{\prime\prime}\gamma)P \cdot {}^{\prime\prime}\gamma) = \Gamma_{ih}^{j}({}^{\prime\prime}\gamma \cdot PA - AP \cdot {}^{\prime\prime}\gamma),$$

that is

(1.10)
$$\frac{{}^{\prime}DP_{i}^{j}}{\partial u^{h}} = \Gamma_{ih}^{j}(Q\gamma P - A\gamma) \quad \text{and} \quad \frac{{}^{\prime\prime}DP_{i}^{j}}{\partial u^{h}} = \Gamma_{ih}^{j}(\gamma A - P\gamma Q).$$

Accordingly, we get from (1.9) and (1.10)

(1.11)
$$\frac{'DP_i^j}{\partial u^h} - 'N_{ih}^j = \Gamma_{ih}^j(Q\gamma P - \gamma) \quad \text{and} \quad \frac{''DP_i^j}{\partial u^h} + ''N_{ih}^j = \Gamma_{ih}^j(\gamma - P\gamma Q).$$

Now, making use of these relations for (3.3) in [14], we have

$$P_{i}^{j} \frac{'DP_{i}^{t}}{\partial u^{h}} \left(\frac{'DP_{i}^{t}}{\partial u^{k}} - 'N_{ik}^{t} \right) + 'N_{ih}^{i}P_{i}^{t} \frac{'DP_{i}^{t}}{\partial u^{k}} - \left(\frac{'DP_{i}^{t}}{\partial u^{h}} - 'N_{ih}^{j} \right) 'N_{ik}^{t}P_{i}^{m}$$

$$= P_{i}^{j}\Gamma_{ih}^{t}(Q\gamma P - A\gamma)\Gamma_{ik}^{t}(Q\gamma P - \gamma) + \Gamma_{ih}^{j}(N\gamma)P_{i}^{t}\Gamma_{ik}^{t}(Q\gamma P - A\gamma) - \Gamma_{ih}^{j}(Q\gamma P - \gamma)\Gamma_{ik}^{t}(N\gamma)P_{i}^{m}$$

$$= \Gamma_{ih}^{j}(A\gamma P - P\gamma)\Gamma_{ik}^{t}(Q\gamma P - \gamma) + \Gamma_{ih}^{j}(N\gamma P)\Gamma_{ik}^{t}(Q\gamma P - \gamma) - \Gamma_{ih}^{j}(Q\gamma P - \gamma)\Gamma_{ik}^{t}(N\gamma P)$$

$$= \Gamma_{ih}^{j}(A\gamma P - P\gamma + N\gamma P)\Gamma_{ik}^{t}(Q\gamma P - \gamma) - \Gamma_{ih}^{j}((Q\gamma P - \gamma)N)\Gamma_{ik}^{t}(\gamma P)$$

$$= \Gamma_{ih}^{j}(\gamma P - P\gamma)\Gamma_{ik}^{t}(Q\gamma P - \gamma) + \Gamma_{ih}^{j}(\gamma N)\Gamma_{ik}^{t}(\gamma P)^{3)}$$
where

hence

$$R_{i^{j}hk} = P_{i}^{j}P_{i}^{i\prime}R_{m}^{l}{}_{hk}P_{i}^{m} + \Gamma_{ih}^{j}(\gamma P - P\gamma)\Gamma_{ik}^{l}(Q\gamma P - \gamma) - \Gamma_{ik}^{j}(\gamma P - P\gamma)\Gamma_{ih}^{l}(Q\gamma P - \gamma)$$
(1. 12)

$$+\Gamma^{j}_{lh}(\gamma N)\Gamma^{l}_{ik}(N\gamma P)-\Gamma^{j}_{lk}(\gamma N)\Gamma^{l}_{ih}(N\gamma P).$$

Analogously, from (3.6) in [14], we get

 $R_{i^{j}hk} = P_{i^{\prime\prime}}^{j\prime\prime} R_{m}^{i}{}_{hk} P_{i}^{m} P_{i}^{t} + \Gamma_{lh}^{j} (\gamma - P\gamma Q) \Gamma_{ik}^{l} (\gamma P - P\gamma) - \Gamma_{lk}^{j} (\gamma - P\gamma Q) \Gamma_{ih}^{l} (\gamma P - P\gamma)$ $(1.13) + \Gamma_{l}^{j} (P_{r} N) \Gamma_{l}^{l} (N_{r}) - \Gamma_{l}^{j} (P_{r} N) \Gamma_{l}^{l} (N_{r})$

$$+I_{lh}^{j}(P\gamma N)I_{ik}^{i}(N\gamma)-I_{lk}^{j}(P\gamma N)I_{ih}^{i}(N\gamma).$$

186

³⁾ Since $\lambda(\gamma N) = PN = 0$, γN is a tensor of type (1, 2). The second term can be written as $\Gamma_{lh}^{i}(\gamma N)\Gamma_{mk}^{l}(N\gamma P)$.

§2. The curvature tensor of a general connection $B\gamma B$.

Let γ be a normal general connection on \mathfrak{X} as in §1. Let B be a projection of $T(\mathfrak{X})$ such that

Putting

(2

 \overline{A} is a projection of $T(\mathfrak{X})$ such that

(2.3)
$$A\overline{A} = \overline{A}A = \overline{A}, \quad B\overline{A} = \overline{A}B = \overline{A}, \quad N\overline{A} = \overline{A}N = 0, \quad NB = BN = B - \overline{A}$$

Let be assumed furthermore that

$$(2.4) PB = BP,$$

then we have easily

5)
$$P\overline{A} = \overline{A}P, \quad QB = BQ, \quad Q\overline{A} = \overline{A}Q, \quad Q\overline{N} = \overline{N}Q$$

where $\bar{N}=1-AB$.

