ON CURVATURES OF SPACES WITH NORMAL GENERAL CONNECTIONS, II

By Tominosuke \bar{O} tsuki

In this paper, the author makes a formula (§2) related to the curvature tensors of a normal general connection γ and $B \gamma B$, where B is a tensor field of type (1, 1) satisfying some conditions, making use of the results in a previous paper [14], and then he shows that the formula applied to the case in which γ is a classical affine connection is a generalization of the Gauss' equations in the theory of subspaces of Riemannian geometry (§4). He also shows that regarding the set of general connections as a vector space over the algebra of all tensor fields of type (1,1), the calculations in connection with the above purpose can be simplified.

§ 1. Preliminaries.

Let \mathfrak{X} be an n-dimensional differentiable manifold. Let γ be a general connection given on \mathfrak{X} which is written in terms of local coordinates u^{2} of \mathfrak{X} as

$$
\begin{equation*}
\gamma=\partial u_{j} \otimes\left(P_{i}^{3} d^{2} u^{2}+\Gamma_{i h}^{j} d u^{2} \otimes d u^{h}\right), \tag{1.1}
\end{equation*}
$$

where $\partial u_{j}=\partial / \partial u^{j}$. We denote the tensor of type $(1,1)$ with local components P_{\imath}^{\prime} by $\lambda(\gamma)$ and denote the components $P_{\imath}^{j}, \Gamma_{i h}^{j}$ of γ with respect to u^{2} by $P_{i}^{\jmath}(\gamma), \Gamma_{i h}^{j}(\gamma)$ respectively, in case of treating several general connections. Let $Q=\partial u_{j} \otimes Q_{i}^{d} d u^{2}$ be a tensor of type (1,1), then the products $Q \gamma$ and γQ of γ and Q are general connections given by

$$
\begin{equation*}
Q \gamma=\partial u_{k} Q_{j}^{k} \otimes\left(P_{i}^{\imath} d^{2} u^{u^{2}}+\Gamma_{i h}^{j} d u^{2} \otimes d u^{h}\right) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma Q=\partial u_{j} \otimes\left(P_{k}^{j} d\left(Q_{i}^{k} d u^{i}\right)+\Gamma_{k h}^{j}\left(Q_{\imath}^{k} d u^{i}\right) \otimes d u^{h}\right),{ }^{1)} \tag{1.3}
\end{equation*}
$$

that is

$$
P_{i}^{\jmath}(Q \gamma)=Q_{k}^{j} P_{\imath}^{k}(\gamma), \Gamma_{i h}^{j}(Q \gamma)=Q_{k}^{j} \Gamma_{i h}^{k}(\gamma)
$$

and

$$
P_{i}^{\prime}(\gamma Q)=P_{k}^{\prime}(\gamma) Q_{\imath}^{k}, \Gamma_{i h}^{j}(\gamma Q)=\Gamma_{k h}^{j}(\gamma) Q_{\imath}^{k}+P_{k}^{\prime}(\gamma) \frac{\partial Q_{i}^{k}}{\partial u^{h}} .
$$

Lemma 1.1. Let γ be a general connection and $Q=\partial u_{j} \otimes Q_{i}^{3} d u^{2}$ be a tensor field. The covariant derivatives $Q_{i, h}^{j}$ of Q_{i}^{j} with respect to γ can be written as

Received July 17, 1963.

1) See [11], § 1 .

$$
\begin{equation*}
Q_{i, h}^{3}=\Gamma_{i h}^{3}(\gamma Q \lambda(\gamma)-\lambda(\gamma) Q \gamma) . \tag{1.4}
\end{equation*}
$$

Proof. By virture of (2.15) in [7], we have by definition

$$
Q_{\imath, h}^{j}=P_{\imath}^{\prime} \frac{\partial Q_{k}^{l}}{\partial u^{h}} P_{\imath}^{k}+\Gamma_{i h}^{\jmath} Q_{k}^{l} P_{\imath}^{k}-P_{\imath}^{\prime} Q_{k}^{l} \Lambda_{i h}^{k},
$$

where we put

$$
A_{i h}^{j}(\gamma)=\Gamma_{i h}^{j}(\gamma)-\frac{\partial P_{i}^{j}(\gamma)}{\partial u^{h}} .
$$

The right of the above equation can be written as

$$
\begin{aligned}
& \Gamma_{l h}^{j} Q_{k}^{l} P_{\imath}^{k}+P_{l}^{\prime} \frac{\partial\left(Q_{k}^{l} P_{k}^{k}\right)}{\partial u^{h}}-P_{l}^{l} Q_{k}^{l} \Gamma_{i h}^{k} \\
= & \Gamma_{i h}^{j}(\gamma Q P)-\Gamma_{i h}^{j}(P Q \gamma)=\Gamma_{i h}^{j}(\gamma Q \lambda(\gamma)-\lambda(\gamma) Q \gamma)
\end{aligned}
$$

Lemma 1.2. A necessary and sufficient condition in order that the tensor field I with the components δ_{i}^{3} is covariantly constant with respect to a general connectoon γ is that γ is commutative with $\lambda(\gamma)$.

Proof. By means of Lemma 1.1, we have

$$
\begin{equation*}
\hat{\delta}_{i, h}^{,}=\Gamma_{i h}^{j}(\gamma \lambda(\gamma)-\lambda(\gamma) \gamma)=\Gamma_{i h}^{j}\left(\gamma P-P_{\gamma}\right) \tag{1.5}
\end{equation*}
$$

and

$$
\lambda(\gamma P-P \gamma)=0 .
$$

These relations lead to the assertion of this lemma.
q.e.d.

By (6.28) in [7], the components of the curvature tensor of γ are given by

$$
\begin{align*}
R_{i^{\prime} h k}^{{ }_{n}}= & \left\{P_{i}^{j}\left(\frac{\partial \Gamma_{m k}^{l}}{\partial u^{h}}-\frac{\partial \Gamma_{m h}^{l}}{\partial u^{k}}\right)+\Gamma_{i h}^{j} \Gamma_{m k}^{l}-\Gamma_{i k}^{j} \Gamma_{m h}^{l}\right\} P_{\imath}^{m} \\
& -\delta_{m, h}^{j} \Lambda_{i k}^{m}+\delta_{m, k}^{j} \Lambda_{i h}^{m} . \tag{1.6}
\end{align*}
$$