Now, let us consider a general connection $\bar{r} = B\gamma B$, then \bar{r} is normal, because putting

(2.6) $\bar{P} = \lambda(\gamma) = BPB$ and $\bar{Q} = BQB$,

we have easily

$$ar{P}ar{Q}{=}ar{Q}ar{P}{=}ar{A}, \qquad ar{P}ar{N}{=}ar{N}ar{P}{=}0.$$

Now, let $\bar{r}=\bar{Q}\bar{r}$ and $\bar{r}=\bar{r}\bar{Q}$ be the contravariant part and the covariant part of the normal general connection \bar{r} . By virtue of (2.5), we get easily

(2.7)
$$'\bar{\gamma} = \bar{Q}\bar{\gamma} = B(Q\gamma)B = B('\gamma)B$$
 and $''\bar{\gamma} = \bar{\gamma}\bar{Q} = B(\gamma Q)B = B(''\gamma)B$.

Let $\overline{R}_{i_{hk}}$ and $\overline{R}_{i_{hk}}$ be the components of the curvature tensors of the contravariant part and the covariant part of the general connection \overline{r} respectively. By means of (1.2'), (1.3') and

$$\lambda(\bar{\gamma}) = B\lambda(\bar{\gamma})B = BAB = \bar{A},$$

we have

$$\begin{split} {}^{\prime}\bar{A}_{ih}^{j} &= \Gamma_{ih}^{j}({}^{\prime}\bar{\gamma}) - \frac{\partial P_{i}^{j}({}^{\prime}\bar{\gamma})}{\partial u^{h}} \\ &= B_{k}^{j} \left\{ \Gamma_{lh}^{k}({}^{\prime}\gamma) B_{i}^{l} + P_{l}^{k}({}^{\prime}\gamma) \frac{\partial B_{i}^{l}}{\partial u^{h}} \right\} - \frac{\partial \overline{A}_{i}^{j}}{\partial u^{h}} \\ &= \overline{A}_{k}^{j}{}^{\prime}\Gamma_{lh}^{k} B_{i}^{l} + \overline{A}_{l}^{j} \frac{\partial B_{i}^{l}}{\partial u^{h}} - \frac{\partial \overline{A}_{i}^{j}}{\partial u^{h}} \\ &= \overline{A}_{k}^{j}{}^{\prime}A_{lh}^{k} B_{i}^{l} + \overline{A}_{k}^{j} \frac{\partial A_{l}^{k}}{\partial u^{h}} B_{i}^{l} + \overline{A}_{l}^{j} \frac{\partial B_{i}^{l}}{\partial u^{h}} - \frac{\partial \overline{A}_{i}^{j}}{\partial u^{h}} \end{split}$$

tominosuke Ötsuki

Making use of (2.3) we get easily

(2.8)
$${}^{\prime}\bar{A}_{lh}^{j} = \bar{A}_{k}^{j}{}^{\prime}A_{lh}^{k}B_{l}^{l} - \bar{N}_{l}^{j}\frac{\partial \bar{A}_{l}^{j}}{\partial u^{h}}.$$

Applying the formula (1.7) for the contravariant part $' \bar{\gamma}$ of $\bar{\gamma}$, we have

$${}^{\prime}\overline{R}_{i^{j}hk} = \overline{A}_{i}^{j} \left(\frac{\partial^{\prime}\overline{A}_{mk}^{l}}{\partial u^{h}} - \frac{\partial^{\prime}\overline{A}_{mh}^{l}}{\partial u^{k}} + {}^{\prime}\overline{A}_{th}^{l}{}^{\prime}\overline{A}_{mk}^{t} - {}^{\prime}\overline{A}_{tk}^{l}{}^{\prime}\overline{A}_{mh}^{t} \right) \overline{A}_{i}^{m}.$$

Substituting (2.8) into the right, it can be written as

$$\begin{split} {}^{\prime}\bar{R}_{i}{}^{j}{}_{hk} = B^{j}_{p}{}^{\prime}R_{q}{}^{p}{}_{hk}B^{q}_{i} - \bar{A}^{j}_{t} \Big({}^{\prime}A^{t}_{sh}\bar{N}^{s}_{p} + \frac{\partial\bar{N}^{t}_{p}}{\partial u^{h}}\Big) \Big({}^{\prime}A^{p}_{qk}\bar{A}^{q}_{i} + \frac{\partial\bar{A}^{p}_{i}}{\partial u^{k}}\Big) \\ + \bar{A}^{j}_{t} \Big({}^{\prime}A^{t}_{sk}\bar{N}^{s}_{p} + \frac{\partial\bar{N}^{t}_{p}}{\partial u^{k}}\Big) \Big({}^{\prime}A^{p}_{qh}\bar{A}^{q}_{i} + \frac{\partial\bar{A}^{p}_{i}}{\partial u^{h}}\Big). \end{split}$$