Now, let γ be normal and let Q be the tensor such that Q is the inverse of P on its image and identical with P on its kernel regarding P as a homomorphism of the tangent bundle $T(\mathfrak{X})$ of \mathfrak{X}. Then the components ${ }^{\prime} R_{i}{ }^{j} h k$ and " $R_{i}{ }^{j}{ }_{k k}$ of the curvature tensors of the contravariant part ${ }^{\prime} \gamma=Q \gamma$ and the covariant part " $\gamma=\gamma Q$ of γ can be written respectively $\mathrm{as}^{2)}$

$$
\begin{equation*}
' R_{i}{ }^{\prime}{ }_{h k}=A_{i}^{j}\left(\frac{\partial^{\prime} \Lambda_{m k}^{l}}{\partial u^{h}}-\frac{\partial^{\prime} \Lambda_{m h}^{l}}{\partial u^{k}}+{ }^{\prime} \Lambda_{t h}^{t}{ }^{\prime} \Lambda_{m k}^{t}-\Lambda_{t k}^{l} \Lambda_{m h}^{t}\right) A_{\imath{ }^{\prime}}^{m} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
" R_{i}{ }^{j} h k=A_{l}^{j}\left(\frac{\partial^{\prime \prime} \Gamma_{m k}^{\iota}}{\partial u^{h}}-\frac{\partial^{\prime \prime} \Gamma_{m k}^{l}}{\partial u^{k}}+" \Gamma_{\iota h}^{\prime \iota} \Gamma_{m k}^{t}-" \Gamma_{\iota k}^{\iota}{ }^{\prime \prime} \Gamma_{m h}^{t}\right) A_{\imath}^{m}, \tag{1.8}
\end{equation*}
$$

2) See [14], Lemmas 2.1 and 2.2.
 jection of the normal general connection γ.

Putting $N=1-A$, we have

$$
\begin{equation*}
' N_{i h}^{j}=N_{i}^{j} \Gamma_{i h}^{i}=\Gamma_{i h}^{j}(N \gamma) \quad \text { and } \quad " N_{i h}^{j}=\Lambda_{l h}^{j} N_{i}^{l}=\Gamma_{i h}^{j}(\gamma N) . \tag{1.9}
\end{equation*}
$$

Let ' D and " D be the covariant differential operators of $' \gamma$ and ${ }^{\prime \prime} \gamma$ respectively. By means of Lemma 1.1 and $\lambda\left({ }^{\prime} \gamma\right)=\lambda(\prime \prime \gamma)=A$, we have

$$
\frac{\prime D P_{i}^{j}}{\partial u^{h}}=\Gamma_{i h}^{j}\left(^{\prime} \gamma \cdot P \lambda\left({ }^{\prime} \gamma\right)-\lambda\left({ }^{\prime} \gamma\right) P \cdot{ }^{\prime} \gamma\right)=\Gamma_{i h}^{j}\left({ }^{\prime} \gamma \cdot P A-A P \cdot{ }^{\prime} \gamma\right)
$$

and

$$
\frac{" D P_{i}^{j}}{\partial u^{h}}=\Gamma_{i h}^{j}\left(" \gamma \cdot P \lambda\left({ }^{\prime \prime} \gamma\right)-\lambda\left({ }^{\prime \prime} \gamma\right) P \cdot{ }^{\prime \prime} \gamma\right)=\Gamma_{i h}^{\jmath}\left({ }^{\prime \prime} \gamma \cdot P A-A P \cdot{ }^{\prime \prime} \gamma\right),
$$

that is

$$
\begin{equation*}
\frac{\prime D P_{i}^{j}}{\partial u^{h}}=\Gamma_{i h}^{j}(Q \gamma P-A \gamma) \quad \text { and } \quad \frac{" D P_{i}^{\prime}}{\partial u^{h}}=\Gamma_{i h}^{j}\left(\gamma A-P_{\gamma} Q\right) . \tag{1.10}
\end{equation*}
$$

Accordingly, we get from (1.9) and (1.10)

$$
\begin{equation*}
\frac{\prime D P_{i}^{j}}{\partial u^{h}}-N_{i h}^{\prime}=\Gamma_{i h}^{j}(Q \gamma P-\gamma) \quad \text { and } \quad \frac{" D P_{i}^{j}}{\partial u^{h}}+" N_{i h}^{j}=\Gamma_{i h}^{j}\left(\gamma-P_{\gamma} Q\right) . \tag{1.11}
\end{equation*}
$$

Now, making use of these relations for (3.3) in [14], we have

$$
\begin{aligned}
& =P_{i}^{j} \Gamma_{t_{h}}^{l}\left(Q_{\gamma} P-A_{\gamma}\right) \Gamma_{i k}^{t}\left(Q_{\gamma} P-\gamma\right)+\Gamma_{i_{h}}^{j}\left(N_{\gamma}\right) P_{t}^{l} \Gamma_{i k}^{t}\left(Q_{\gamma} P-A_{\gamma}\right)-\Gamma_{{ }_{l h}}^{j}\left(Q_{\gamma} P-\gamma\right) \Gamma_{m_{k}}^{l}\left(N_{\gamma}\right) P_{\imath}^{m} \\
& =\Gamma_{i k}^{j}\left(A_{\gamma} P-P_{\gamma}\right) \Gamma_{i k}^{t}\left(Q_{\gamma} P-\gamma\right)+\Gamma_{i k}^{j}\left(N_{\gamma} P\right) \Gamma_{i k}^{t}\left(Q_{\gamma} P-\gamma\right)-\Gamma_{i k}^{j}\left(Q_{\gamma} P-\gamma\right) \Gamma_{i k}^{l}\left(N_{\gamma} P\right) \\
& =\Gamma_{t h}^{j}\left(A_{\gamma} P-P_{\gamma}+N_{\gamma} P\right) \Gamma_{i k}^{t}(Q \gamma P-\gamma)-\Gamma_{i k}^{{ }_{l}}\left(\left(Q_{\gamma} P-\gamma\right) N\right) \Gamma_{i k}^{l}(\gamma P) \\
& =\Gamma_{i h}^{j}\left(\gamma P-P_{\gamma}\right) \Gamma_{i k}^{t}(Q \gamma P-\gamma)+\Gamma_{i h}^{3}(\gamma N) \Gamma_{i k}^{l}(\gamma P),{ }^{3)} \\
& \text { hence } \\
& R_{i}{ }^{j} h k=P_{t}^{\jmath} P_{l}^{\iota} R_{m}{ }^{l}{ }_{h k} P_{\imath}^{m}+\Gamma_{l h}^{j}\left(\gamma P-P_{\gamma}\right) \Gamma_{i k}^{l}(Q \gamma P-\gamma)-\Gamma_{l k}^{\jmath}\left(\gamma P-P_{\gamma}\right) \Gamma_{i h}^{l}(Q \gamma P-\gamma) \\
& \text { (1.12) } \\
& +\Gamma_{i h}^{j}(\gamma N) \Gamma_{i k}^{l}{ }_{i k}\left(N_{\gamma} P\right)-\Gamma_{i k}^{j}(\gamma N) \Gamma_{i h}^{l}\left(N_{\gamma} P\right) .
\end{aligned}
$$

Analogously, from (3.6) in [14], we get

$$
R_{i}{ }^{{ }^{j} h k}{ }^{n}=P_{l}^{\prime \prime \prime} R_{m}{ }^{l}{ }_{n k} P_{t}^{m} P_{\imath}^{t}+\Gamma_{i h}^{j}\left(\gamma-P_{\gamma} Q\right) \Gamma_{i k}^{l}\left(\gamma P-F_{\gamma}\right)-\Gamma_{l k}^{j}\left(\gamma-P_{\gamma} Q\right) \Gamma_{i h}^{l}\left(\gamma P-P_{\gamma}\right)
$$

$$
\begin{equation*}
+\Gamma_{i k}^{j}\left(P_{\gamma} N\right) \Gamma_{i k}^{l}\left(N_{\gamma}\right)-\Gamma_{i k}^{j}\left(P_{\gamma} N\right) \Gamma_{i h}^{l}\left(N_{\gamma}\right) . \tag{1.13}
\end{equation*}
$$

[^0]
§2. The curvature tensor of a general connection $\boldsymbol{B}_{\gamma} \boldsymbol{B}$.