On the other hand, we have

$$\begin{split} \Gamma^{j}_{ih}('\gamma \overline{A}) &= \Gamma^{j}_{lh}('\gamma) \overline{A}^{l}_{i} + A^{j}_{l} \frac{\partial \overline{A}^{l}_{i}}{\partial u^{h}} \\ &= 'A^{j}_{lh} \overline{A}^{l}_{i} + \frac{\partial A^{j}_{l}}{\partial u^{h}} \overline{A}^{l}_{i} + A^{j}_{l} - \frac{\partial \overline{A}^{j}_{l}}{\partial u^{h}} = 'A^{j}_{lh} \overline{A}^{l}_{i} + \frac{\partial A^{j}_{l}}{\partial u^{h}} \end{split}$$

and

$$\begin{split} \Gamma^{j}_{ih}(\vec{A}\cdot'\gamma\vec{N}) &= \vec{A}^{j}_{k}\Gamma^{k}_{ih}('\gamma\vec{N}) = \vec{A}^{j}_{k} \left('\Gamma^{k}_{lh}\vec{N}^{l}_{i} + A^{k}_{l} \frac{\partial \bar{N}^{l}_{i}}{\partial u^{h}} \right) \\ &= \vec{A}^{j}_{k} \left('\Lambda^{k}_{lh}\vec{N}^{l}_{i} + \frac{\partial \bar{N}^{k}_{i}}{\partial u^{h}} + \frac{\partial A^{k}_{l}}{\partial u^{h}} \cdot \vec{N}^{l}_{i} \right). \end{split}$$

Making use of these, the above equation can be written as

$$\begin{split} {}^{\prime}\bar{R}_{i}{}^{j}{}_{hk} = B^{j}_{p}{}^{\prime}R_{q}{}^{p}{}_{hk}B^{q}_{i} - \left(\Gamma^{j}_{ph}(\bar{A}\cdot^{\prime}\gamma\bar{N}) - \bar{A}^{j}_{i}\frac{\partial A^{t}_{i}}{\partial u^{h}}\cdot\bar{N}^{l}_{p}\right)\Gamma^{p}_{ik}(\prime\gamma A) \\ + \left(\Gamma^{j}_{pk}(\bar{A}\cdot^{\prime}\gamma\bar{N}) - \bar{A}^{j}_{i}\frac{\partial A^{t}_{i}}{\partial u^{k}}\cdot\bar{N}^{l}_{p}\right)\Gamma^{p}_{ih}(\prime\gamma\bar{A}). \end{split}$$

We have

$$\bar{A}_{t}^{j}\frac{\partial A_{l}^{t}}{\partial u^{h}}\bar{N}_{p}^{l}A_{i}^{p}=\frac{\partial \bar{A}_{t}^{j}}{\partial u^{h}}N_{l}^{t}\bar{N}_{p}^{l}A_{i}^{p}=0$$

and

$$\Gamma^{p}_{ik}(\gamma \overline{A}) = A^{p}_{l} \Gamma^{l}_{ik}(\gamma \overline{A}),$$

since $A(\gamma \overline{A}) = A(Q\gamma \overline{A}) = (AQ)\gamma \overline{A} = Q\gamma \overline{A} = \gamma \overline{A}$. Therefore, the right of the above equation can be written as

$${}^{\prime}\bar{R}_{i^{j}hk} = B_{p}^{j}R_{q}^{p}{}_{hk}B_{i}^{q} - \Gamma_{ph}^{j}(\bar{A}Q\gamma\bar{N})\Gamma_{ik}^{p}(Q\gamma\bar{A}) + \Gamma_{pk}^{j}(\bar{A}Q\gamma\bar{N})\Gamma_{ih}^{p}(Q\gamma\bar{A}).$$

Now, regarding the second term and the third term of the right of the equation,

 $\Gamma_{ph}^{i}(\overline{A}Q\gamma\overline{N})$ are the components of a tensor of type (1, 2) but $\Gamma_{ih}^{p}(Q\gamma\overline{A})$ are not so, because $\lambda(\overline{A}Q\gamma\overline{N}) = \overline{A}QP\overline{N} = \overline{A}A\overline{N} = \overline{A}\overline{N} = 0$ but $\lambda(Q\gamma\overline{A}) = QP\overline{A} = \overline{A} \neq 0$. Since $\overline{A}Q\gamma\overline{N}$ is a tensor and $\overline{N}^{2} = \overline{N}$, we have

$$\Gamma^{j}_{ph}(\bar{A}Q\gamma\bar{N}) = \Gamma^{j}_{lh}(\bar{A}Q\gamma\bar{N})\bar{N}^{l}_{p}$$

and since $\lambda(\bar{N}Q\gamma\bar{A}) = \bar{N}\bar{A} = 0$, $\bar{N}Q\gamma\bar{A}$ is a tensor. Accordingly, we have the formula of $\bar{R}_{i_{hk}}$ in tensorial form as follows:

$$(2.9) \qquad {}^{\prime}\bar{R}_{i}{}^{j}{}_{hk} = B_{p}^{j}{}^{\prime}R_{q}{}^{p}{}_{hk}B_{i}^{q} - \Gamma_{ph}^{j}(\bar{A}Q_{j}\bar{N})\Gamma_{ik}^{p}(\bar{N}Q_{j}\bar{A}) + \Gamma_{pk}^{i}(\bar{A}Q_{j}\bar{N})\Gamma_{ih}^{p}(\bar{N}Q_{j}\bar{A}).$$

Analogously, we obtain

$$(2.10) \qquad {}^{\prime\prime}\bar{R}_{i^{j}hk} = B_{p}^{j}{}^{\prime\prime}R_{q}{}^{p}{}_{hk}B_{i}^{q} - \Gamma_{ph}^{j}(\bar{A}\gamma Q\bar{N})\Gamma_{ik}^{p}(\bar{N}\gamma Q\bar{A}) + \Gamma_{pk}^{j}(\bar{A}\gamma Q\bar{N})\Gamma_{ih}^{p}(\bar{N}\gamma Q\bar{A}).$$