Let γ be a normal general connection on \mathfrak{X} as in $\S 1$. Let B be a projection of $T(\mathfrak{X})$ such that

$$
\begin{equation*}
A B=B A . \tag{2.1}
\end{equation*}
$$

Putting

$$
\begin{equation*}
\bar{A}=A B, \tag{2.2}
\end{equation*}
$$

\bar{A} is a projection of $T(\mathscr{X})$ such that

$$
\begin{equation*}
A \bar{A}=\bar{A} A=\bar{A}, \quad B \bar{A}=\bar{A} B=\bar{A}, \quad N \bar{A}=\bar{A} N=0, \quad N B=B N=B-\bar{A} . \tag{2.3}
\end{equation*}
$$

Let be assumed furthermore that

$$
\begin{equation*}
P B=B P \tag{2.4}
\end{equation*}
$$

then we have easily

$$
\begin{equation*}
P \bar{A}=\bar{A} P, \quad Q B=B Q, \quad Q \bar{A}=\bar{A} Q, \quad Q \bar{N}=\bar{N} Q, \tag{25}
\end{equation*}
$$

where $\bar{N}=1-A B$.
Now, let us consider a general connection $\bar{r}=B \gamma B$, then \bar{r} is normal, because putting

$$
\begin{equation*}
\bar{P}=\lambda(\gamma)=B P B \quad \text { and } \quad \bar{Q}=B Q B \tag{2.6}
\end{equation*}
$$

we have easily

$$
\bar{P} \bar{Q}=\bar{Q} \bar{P}=\bar{A}, \quad \bar{P} \bar{N}=\bar{N} \bar{P}=0 .
$$

Now, let ' $\bar{r}=\bar{Q} \bar{r}$ and " $\bar{r}=\bar{r} \bar{Q}$ be the contravariant part and the covariant part of the normal general connection \bar{r}. By virtue of (2.5), we get easily

$$
\begin{equation*}
{ }^{\prime} \bar{\gamma}=\bar{Q} \bar{\gamma}=B(Q \gamma) B=B\left(^{\prime} \gamma\right) B \quad \text { and } \quad{ }^{\prime \prime} \bar{\gamma}=\bar{\gamma} \bar{Q}=B(\gamma Q) B=B\left({ }^{\prime \prime} \gamma\right) B . \tag{2.7}
\end{equation*}
$$

Let ${ }^{\prime} \bar{R}_{i}{ }^{j}{ }_{h k}$ and " $\bar{R}_{i}{ }^{\prime}{ }_{h k}$ be the components of the curvature tensors of the contravariant part and the covariant part of the general connection \bar{r} respectively. By means of (1.2'), (1.3') and

$$
\lambda\left({ }^{\prime} \bar{\gamma}\right)=B \lambda\left({ }^{\prime} \gamma\right) B=B A B=\bar{A},
$$

we have

$$
\begin{aligned}
& { }^{\prime} \bar{A}_{i h}{ }_{i}=\Gamma_{i h}^{j}\left({ }^{\prime}(\bar{\gamma})-\frac{\partial P_{i}^{i}(\bar{\prime} \bar{\gamma})}{\partial u^{h}}\right. \\
& \left.=B_{k}^{\jmath}\left\{\Gamma^{k}{ }_{l h}{ }^{\prime}{ }^{\prime} \gamma\right) B_{i}^{l}+P_{l}^{k}\left({ }^{\prime} \gamma\right) \frac{\partial B_{i}^{l}}{\partial u^{h}}\right\}-\frac{\partial \bar{A}_{i}^{\prime}}{\partial u^{h}} \\
& =\bar{A}_{k}^{\prime} \Gamma_{l h}^{k} B_{\imath}^{l}+\bar{A}_{l}^{\prime} \frac{\partial B_{i}^{l}}{\partial u^{h}}-\frac{\partial \bar{A}_{i}^{\prime}}{\partial u^{h}} \\
& =\bar{A}_{k}^{\prime}{ }_{l h}^{k} B_{i}^{l}+\bar{A}_{k}^{\prime} \frac{\partial A_{i}^{k}}{\partial u^{h}} B_{i}^{l}+\bar{A}_{l}^{\prime} \frac{\partial B_{i}^{l}}{\partial u^{h}}-\frac{\partial \bar{A}_{i}^{\jmath}}{\partial u^{h}} .
\end{aligned}
$$

Making use of (2.3) we get easily

$$
\begin{equation*}
' \bar{\Lambda}_{i h}^{\jmath}=\bar{A}_{k}^{\prime} \Lambda_{l h}^{k} B_{i}^{l}-\bar{N}_{l}^{\prime} \frac{\partial \bar{A}_{2}^{\jmath}}{\partial u^{h}} . \tag{2.8}
\end{equation*}
$$

Applying the formula (1.7) for the contravariant part ' $\bar{\gamma}$ of $\bar{\gamma}$, we have

$$
{ }^{\prime} \bar{R}_{i}{ }^{\prime}{ }_{l k k}=\bar{A}_{l}^{j}\left(\frac{\partial^{\prime} \bar{\Lambda}_{m k}^{l}}{\partial u^{h}}-\frac{\partial^{\prime} \bar{\Lambda}_{m h}^{l}}{\partial u^{k}}+{ }^{\prime} \bar{\Lambda}_{t h}^{l} \bar{\Lambda}_{m k}^{t}-^{\prime} \bar{\Lambda}_{t k}^{l} \bar{\Lambda}_{m h}^{t}\right) \bar{A}_{t}^{m} .
$$