Lastly, making use of (2.9) and (1.12), we compute the components of $\overline{R}_{i^{j}hk}$ of the curvature tensor of the general connection $\overline{\gamma} = B\gamma B$ in terms of the components of γ and B. We have easily

$$\bar{\gamma}\bar{P}-\bar{P}\bar{\gamma}=B(\gamma P-P\gamma)B,\ \bar{Q}\bar{\gamma}\bar{P}-\bar{\gamma}=B(Q\gamma P-\gamma)B,$$

 $\bar{\gamma}\bar{N}=B\gamma NB,\ \bar{N}\bar{\gamma}\bar{P}=BN\gamma PB.$

Accordingly, we have

$$\begin{split} \overline{R}_{i}{}^{j}{}_{hk} &= \overline{P}_{i}^{j}\overline{P}_{i}^{t}\overline{R}_{i}^{t}R_{ihk}^{l}\overline{P}_{i}^{m} \\ &+ \Gamma_{lh}^{j}(\overline{\gamma}\overline{P}-\overline{P}_{\overline{\gamma}})\Gamma_{ik}^{l}(\overline{Q}_{\overline{\gamma}}\overline{P}-\overline{\gamma}) - \Gamma_{lk}^{j}(\overline{\gamma}\overline{P}-\overline{P}_{\overline{\gamma}})\Gamma_{ih}^{l}(\overline{Q}_{\overline{\gamma}}\overline{P}-\overline{\gamma}) \\ &+ \Gamma_{lh}^{j}(\overline{\gamma}\overline{N})\Gamma_{ik}^{l}(\overline{N}_{\overline{\gamma}}\overline{P}) - \Gamma_{lk}^{j}(\overline{\gamma}\overline{N})\Gamma_{ih}^{l}(\overline{N}_{\overline{\gamma}}\overline{P}) \\ &= \{B_{p}^{j}P_{l}^{p}P_{l}^{t\prime}R_{m}^{l}{}_{hk}P_{q}^{m}B_{i}^{q} - \Gamma_{ph}^{j}(\overline{P}^{2}\overline{A}Q_{\overline{\gamma}}\overline{N})\Gamma_{ik}^{p}(\overline{N}Q_{\overline{\gamma}}\overline{A}\overline{P}) \\ &+ \Gamma_{pk}^{i}(\overline{P}^{2}\overline{A}Q_{\overline{\gamma}}\overline{N})\Gamma_{ih}^{p}(\overline{N}Q_{\overline{\gamma}}\overline{A}\overline{P})\} \\ &+ \Gamma_{lh}^{j}(\overline{\gamma}\overline{P}-\overline{P}_{\overline{\gamma}})\Gamma_{ik}^{l}(\overline{Q}_{\overline{\gamma}}\overline{P}-\overline{\gamma}) - \Gamma_{lk}^{j}(\overline{\gamma}\overline{P}-\overline{P}_{\overline{\gamma}})\Gamma_{ih}^{l}(\overline{Q}_{\overline{\gamma}}\overline{P}-\overline{\gamma}) \\ &+ \Gamma_{lh}^{j}(\overline{\gamma}\overline{N})\Gamma_{ik}^{l}(\overline{N}_{\overline{\gamma}}\overline{P}) - \Gamma_{lk}^{j}(\overline{\gamma}\overline{N})\Gamma_{ih}^{l}(\overline{N}_{\overline{\gamma}}\overline{P}) \\ &= B_{p}^{j}\{P_{i}^{p}P_{i}^{t\prime}R_{m}^{l}{}_{hk}P_{q}^{m} \\ &+ \Gamma_{lh}^{p}(\gamma P-P_{\overline{\gamma}})B_{m}^{l}\Gamma_{qk}^{m}(Q_{\overline{\gamma}}P-\gamma) - \Gamma_{ik}^{p}(\gamma P-P_{\overline{\gamma}})B_{m}^{l}\Gamma_{qh}^{m}(Q_{\overline{\gamma}}P-\gamma) \\ &+ \Gamma_{lh}^{j}(\overline{\gamma}\overline{N})B_{m}^{l}\Gamma_{qk}^{m}(N_{\overline{\gamma}}P) - \Gamma_{lk}^{p}(\gamma N)B_{m}^{l}\Gamma_{qh}^{m}(N_{\overline{\gamma}}P)\}B_{i}^{l} \\ &- \Gamma_{jh}^{j}(\overline{P}^{2}\overline{A}Q_{\overline{\gamma}}\overline{N})\Gamma_{ik}^{p}(\overline{N}Q_{\overline{\gamma}}\overline{A}\overline{P}) + \Gamma_{jk}^{j}(\overline{P}^{2}\overline{A}Q_{\overline{\gamma}}\overline{N})\Gamma_{ih}^{p}(\overline{N}Q_{\overline{\gamma}}\overline{A}\overline{P}). \end{split}$$

By virtue of (1.12), the right of the equation can be written as

$$\begin{split} =& B_{p}^{i}R_{q}{}^{p}{}_{hk}B_{i}^{q} - \Gamma_{ph}^{i}(B(\gamma P - P\gamma))\Gamma_{ik}^{p}((1 - B)(Q\gamma P - \gamma)B) \\ &+ \Gamma_{pk}^{j}(B(\gamma P - P\gamma))\Gamma_{ih}^{p}((1 - B)(Q\gamma P - \gamma)B) \\ &- \Gamma_{ph}^{j}(B\gamma N)\Gamma_{ik}^{p}((1 - B)N\gamma PB) + \Gamma_{pk}^{j}(B\gamma N)\Gamma_{ih}^{p}((1 - B)N\gamma PB) \\ &- \Gamma_{ph}^{j}(\bar{P}^{2}\bar{A}Q\gamma\bar{N})\Gamma_{ik}^{p}(\bar{N}Q\gamma\bar{A}\bar{P}) + \Gamma_{pk}^{j}(\bar{P}^{2}\bar{A}Q\gamma\bar{N})\Gamma_{ih}^{p}(\bar{N}Q\gamma\bar{A}\bar{P}). \end{split}$$

By means of (2.2)~(2.5), we have $\bar{P}^2 \bar{A} Q \gamma \bar{N} = P B \gamma (1 - AB)$ and $\bar{N} Q \gamma \bar{A} \bar{P} = Q(1 - AB) \gamma B P$. Making use of the property that the general connections in the parentheses

TOMINOSUKE ÖTSUKI

belonging to each Γ_{ik}^{j} of the right of the above equation are tensors and simply writing $\Gamma_{lk}^{j}(\gamma_{1})\Gamma_{lk}^{l}(\gamma_{2})$ by $\{\gamma_{1}\}\{\gamma_{2}\}$, we can take the following changes:

$$\begin{split} &-\{B(\gamma P-P\gamma)\}\{(1-B)(Q\gamma P-\gamma)B\}\\ &-\{B\gamma N\}\{(1-B)N\gamma PB\}\\ &-\{PB\gamma(1-AB)\}\{Q(1-AB)\gamma BP\}\\ &=-\{B\gamma(1-B)\}\{Q(1-AB)\gamma BP\}\\ &=-\{B\gamma(1-B)\}\{(1-A)\gamma BP\}-\{PB\gamma(1-B)\}\{Q(1-B)\gamma BP\}\\ &=-\{B\gamma(1-B)\}\{PQ\gamma BP-P\gamma B+(1-A)\gamma BP\}\\ &+\{PB\gamma(1-B)\}\{Q\gamma BP-\gamma B-Q(1-B)\gamma BP\}\\ &=-\{B\gamma(1-B)\}\{\gamma BP\}-\{PB\gamma(1-B)\}\{\gamma B\}+\{B\gamma(1-B)\}\{P\gamma B\}\\ &=-\{B\gamma(1-B)\}\{(1-B)\gamma BP\}-\{PB\gamma(1-B)\}\{(1-B)\gamma B\}\\ &+\{B\gamma(1-B)\}\{P(1-B)\gamma B\}. \end{split}$$

Thus, we obtain a formula showing a relation between the curvatures of the normal general connections γ and $B\gamma B$:

$$(2.11) \qquad \overline{R}_{i}{}^{j}{}_{hk} = B_{p}^{j}R_{q}{}^{p}{}_{hk}B_{q}^{i} \\ -P_{i}^{i}\{\Gamma_{ph}^{i}(B\gamma(1-B))\Gamma_{ik}^{p}((1-B)\gamma B) - \Gamma_{pk}^{i}(B\gamma(1-B))\Gamma_{ih}^{p}((1-B)\gamma B)\} \\ -\{\Gamma_{ph}^{j}(B\gamma(1-B))\Gamma_{ik}^{p}((1-B)\gamma B) - \Gamma_{pk}^{j}(B\gamma(1-B))\Gamma_{ih}^{p}((1-B)\gamma B)\}P_{i}^{i} \\ +\Gamma_{ih}^{j}(B\gamma(1-B))P_{m}^{i}\Gamma_{ik}^{m}((1-B)\gamma B) - \Gamma_{ik}^{j}(B\gamma(1-B))P_{m}^{m}\Gamma_{ih}^{m}((1-B)\gamma B).$$

§3. Induced general connections.

Let γ be a general connection of \mathfrak{X} given by (1.1) in terms of local coordinates $u^{\mathfrak{r}}$ of \mathfrak{X} . Let \mathfrak{Y} be an *m*-dimensional submanifold of \mathfrak{X} with the imbedding map $\mathfrak{c}: \mathfrak{Y} \to \mathfrak{X}$.

Let us take a field Z of (n-m)-dimensional tangent subspaces of \mathfrak{X} given on $\iota(\mathfrak{Y})$ such that $\iota_*(T_y(\mathfrak{Y}))$ and $Z(\iota(y))$ is complement with each other in $T_{\iota(y)}(\mathfrak{X})$ for any point y of \mathfrak{Y} . In local coordinates $v^{\alpha}, \alpha=1, \dots, m$, of \mathfrak{Y} , let ι be written as

$$(3.1) u^j = u^j(v^\alpha).$$

Let $\{X_{\alpha}, X_{\lambda}\}, \alpha = 1, \dots, m, \lambda = m+1, \dots, n$, be a local field of *n*-frames of \mathfrak{X} on $\iota(\mathfrak{Y})$ such that

(3.2)
$$X_{\alpha} = X_{\alpha}^{j} \partial/\partial u^{j}, \quad X_{\alpha}^{j} = \partial u^{j} / \partial v^{\alpha} \quad \text{and} \quad X_{\lambda} = X_{\lambda}^{j} \partial/\partial u^{j} \in \mathbb{Z}$$

and $\{Y^{\alpha}, Y^{\lambda}\}$ with local components $Y_{i}^{\alpha}, Y_{i}^{\lambda}$, be its dual. Then, we say the general connection of \mathfrak{Y} :

(3.3)
$$\gamma^* = \partial v_{\beta} \otimes Y^{\beta}_{j\ell} \iota^* (P^j_i d^2 u^i + \Gamma^j_{ih} du^i \otimes du^h)^{4}$$

4) For the differential forms d^2u^{ι} of order 2, $\iota^* d^2u^{\iota}$ are naturally defined by

$$\iota^* d^2 u^{\imath} = \frac{\partial u^{\imath}}{\partial v^{\alpha}} d^2 v^{\alpha} + \frac{\partial^2 u^{\imath}}{\partial v^{\beta} \partial v^{\alpha}} dv^{\alpha} \otimes dv^{\beta}.$$

190

the induced general connection on \mathfrak{Y} from γ by means of the complementary field Z. We can easily prove that the general connection γ^* does not depend on the local coordinates u^i, v^{α} and it is determined only by the submanifold (ι, \mathfrak{Y}) of \mathfrak{X}, \mathbb{Z} and γ .