Substituting (2.8) into the right, it can be written as

$$
\begin{aligned}
&{ }^{\prime} \bar{R}_{i}{ }^{\prime} h k=B_{p}^{\prime}{ }^{\prime} R_{q}{ }^{p}{ }_{h h} B_{i}^{q}-\bar{A}_{t}^{j}\left(\Lambda_{s h}^{t} \bar{N}_{p}^{s}+\frac{\partial \bar{N}_{p}^{t}}{\partial u^{h}}\right)\left({ }^{\prime} \Lambda_{q k}^{p} \bar{A}_{\imath}^{q}+\frac{\partial \bar{A}_{2}^{p}}{\partial u^{k}}\right) \\
&+\bar{A}_{\iota}^{\prime}\left('^{\prime} \Lambda_{s k}^{t} \bar{N}_{p}^{s}+\frac{\partial \bar{N}_{p}^{t}}{\partial u^{k}}\right)\left(\Lambda_{q_{h}}^{p} \bar{A}_{\imath}^{q}+\frac{\partial \bar{A}_{i}^{p}}{\partial u^{h}}\right) .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
\Gamma_{i h}^{j}{ }^{\prime}(\gamma \bar{A}) & =\Gamma_{l h}^{j}\left({ }^{\prime} \gamma\right) \bar{A}_{2}^{l}+A_{l}^{j} \frac{\partial \bar{A}_{l}^{l}}{\partial u^{h}} \\
& ={ }_{l}^{\prime}{ }_{l h}^{j} \bar{A}_{2}^{l}+\frac{\partial A_{l}^{j}}{\partial u^{l}} \bar{A}_{2}^{l}+A_{l}^{j}-\frac{\partial \bar{A}_{2}^{j}}{\partial u^{h}}={ }^{\prime} A_{l h}^{j} \bar{A}_{2}^{l}+\frac{\partial A_{l}^{j}}{\partial u^{h}}
\end{aligned}
$$

and

$$
\begin{aligned}
\Gamma_{i h}^{j}\left(\bar{A} \cdot{ }^{\prime} \gamma \bar{N}\right) & =\bar{A}_{k}^{\jmath} \Gamma_{i h}^{k}\left({ }^{\prime} \gamma \bar{N}\right)=\bar{A}_{k}^{\prime}\left(\Gamma_{l h}^{k} \bar{N}_{\imath}^{l}+A_{\iota}^{k} \frac{\partial \bar{N}_{\imath}^{l}}{\partial u^{h}}\right) \\
& =\bar{A}_{k}^{j}\left({ }_{l}^{\prime} \Lambda_{l h}^{k} \bar{N}_{\imath}^{l}+\frac{\partial \bar{N}_{l}^{k}}{\partial u^{h}}+\frac{\partial A_{l}^{k}}{\partial u^{h}} \bar{N}_{\imath}^{l}\right) .
\end{aligned}
$$

Making use of these, the above equation can be written as

$$
\begin{aligned}
&{ }^{\prime} \bar{R}_{i}{ }^{\prime}{ }_{h k}=B_{p}^{\prime \prime}{ }^{\prime} R_{q}^{p_{h k}} B_{i}^{q}-\left(\Gamma^{j}{ }_{p h}\left(\bar{A} \cdot{ }^{\prime} \gamma \bar{N}\right)-\bar{A}_{l}^{\prime} \frac{\partial A_{l}^{t}}{\partial u^{h}} \bar{N}_{p}^{l}\right) \Gamma_{i k}^{p}\left({ }^{\prime} \gamma A\right) \\
&\left.+\left(\Gamma_{p_{k}}^{j}\left(\bar{A} \cdot{ }^{\prime} \gamma \bar{N}\right)-\bar{A}_{t}^{\prime} \frac{\partial A_{l}^{t}}{\partial u^{k}} \bar{N}_{p}^{\prime}\right) \Gamma_{i h}^{p}{ }^{\prime}{ }^{\prime} \gamma \bar{A}\right) .
\end{aligned}
$$

We have

$$
\bar{A}_{t}^{\prime} \frac{\partial A_{L}^{t}}{\partial u^{h}} \bar{N}_{p}^{l} A_{2}^{p}=\frac{\partial \bar{A}_{t}^{l}}{\partial u^{h}} N_{l}^{t} \bar{N}_{p}^{l} A_{2}^{p}=0
$$

and

$$
\Gamma_{i k}^{p}\left({ }^{\prime} \gamma \bar{A}\right)=A_{l}^{p} \Gamma_{i k}^{l}\left(^{\prime} \gamma^{\prime} \bar{A}\right),
$$

since $A\left({ }^{\prime} \gamma \bar{A}\right)=A\left(Q_{\gamma} \bar{A}\right)=(A Q) \gamma \bar{A}=Q_{\gamma} \bar{A}={ }^{\prime} \gamma \bar{A}$. Therefore, the right of the above equation can be written as

$$
' \bar{R}_{i}{ }^{\prime}{ }_{h k}=B_{p}^{\prime}{ }^{\prime} R_{q}{ }^{p}{ }_{h k} B_{i}^{q}-\Gamma_{p h}^{j}\left(\bar{A} Q_{\gamma} \bar{N}\right) \Gamma_{i k}^{p}(Q \gamma \bar{A})+\Gamma_{p_{k}}^{j}\left(\bar{A} Q_{\gamma} \bar{N}\right) \Gamma_{i h}^{p}\left(Q_{\gamma} \bar{A}\right) .
$$

Now, regarding the second term and the third term of the right of the equation,
$\Gamma_{p_{h}}^{j}\left(\bar{A} Q_{\gamma} \bar{N}\right)$ are the components of a tensor of type $(1,2)$ but $\Gamma_{i h}^{p}\left(Q_{\gamma} \bar{A}\right)$ are not so, because $\lambda\left(\bar{A} Q_{\gamma} \bar{N}\right)=\bar{A} Q P \bar{N}=\bar{A} A \bar{N}=\bar{A} \bar{N}=0$ but $\lambda\left(Q_{\gamma} \bar{A}\right)=Q P \bar{A}=\bar{A} \neq 0$. Since $\bar{A} Q_{\gamma} \bar{N}$ is a tensor and $\bar{N}^{2}=\bar{N}$, we have

$$
\Gamma_{p h}^{j}(\bar{A} Q r \bar{N})=\Gamma_{l h}^{j}(\bar{A} Q r \bar{N}) \bar{N}_{p}^{l}
$$

and since $\lambda\left(\bar{N} Q_{\gamma} \bar{A}\right)=\bar{N} \bar{A}=0, \bar{N} Q_{\gamma} \bar{A}$ is a tensor. Accordingly, we have the formula of ${ }^{\prime} \bar{R}_{i}{ }^{\prime}{ }_{h k}$ in tensorial form as follows:
(2.9) $\quad{ }^{\prime} \bar{R}_{i}{ }^{j}{ }_{h k}=B_{p}^{\prime \prime}{ }^{\prime} R_{q}{ }^{p}{ }_{h k} B_{i}^{q}-\Gamma_{p_{h}}^{j}\left(\bar{A} Q_{\gamma} \bar{N}\right) \Gamma_{i k}^{p}\left(\bar{N} Q_{\gamma} \bar{A}\right)+\Gamma_{p k}^{i}\left(\bar{A} Q_{\gamma} \bar{N}\right) \Gamma_{i h}^{p}\left(\bar{N} Q_{\gamma} \bar{A}\right)$.

Analogously, we obtain
(2.10) $\quad " \bar{R}_{i}{ }^{j}{ }_{h k}=B_{p}^{j}{ }^{\prime \prime} R_{q}{ }^{p}{ }_{h k} B_{i}^{q}-\Gamma_{p_{h}}^{j}(\bar{A} \gamma Q \bar{N}) \Gamma_{i k}^{p}\left(\bar{N}_{\gamma} Q \bar{A}\right)+\Gamma_{p_{k}}^{j}\left(\bar{A}_{\gamma} Q \bar{N}\right) \Gamma_{i h}^{p}\left(\bar{N}_{\gamma} Q \bar{A}\right)$.

Lastly, making use of (2.9) and (1.12), we compute the components of $\bar{R}_{i}{ }_{h h k}$ of the curvature tensor of the general connection $\bar{\gamma}=B \gamma B$ in terms of the components of γ and B. We have easily

$$
\begin{aligned}
\bar{\gamma} \bar{P}-\bar{P} \bar{\gamma} & =B\left(\gamma P-P_{\gamma}\right) B, \bar{Q} \bar{\gamma} \bar{P}-\bar{\gamma}=B\left(Q_{\gamma} P-\gamma\right) B, \\
\bar{\gamma} \bar{N} & =B \gamma N B, \bar{N}_{\bar{\gamma}} \bar{P}=B N_{\gamma} P B .
\end{aligned}
$$

Accordingly, we have

$$
\begin{aligned}
& \bar{R}_{i}{ }^{j}{ }_{h k}=\bar{P}_{t}{ }^{\prime} \bar{P}_{l}^{t \prime} \bar{R}_{m \hbar k}^{l} \bar{P}_{2}^{m} \\
& +\Gamma_{l h}^{j}\left(\bar{\gamma} \bar{P}-\bar{P}_{\bar{\gamma}}\right) \Gamma_{i k}^{l}(\bar{Q} \bar{\gamma} \bar{P}-\bar{\gamma})-\Gamma_{i k}^{j}(\bar{\gamma} \bar{P}-\bar{P} \bar{\gamma}) \Gamma_{i h}^{l}(\bar{Q} \bar{\gamma} \bar{P}-\bar{\gamma}) \\
& +\Gamma_{i k}^{j}(\bar{\gamma} \bar{N}) \Gamma_{i k}^{l}(\bar{N} \bar{\gamma} \bar{P})-\Gamma_{i k}^{j}(\bar{\gamma} \bar{N}) \Gamma_{i h}^{l}(\bar{N} \bar{\gamma} \bar{P}) \\
& =\left\{B_{p}^{\prime} P_{t}^{p} P_{l}^{t \prime} R_{m}{ }^{l}{ }_{h k} P_{q}^{m} B_{i}^{q}-\Gamma_{p_{h}}^{j}\left(\bar{P}^{2} \bar{A} Q \gamma \bar{N}\right) \Gamma_{i k}^{p}(\bar{N} Q \gamma \bar{A} \bar{P})\right. \\
& \left.+\Gamma_{p_{k}}^{i}\left(\bar{P}^{2} \bar{A} Q_{\gamma} \bar{N}\right) \Gamma_{i h}^{p}\left(\bar{N} Q_{\gamma} \bar{A} \bar{P}\right)\right\} \\
& +\Gamma_{i k}^{j}(\bar{\gamma} \bar{P}-\bar{P} \bar{\gamma}) \Gamma_{i k}^{i}(\bar{Q} \bar{\gamma} \bar{P}-\bar{\gamma})-\Gamma_{i k}^{j}(\bar{\gamma} \bar{P}-\bar{P} \bar{\gamma}) \Gamma_{i k}^{l}(\bar{Q} \bar{\gamma} \bar{P}-\bar{\gamma}) \\
& +\Gamma_{i h}^{j}(\bar{\gamma} \bar{N}) \Gamma_{i k}^{l}(\bar{N} \bar{\gamma} \bar{P})-\Gamma_{i k}^{j}(\bar{\gamma} \bar{N}) \Gamma_{i h}^{l}(\bar{N} \bar{\gamma} \bar{P}) \\
& =B_{p}^{\prime}\left\{P_{t}^{p} P_{l}^{t} R_{m}{ }^{l}{ }_{h k} P_{q}^{m}\right. \\
& +\Gamma_{l h}^{p}\left(\gamma P-P_{\gamma}\right) B_{m}^{l} \Gamma_{q_{k}}^{m}\left(Q_{\gamma} P-\gamma\right)-\Gamma_{l k}^{p}\left(\gamma P-P_{\gamma}\right) B_{m}^{l} \Gamma_{q_{h}}^{m}\left(Q_{\gamma} P-\gamma\right) \\
& \left.+\Gamma_{l h}^{p}(\gamma N) B_{m}^{l} \Gamma_{q k}^{m}(N \gamma P)-\Gamma_{l k}^{p}(\gamma N) B_{m}^{l} \Gamma_{q_{h}}^{m}\left(N_{\gamma} P\right)\right\} B_{i}^{q} \\
& -\Gamma_{p_{h}}^{j_{n}}\left(\bar{P}^{2} \bar{A} Q_{\gamma} \bar{N}\right) \Gamma_{i k}^{p}\left(\bar{N} Q_{\gamma} \bar{A} \bar{P}\right)+\Gamma_{p_{k}}^{j}\left(\bar{P}^{2} \bar{A} Q_{\gamma} \bar{N}\right) \Gamma_{i h}^{p}\left(\bar{N} Q_{\gamma} \bar{A} \bar{P}\right) .
\end{aligned}
$$

By virtue of (1.12), the right of the equation can be written as

$$
\begin{aligned}
=B_{p}^{j} R_{q}{ }_{h k k} B_{i}^{q} & -\Gamma_{p_{h}}^{j}\left(B\left(\gamma P-P_{\gamma}\right)\right) \Gamma_{i k}^{p}((1-B)(Q \gamma P-\gamma) B) \\
& +\Gamma_{p_{k}}^{j}(B(\gamma P-P \gamma)) \Gamma_{i h}^{p}((1-B)(Q \gamma P-\gamma) B) \\
& -\Gamma_{p_{h}}^{j}(B \gamma N) \Gamma_{i k}^{p}\left((1-B) N_{\gamma} P B\right)+\Gamma_{p_{k}}^{j}(B \gamma N) \Gamma_{i h}^{p}\left((1-B) N_{\gamma} P B\right) \\
& -\Gamma_{p_{h}}^{j}\left(\bar{P}^{2} \bar{A} Q_{\gamma} \bar{N}\right) \Gamma_{i k}^{p}\left(\bar{N} Q_{\gamma} \bar{A} \bar{P}\right)+\Gamma_{p_{k}}^{j}\left(\bar{P}^{2} \bar{A} Q_{\gamma} \bar{N}\right) \Gamma_{i h}^{p}\left(\bar{N} Q_{\gamma} \bar{A} \bar{P}\right) .
\end{aligned}
$$