THEOREM 1. Let (ι, \mathfrak{Y}) be an *m*-dimensional submanifold of \mathfrak{X} and Z be a field of tangent subspaces of \mathfrak{X} defined on $\iota(\mathfrak{Y})$ complementary to $\iota_*(T(\mathfrak{Y}))$. Let γ be a general connection of \mathfrak{X} and B be a projection of $T(\mathfrak{X})$ such that the image and the kernel of B at each point of $\iota(\mathfrak{Y})$ are identical with the tangent space of $\iota(\mathfrak{Y})$ and Z, respectively. Let γ^* and $(B_{\gamma}B)^*$ be the induced general connections on \mathfrak{Y} from γ and $B_{\gamma}B$ by means of Z, respectively. Then, we have $\gamma^* = (B_{\gamma}B)^*$.

Proof. By the assumptions in the theorem, we have

$$B_i^j X_{\alpha}^i = X_{\alpha}^j \quad \text{and} \quad B_i^j X_{\lambda}^i = 0$$

on $\iota(\mathfrak{Y})$, hence we have

$$(3.5) B_i^j = X_{\alpha}^j Y_i^{\alpha}.$$

On the other hand, representing γ by (1.1), $B\gamma B$ can be written in terms of local coordinates as

$$B\gamma B = \partial u_j \otimes B_l^j \{ P_k^i d(B_i^k du^i) + I_{kh}^{\prime i} B_i^k du^i \otimes du^h \},$$

hence we have

$$(B\gamma B)^* = \partial v_{\beta} \otimes Y_{j}^{\delta} \iota^* (B_l^i \{ P_k^i d(B_k^k du^i) + \Gamma_{kh}^i B_i^k du^i \otimes du^h \}) \\ = \partial v_{\beta} \otimes Y_{l}^{\delta} \iota^* \{ P_k^i d(B_k^k du^i) + \Gamma_{kh}^i B_k^k du^i \otimes du^h \}.$$

Since $\iota^*(B_i^k du^i) = B_i^k X_a^i dv^{\alpha} = X_a^k dv^{\alpha} = \iota^* du^k$, we get

$$(B\gamma B)^* = \partial v_a \otimes Y_l^a \iota^* \{ P_k^l d^2 u^k + \Gamma_{kh}^l du^k \otimes du^h \} = \gamma^*.$$
q.e.d.

THEOREM 2. Under the assumptions in THEOREM 1, let $\overline{R}_{i^{j}hk}$ be the components of the curvature tensor of the general connection $B\gamma B$, then $Y_{j}^{s}\overline{R}_{i^{j}hk}X_{a}^{i}X_{b}^{h}X_{c}^{k}$ are the components of the curvature tensor of the induced general connection γ^{*} .

Proof. Let us take a family of m-dimensional surfaces such that it is written as

$$(3.6) u^{j} = u^{j}(v^{1}, \dots, v^{m}; v^{m+1}, \dots, v^{n})$$

which are identical with (3.1), when $v^{m+1} = \cdots = v^n = 0$, and the family simply covers a neighborhood of \mathfrak{X} . Then, v^1, \cdots, v^n can be regarded as local coordinates of \mathfrak{X} . Making use of the coordinates, we have on the surface $\iota(\mathfrak{Y})$

$$X^{j}_{\alpha} = \delta^{j}_{\alpha}, \quad B^{j}_{\alpha} = \delta^{j}_{\alpha}, \quad B^{\lambda}_{i} = 0, \quad Y^{\beta}_{\alpha} = \delta^{\beta}_{\alpha}, \quad \alpha, \quad \beta = 1, \quad \cdots, \quad m; \quad \lambda = m+1, \quad \cdots, \quad n.$$

Now, we put

$$B\gamma B = \partial v_j \otimes \{ \bar{P}^j_i d^2 v^i + \bar{\Gamma}^j_{ih} dv^i \otimes dv^h \},$$

then we get on the surface $\iota(\mathfrak{Y})$

$$\bar{P}_i^{\lambda} = B_j^{\lambda} P_i^j B_i^l = 0,$$

tominosuke \overline{O} tsuki

$$\bar{\Gamma}_{ij}^{\scriptscriptstyle \lambda} = B_l^{\scriptscriptstyle \lambda} \left\{ \Gamma_{kh}^l B_i^k + P_k^l \frac{\partial B_i^k}{\partial v^h} \right\} = 0, \quad \bar{\Lambda}_{ih}^{\scriptscriptstyle \lambda} = 0$$