By means of (2.2)~(2.5), we have $\bar{P}^{2} \bar{A} Q_{\gamma} \bar{N}=P_{\gamma}(1-A B)$ and $\bar{N} Q_{\gamma} \bar{A} \bar{P}=Q(1-A B)$ $\gamma B P$. Making use of the property that the general connections in the parentheses
belonging to each $\Gamma_{i n}^{j}$ of the right of the above equation are tensors and simply writing $\Gamma_{i h}^{j}\left(\gamma_{1}\right) \Gamma_{i k}^{l}\left(\gamma_{2}\right)$ by $\left\{\gamma_{1}\right\}\left\{\gamma_{2}\right\}$, we can take the following changes:

$$
\begin{aligned}
& -\{B(\gamma P-P r)\}\{(1-B)(Q \gamma P-\gamma) B\} \\
& -\{B \gamma N\}\{(1-B) N \gamma P B\} \\
& -\{P B \gamma(1-A B)\}\{Q(1-A B) r B P\} \\
= & -\{B r(1-B) P-P B \gamma(1-B)\}\left\{Q_{\gamma} B P-r B\right\} \\
& -\{B r(1-B)\}\{(1-A) r B P\}-\{P B r(1-B)\}\{Q(1-B) \gamma B P\} \\
= & -\{B r(1-B)\}\{P Q \gamma B P-P r B+(1-A) r B P\} \\
& +\{P B r(1-B)\}\{Q \gamma B P-\gamma B-Q(1-B) r B P\} \\
= & -\{B r(1-B)\}\{r B P\}-\{P B r(1-B)\}\{r B\}+\{B r(1-B)\}\left\{P_{\gamma} B\right\} \\
= & -\{B r(1-B)\}\{(1-B) r B P\}-\{P B r(1-B)\}\{(1-B) r B\} \\
& +\{B r(1-B)\}\{P(1-B) r B\} .
\end{aligned}
$$

Thus, we obtain a formula showing a relation between the curvatures of the normal general connections γ and $B \gamma B$:

$$
\begin{align*}
& \bar{R}_{i}{ }^{j}{ }_{h k}=B_{P}^{j} R_{q}{ }^{p}{ }_{h k} B_{i}^{q} \\
& -P_{l}^{j}\left\{\Gamma_{p_{h}}^{\prime \sim}(B \gamma(1-B)) \Gamma_{i k}^{p}((1-B) \gamma B)-\Gamma_{p k}^{l}(B \gamma(1-B)) \Gamma_{i h}^{p}((1-B) \gamma B)\right\} \tag{2.11}\\
& -\left\{\Gamma_{p_{h}}^{j}(B \gamma(1-B)) \Gamma_{l k}^{p}((1-B) \gamma B)-\Gamma_{p_{k}}^{j}(B \gamma(1-B)) \Gamma_{l h}^{p}((1-B) \gamma B)\right\} P_{\imath}^{l} \\
& +\Gamma_{l h}^{j}(B \gamma(1-B)) P_{m}^{l} \Gamma_{i k}^{m}((1-B) \gamma B)-\Gamma_{i k}^{j}(B \gamma(1-B)) P_{m}^{l} \Gamma_{i h}^{m}((1-B) \gamma B) .
\end{align*}
$$

§3. Induced general connections.

Let γ be a general connection of \mathfrak{X} given by (1.1) in terms of local coordinates u^{2} of \mathfrak{X}. Let \mathfrak{Y} be an m-dimensional submanifold of \mathfrak{X} with the imbedding map c: $\mathfrak{Y} \rightarrow \boldsymbol{x}$.

Let us take a field Z of $(n-m)$-dimensional tangent subspaces of \mathfrak{X} given on $\iota(\mathfrak{Y})$ such that $\iota_{*}\left(T_{y}(\mathfrak{Y})\right.$ and $Z(\iota(y))$ is complement with each other in $T_{\iota(y)}(\mathfrak{X})$ for any point y of \mathfrak{Y}. In local coodinates $v^{\alpha}, \alpha=1, \cdots, m$, of \mathfrak{Y}, let ι be written as

$$
\begin{equation*}
u^{j}=u^{j}\left(v^{\alpha}\right) . \tag{3.1}
\end{equation*}
$$

Let $\left\{X_{\alpha}, X_{\lambda}\right\}, \alpha=1, \cdots, m, \lambda=m+1, \cdots, n$, be a local field of n-frames of \mathfrak{X} on $\iota(\mathfrak{y})$ such that

$$
\begin{equation*}
X_{\alpha}=X_{\alpha}^{\jmath} \partial / \partial w^{j}, \quad X_{\alpha}^{\jmath}=\partial w^{\jmath} / \partial v^{\alpha} \quad \text { and } \quad X_{\lambda}=X_{\lambda}^{j} \partial / \partial w^{\jmath} \in Z \tag{3.2}
\end{equation*}
$$

and $\left\{Y^{\alpha}, Y^{\lambda}\right\}$ with local components $Y_{\imath}^{\alpha}, Y_{\imath}^{\lambda}$, be its dual. Then, we say the general connection of \mathfrak{y} :

$$
\begin{equation*}
\gamma^{*}=\partial v_{\beta} \otimes Y_{j^{\prime}}^{\beta} *\left(P_{i}^{?} d^{2} u^{2}+\Gamma_{i h}^{j} d u^{\imath} \otimes d u^{h}\right)^{4)} \tag{3.3}
\end{equation*}
$$

4) For the differential forms $d^{2} u^{2}$ of order $2, c^{*} d^{2} u^{2}$ are naturally defined by

$$
\iota^{*} d^{2} u^{2}=\frac{\partial u^{2}}{\partial v^{\alpha}} d^{2} v^{\alpha}+\frac{\partial^{2} u^{2}}{\partial v v^{\beta} \partial v^{\alpha}} d v^{\alpha} \otimes d v^{\beta}
$$

the induced general connection on \mathfrak{Y} from γ by means of the complementary field Z. We can easily prove that the general connection γ^{*} does not depend on the local coordinates u^{2}, v^{α} and it is determined only by the submanifold (ι, \mathfrak{Y}) of \mathfrak{X}, Z and γ.

Theorem 1. Let (ϵ, \mathfrak{Y}) be an m-dimensional submanifold of \mathfrak{X} and Z be a field of tangent subspaces of \mathfrak{X} defined on (\mathfrak{Y}) complementary to $\iota_{*}(T(\mathfrak{Y})$. Let γ be a general connection of \mathfrak{X} and B be a projection of $T(\mathfrak{X})$ such that the image and the kernel of B at each point of $c(\mathfrak{Y})$ are identical with the tangent space of $c(\mathfrak{Y})$ and Z, respectively. Let γ^{*} and $(B \gamma B)^{*}$ be the induced general connections on \mathfrak{Y} from γ and $B_{\gamma} B$ by means of Z, respectively. Then, we have $\gamma^{*}=(B \gamma B)^{*}$.