and so

$$\begin{split} \bar{R}_{\alpha}{}^{\beta}{}_{\sigma\tau} &= \left\{ \bar{P}_{l}^{\beta} \left(\frac{\partial \bar{\Gamma}_{m\tau}^{l}}{\partial v^{\sigma}} - \frac{\partial \bar{\Gamma}_{m\sigma}^{l}}{\partial v^{\tau}} \right) + \bar{\Gamma}_{l\sigma}^{\beta} \bar{\Gamma}_{m\tau}^{l} - \bar{\Gamma}_{l\tau}^{\beta} \bar{\Gamma}_{m\sigma}^{l} \right\} \bar{P}_{\alpha}^{m} \\ &- \delta_{m,\sigma}^{\beta} \bar{A}_{\alpha\tau}^{m} + \delta_{m,\tau}^{\beta} \bar{A}_{\alpha\sigma}^{m} \\ &= \left\{ \bar{P}_{\rho}^{\beta} \left(\frac{\partial \bar{\Gamma}_{\delta\tau}^{\rho}}{\partial v^{\sigma}} - \frac{\partial \bar{\Gamma}_{\delta\sigma}^{\rho}}{\partial v^{\tau}} \right) + \bar{\Gamma}_{\rho\sigma}^{\beta} \bar{\Gamma}_{\delta\tau}^{\rho} - \bar{\Gamma}_{\rho\tau}^{\beta} \bar{\Gamma}_{\delta\sigma}^{\rho} \right\} \bar{P}_{\alpha}^{\delta} \\ &- \delta_{\delta,\sigma}^{\beta} \bar{A}_{\alpha\tau}^{\delta} + \delta_{\delta,\tau}^{\delta} \bar{A}_{\alpha\sigma}^{\delta}, \qquad \delta_{\delta,\sigma}^{\beta} = - \bar{P}_{\rho}^{\beta} \bar{A}_{\delta\sigma}^{\rho} + \bar{\Gamma}_{\rho\sigma}^{\beta} \bar{P}_{\delta}^{\rho}, \end{split}$$

where indices l, m run on $1, 2, \dots, n$ and indices $\alpha, \beta, \delta, \sigma, \tau, \rho$ run on $1, 2, \dots, m$.

On the other hand, in the local coordinates $v^1 \cdots v^m$ of \mathfrak{Y} , $(B \gamma B)^*$ can be written as

$$egin{aligned} &(B\gamma B)^{st} = \partial v_{eta} \otimes Y^{eta}_J \iota^{st} \{ar{P}^{\jmath}_J d^2 v^{\imath} + ar{\Gamma}^{\jmath}_{ih} \, dv^{\imath} \otimes dv^{h} \} \ &= \partial v_{eta} \otimes Y^{eta}_{
ho} \{ar{P}^{eta}_a d^2 v^{st} + ar{\Gamma}^{eta}_{a\sigma} dv^{st} \otimes dv^{\sigma} \} \ &= \partial v_{eta} \otimes \{ar{P}^{eta}_a d^2 v^{st} + ar{\Gamma}^{eta}_{a\sigma} dv^{st} \otimes dv^{\sigma} \}. \end{aligned}$$

Hence, the components of the curvature tensor of $(B\gamma B)^* = \gamma^*$ with respect to the coordinates v^{α} are $\overline{R}_{\alpha}{}^{\beta}{}_{\sigma\tau}$. Accordingly, if $\overline{R}_{i}{}^{j}{}_{hk}$ are the components of the curvature tensor of $B\gamma B$ with respect to the coordinates u^1, \dots, u^n , they are given by $Y_{j}^{\delta}\overline{R}_{i}{}^{j}{}_{hk}X_{\alpha}^{i}X_{\sigma}^{k}X_{\tau}^{k}$. q.e.d.

§4. The Gauss' equation and the general connection $B\gamma B$.

In this section, we apply the formula (2.11) to the case, in which γ is an affine connection, that is $\lambda(\gamma)=1$. Then P=Q=A=1, (2.11) turns in

$$\begin{split} \bar{R}_{i^{j}hk} = & B_{p}^{j}R_{q}{}^{p}{}_{hk}B_{i}^{q} \\ & -\Gamma_{ph}^{j}\left(B_{l}\gamma(1-B)\right)\Gamma_{ik}^{p}\left((1-B)\gamma B\right) + \Gamma_{pk}^{j}\left(B_{l}\gamma(1-B)\right)\Gamma_{ih}^{p}\left((1-B)\gamma B\right). \end{split}$$

Now, $B_{\gamma}(1-B)$ and $(1-B)\gamma B$ are tensors of type (1, 2). We write the components of these tensors in terms of γ . By means of LEMMA 1.1, we have

$$\begin{split} \Gamma^{j}_{ih}(B\gamma(1-B)) &= \Gamma^{j}_{ih}(B(\gamma(1-B)-(1-B)\gamma)) = B^{j}_{l}\Gamma^{l}_{ih}(\gamma(1-B)-(1-B)\gamma) \\ &= B^{j}_{l}(\delta^{l}_{i,h} - B^{l}_{i,h}) = -B^{l}_{l}B^{l}_{i,h}, \\ \Gamma^{j}_{ih}((1-B)\gamma B) &= \Gamma^{j}_{ih}(((1-B)\gamma-\gamma(1-B))B) = \Gamma^{j}_{lh}((1-B)\gamma-\gamma(1-B))B^{l}_{i} \\ &= -(\delta^{j}_{l,h} - B^{l}_{l,h})B^{l}_{i} = B^{j}_{l,h}B^{l}_{i}. \end{split}$$

Hence, the above equation can be written as

(4.1)
$$\overline{R}_{i^{j}hk} = B_{\rho}^{j} (R_{q}^{p}{}_{hk} + B_{l,h}^{p} B_{q,k}^{l} - B_{l,k}^{p} B_{q,h}^{l}) B_{q}^{l}.$$