Proof. By the assumptions in the theorem, we have

$$
\begin{equation*}
B_{i}^{j} X_{\alpha}^{i}=X_{\alpha}^{j} \quad \text { and } \quad B_{i}^{j} X_{\lambda}^{i}=0 \tag{3.4}
\end{equation*}
$$

on $\iota(Y)$, hence we have

$$
\begin{equation*}
B_{i}^{j}=X_{\alpha}^{j} Y_{i}^{\alpha} . \tag{3.5}
\end{equation*}
$$

On the other hand, representing γ by (1.1), $B_{\gamma} B$ can be written in terms of local coordinates as

$$
B_{\gamma} B=\partial u_{j} \otimes B_{l}^{j}\left\{P_{k}^{l} d\left(B_{i}^{k} d u^{\imath}\right)+I_{k h}^{l} B_{i}^{k} d u^{2} \otimes d u^{h}\right\}
$$

hence we have

$$
\begin{aligned}
(B \gamma B)^{*} & =\partial v_{\beta} \otimes Y_{c_{c}^{\beta}}^{\beta} *\left(B_{l}^{\jmath}\left\{P_{k}^{l} d\left(B_{i}^{k} d u^{i}\right)+\Gamma_{k h}^{l} B_{i}^{k} d u^{2} \otimes d u^{h}\right\}\right) \\
& =\partial v_{\beta} \otimes Y_{i}^{\beta} c^{*}\left\{P_{k}^{l} d\left(B_{i}^{k} d u^{2}\right)+\Gamma_{k h}^{l} B_{i}^{k} d u^{2} \otimes d u^{h}\right\} .
\end{aligned}
$$

Since $\iota^{*}\left(B_{i}^{k} d u^{i}\right)=B_{i}^{k} X_{\alpha}^{i} d v^{\alpha}=X_{\alpha}^{k} d v^{\alpha}=\iota^{*} d u^{k}$, we get

$$
(B \gamma B)^{*}=\partial v_{\alpha} \otimes Y_{c^{\imath}}^{\alpha} \iota^{*}\left\{P_{k}^{l} d^{2} u^{k}+\Gamma_{k h}^{l} d u^{k} \otimes d u^{h}\right\}=\gamma^{*} . \quad \text { q.e.d. }
$$

Theorem 2. Under the assumptions in Theorem 1, let $\bar{R}_{i}{ }^{j} h k$ be the components of the curvature tensor of the general connection $B \gamma B$, then $Y_{j}^{\beta} \bar{R}_{i}{ }^{j}{ }_{k k} X_{\alpha}^{i} X_{o}^{h} X_{\tau}^{k}$ are the components of the curvature tensor of the induced general connection γ^{*}.

Proof. Let us take a family of m-dimensional surfaces such that it is written as

$$
\begin{equation*}
u^{j}=u^{j}\left(v^{1}, \cdots, v^{m} ; v^{m+1}, \cdots, v^{n}\right) \tag{3.6}
\end{equation*}
$$

which are identical with (3.1), when $v^{n+1}=\cdots=v^{n}=0$, and the family simply covers a neighborhood of \mathfrak{X}. Then, v^{1}, \cdots, v^{n} can be regarded as local coordinates of \mathfrak{X}. Making use of the coordinates, we have on the surface $\iota(\mathfrak{Y})$

$$
X_{\alpha}^{\jmath}=\delta_{\alpha}^{\jmath}, \quad B_{\alpha}^{\jmath}=\delta_{\alpha}^{\jmath}, \quad B_{i}^{\lambda}=0, \quad Y_{\alpha}^{\beta}=\delta_{\alpha}^{\beta}, \quad \alpha, \beta=1, \cdots, m ; \lambda=m+1, \cdots, n .
$$

Now, we put

$$
B \gamma B=\partial v_{j} \otimes\left\{\bar{P}_{i}^{d} d^{2} v^{2}+\bar{\Gamma}_{i h}^{\prime} d v^{2} \otimes d v^{h}\right\}
$$

then we get on the surface $\iota(\mathfrak{Y})$

$$
\bar{P}_{i}^{\lambda}=B_{j}^{\lambda} P_{i}^{j} B_{i}^{l}=0,
$$

$$
\bar{\Gamma}_{i \jmath}^{\lambda}=B_{l}^{\lambda}\left\{\Gamma_{k h}^{l} B_{i}^{k}+P_{k}^{l} \frac{\partial B_{i}^{k}}{\partial v^{h}}\right\}=0, \quad \bar{\Lambda}_{i h}^{2}=0
$$

and so

$$
\begin{aligned}
& \bar{R}_{\alpha}{ }_{\alpha}{ }_{\sigma \tau}=\left\{\bar{P}_{l}^{\beta}\left(\frac{\partial \bar{\Gamma}_{m \tau}^{l}}{\partial v^{\sigma}}-\frac{\partial \bar{\Gamma}_{m o}^{l}}{\partial v^{\tau}}\right)+\bar{\Gamma}_{l o}^{\beta} \bar{\Gamma}_{m \tau}^{l}-\bar{\Gamma}_{l \tau}^{\beta} \bar{\Gamma}_{m o}^{l}\right\} \bar{P}_{\alpha}^{m} \\
& -\delta_{m, o}^{\beta} \bar{\Lambda}_{\alpha \tau}^{m}+\delta_{m, \tau}^{\beta} \bar{\Lambda}_{\alpha \sigma}^{m} \\
& =\left\{\bar{P}_{\rho}^{s}\left(\frac{\partial \bar{\Gamma}_{\delta \tau}^{\rho}}{\partial v^{\sigma}}-\frac{\partial \bar{\Gamma}_{\delta \sigma}^{o}}{\partial v^{\tau}}\right)+\bar{\Gamma}_{\rho \sigma}^{\beta} \bar{\Gamma}_{\delta \tau}^{o}-\bar{\Gamma}_{\rho_{\sigma}}^{\beta} \bar{\Gamma}_{\delta \sigma}^{\rho}\right\} \bar{P}_{\alpha}^{o} \\
& -\delta_{\delta, \sigma}^{\beta} \bar{\Lambda}_{\alpha \tau}^{\delta}+\delta_{\delta, r}^{\beta} \bar{\Lambda}_{\alpha \sigma}^{o}, \quad \delta_{\delta, \sigma}^{\beta}=-\bar{P}_{\rho}^{\beta} \bar{\Lambda}_{\delta \sigma}^{\rho}+\bar{\Gamma}_{\rho \sigma}^{\beta} \bar{P}_{\delta}^{\rho},
\end{aligned}
$$