192

Now, let \mathfrak{Y} be an *m*-dimensional submanifold of \mathfrak{X} with the imbedding map $\iota: \mathfrak{Y} \to \mathfrak{X}$ such that $\iota_*(T_y(\mathfrak{Y})), y \in \mathfrak{Y}$, is the image of $T_{\iota(\mathfrak{Y})}(\mathfrak{X})$ under *B*. Let $\iota(\mathfrak{Y})$ be locally written by (3.1) and let $\{X_{\alpha}, X_{\lambda}\}, \alpha = 1, \dots, m, \lambda = m+1, \dots, n$, be a local field of *n*-frames of \mathfrak{X} such that $B(X_{\alpha}) = X_{\alpha}$, $B(X_{\lambda}) = 0$ and putting $X_{\alpha} = X_{\alpha}^{i}\partial/\partial u^{j}$, $X_{\lambda} = X_{\lambda}^{i}\partial/\partial u^{j}$, $X_{\lambda} = \frac{\lambda_{\alpha}^{i}\partial}{\partial u^{\alpha}}$, $X_{\lambda} = X_{\lambda}^{i}\partial/\partial u^{j}$, $X_{\lambda} = X_{\lambda}^{i}\partial/\partial u^{j}$, $X_{\lambda} = Y_{\lambda}^{i}\partial u^{j}$, $Y^{\alpha} = Y_{\lambda}^{\alpha}du^{i}$, $Y^{\alpha} = Y_{\lambda}^{\alpha}du^{$

$$B_i^j = X_{\alpha}^j Y_i^{\alpha}$$
 and $\delta_i^j = B_i^j + X_{\lambda}^i Y_i^{\lambda}$.

Since we have

$$B^{j}_{p}B^{p}_{l,h}B^{i}_{q,k}B^{q}_{i} = B^{j}_{p}(X^{p}_{\lambda}Y^{\lambda}_{l}), h(X^{l}_{\mu}Y^{\mu}_{q}), kB^{q}_{i} = B^{j}_{p}X^{p}_{\lambda,h}Y^{\lambda}_{q,k}B^{q}_{i}, kB^{q}_{i}$$

we get from (4.1) the equation

(4.2)
$$Y_{j}^{\beta}\overline{R}_{i^{j}hk}X_{a}^{i}X_{\sigma}^{h}X_{\tau}^{k} = Y_{j}^{\beta}R_{i^{j}hk}X_{a}^{i}X_{\sigma}^{h}X_{\tau}^{k} + Y_{j}^{\beta}(X_{j}^{j}h_{c}X_{\sigma}^{j}X_{$$

Putting

(4.3)
$$Y_{j}^{\beta}X_{\lambda,h}^{j}X_{\sigma}^{h} = H_{(\lambda)\sigma}^{\beta}, \qquad Y_{\lambda,k}^{\lambda}X_{\sigma}^{k}X_{\tau}^{k} = H_{\alpha\tau}^{(\lambda)},$$

we get

(4.4)
$$Y_{j}^{\lambda}\overline{R}_{i}^{j}_{hk}X_{a}^{i}X_{\sigma}^{h}X_{\tau}^{k} = Y_{j}^{\beta}R_{i}^{j}_{hk}X_{a}^{i}X_{\sigma}^{h}X_{\tau}^{k} + H_{(\lambda)\sigma}^{\beta}H_{a\tau}^{(j)} - H_{(\lambda)\tau}^{\beta}H_{a\sigma}^{(j)},$$
$$\alpha, \beta, \sigma, \tau = 1, 2, \cdots, m; \ \lambda = m+1, \cdots, n$$

As is well known, on $\iota(\mathfrak{Y}) \ H^{(\lambda)}_{(2)\alpha}$ are the components of the second fundamental tensor of the surface $\iota(\mathfrak{Y})$, in case of Riemannian geometry. By virtue of THEOREM 2, the left of (4.4) are the components of the curvature tensor of the induced connection γ^* from γ on \mathfrak{Y} by means of the field 1-B. Accordingly, the formula (4.4) is the Gauss' equation in classical differential geometry. Thus, we can regard the formula (2.11) as a generalization of the Gauss' equation.

References

- [1] CHERN, S. S., Lecture note on differential geometry. Chicago Univ. (1950).
- [2] EHRESMANN, G., Les connexions infinitésimales dans un espace fibré différentiable. Colloque de Topologie (Espaces fibrés) (1950), 29-55.
- [3] EHRESMANN, G., Les prolongements d'une variété différentiables I, Calcul des jets, prolongement principal. C. R. Paris 233 (1951), 598-600.
- [4] ÖTSUKI, T., Geometries of connections. Kyöritsu Shuppan Co. (1957). (in Japanese)
- [5] ŌTSUKI, T., On tangent bundles of order 2 and affine connections. Proc. Japan Acad. 34 (1958), 325-330.
- [6] ÖTSUKI, T., Tangent bundles of order 2 and general connections. Math. J. Okayama Univ. 8 (1958), 143-179.
- [7] ÖTSUKI, T., On general connections, I. Math. J. Okayama Univ. 9 (1960), 99-164.
- [8] ŌTSUKI, T., On general connections, II. Math. J. Okayama Univ. 10 (1961), 113-124.
- [9] ŌTSUKI, T., On metric general connections. Proc. Japan Acad. 37 (1961), 183-188.

tominosuke \bar{O} tuki

- [10] ÖTSUKI, T., On normal general connections. Ködai Math. Sem. Rep. 13 (1961), 152-166.
- [11] ÖTSUKI, T., General connections AI'A and the parallelism of Levi-Civita. Ködai Math. Sem. Rem. 14 (1962), 40–52.
- [12] ÕTSUKI, T., On basic curves in spaces with normal general connections. Kõdai Math. Sem. Rep. 14 (1962), 110–118.
- [13] OTSUKI, T., A note on metric general connections. Proc. Japan Acad. 38 (1962), 409-413.
- [14] ÖTSUKI, T., On curvatures of spaces with normal general connections, I. Kōdai Math. Sem. Rep. 15 (1963), 52-61.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.