where indices l, m run on $1,2, \cdots, n$ and indices $\alpha, \beta, \delta, \sigma, \tau, \rho$ run on $1,2, \cdots, m$.
On the other hand, in the local coordinates $v^{1} \cdots v^{m}$ of $\mathfrak{Y},\left(B_{\gamma} B\right)^{*}$ can be written as

$$
\begin{aligned}
(B \gamma B)^{*} & =\partial v_{\beta} \otimes Y_{j c}^{\beta} c^{*}\left\{\bar{P}_{i}^{J} d^{2} v^{2}+\bar{\Gamma}_{\partial h}^{\prime} d v^{2} \otimes d v^{h}\right\} \\
& =\partial v_{\beta} \otimes Y_{\rho}^{\beta}\left\{\bar{P}_{\alpha}^{\rho} d^{2} v^{\alpha}+\bar{\Gamma}_{\alpha \sigma}^{\rho} d v^{\alpha} \otimes d v^{\sigma}\right\} \\
& =\partial v_{\beta} \otimes\left\{\bar{P}_{\alpha}^{\beta} d^{2} v^{\alpha}+\bar{\Gamma}_{\alpha \sigma}^{\beta} d v^{\alpha} \otimes d v^{\alpha}\right\} .
\end{aligned}
$$

Hence, the components of the curvature tensor of $(B \gamma B)^{*}=\gamma^{*}$ with respect to the coordinates v^{α} are $\bar{R}_{\alpha}{ }^{\beta}{ }_{\sigma \tau}$. Accordingly, if $\bar{R}_{i}{ }^{j}{ }_{h k}$ are the components of the curvature tensor of $B_{\gamma} B$ with respect to the coordinates u^{1}, \cdots, u^{n}, they are given by $Y_{j}^{\beta} \bar{R}_{i}{ }^{j}{ }_{h k} X_{\alpha}^{i} X_{o}^{h} X_{\tau}^{k}$.
q.e.d.

§4. The Gauss' equation and the general connection $\boldsymbol{B r}_{\gamma} \boldsymbol{B}$.

In this section, we apply the formula (2.11) to the case, in which γ is an affine connection, that is $\lambda(\gamma)=1$. Then $P=Q=A=1$, (2.11) turns in

$$
\begin{aligned}
\bar{R}_{i}{ }^{j} h k= & B_{p}^{j} R_{q}{ }^{p}{ }_{h k} B_{i}^{q} \\
& -\Gamma_{p h}^{j}(B \gamma(1-B)) \Gamma_{i k}^{p}((1-B) \gamma B)+\Gamma_{p_{k}}^{j}(B \gamma(1-B)) \Gamma_{i h}^{p}((1-B) \gamma B) .
\end{aligned}
$$

Now, $B \gamma(1-B)$ and $(1-B) r B$ are tensors of type (1, 2). We write the components of these tensors in terms of γ. By means of Lemma 1.1, we have

$$
\begin{aligned}
\Gamma_{i h}^{j}(B \gamma(1-B)) & =\Gamma_{i h}^{j}(B(\gamma(1-B)-(1-B) \gamma))=B_{l}^{j} \Gamma_{i h}^{l}(\gamma(1-B)-(1-B) \gamma) \\
& =B_{l}^{j}\left(\delta_{i, h}^{l}-B_{i, h}^{l}\right)=-B_{l}^{j} B_{i, h}^{l}, \\
\Gamma_{i h}^{j}((1-B) \gamma B) & =\Gamma_{i h}^{j}\left((((1-B) \gamma-\gamma(1-B)) B)=\Gamma_{i h}^{j}((1-B) \gamma-\gamma(1-B)) B_{i}^{l}\right. \\
& =-\left(\partial_{l, h}^{l}-B_{l, h}^{j}\right) B_{i}^{l}=B_{l, h}^{j} B_{i}^{l} .
\end{aligned}
$$

Hence, the above equation can be written as

$$
\begin{equation*}
\bar{R}_{i}{ }^{\prime} h k=B_{p}^{\jmath}\left(R_{q}{ }_{h k k}+B_{l, h}^{p} B_{q, k}^{l}-B_{l, k}^{p} B_{q, h}^{l}\right) B_{i}^{q} . \tag{4.1}
\end{equation*}
$$

Now, let \mathfrak{Y} be an m-dimensional submanifold of \mathfrak{X} with the imbedding map $\iota: ~ \mathfrak{Y} \rightarrow \mathfrak{X}$ such that $\iota_{*}\left(T_{y}(\mathfrak{Y})\right), y \in \mathfrak{Y}$, is the image of $T_{\iota(y)}(\mathfrak{X})$ under B. Let $\iota(\mathfrak{Y})$ be locally written by (3.1) and let $\left\{X_{\alpha}, X_{\lambda}\right\}, \alpha=1, \cdots, m, \lambda=m+1, \cdots, n$, be a local field of n-frames of \mathfrak{X} such that $B\left(X_{\alpha}\right)=X_{\alpha}, B\left(X_{\lambda}\right)=0$ and putting $X_{\alpha}=X_{\alpha}^{j} \partial / \partial u^{\prime}$, $X_{\lambda}=X_{\lambda}^{j} \partial / \partial w^{\nu}, X_{\alpha}^{j}=\partial u^{\nu} / \partial v^{\alpha}$ on $\iota(Y)$. Taking the dual frame $\left\{Y^{\alpha}, Y^{\alpha}\right\}, Y^{\alpha}=Y_{i}^{\alpha} d u^{2}$, $Y^{\lambda}=Y_{i}^{\lambda} d u^{2}$, we have

$$
B_{i}^{j}=X_{\alpha}^{\jmath} Y_{i}^{\alpha} \quad \text { and } \quad \delta_{i}^{\jmath}=B_{i}^{j}+X_{\lambda}^{i} Y_{i}^{\lambda} .
$$

Since we have

$$
B_{p}^{\jmath} B_{l, h}^{p} B_{q, k}^{\iota} B_{i}^{q}=B_{p}^{\jmath}\left(X_{\lambda}^{p} Y_{\imath}^{\hat{l}}\right)_{, k}\left(X_{\mu}^{\imath} Y_{q}^{\mu}\right), k B_{i}^{q}=B_{p}^{\jmath} X_{\lambda, h}^{p} Y_{q, k}^{\lambda} B_{i}^{q},
$$

we get from (4.1) the equation

$$
\begin{align*}
Y_{j}^{\beta} \bar{R}_{i}{ }^{\jmath} h k X_{\alpha}^{i} X_{\sigma}^{h} X_{\tau}^{k}= & Y_{j}^{\beta} R_{\imath}{ }^{\jmath}{ }_{h k} X_{\alpha}^{i} X_{\sigma}^{h} X_{\tau}^{k} \\
& +Y_{j}^{\beta}\left(X_{\lambda, h}^{\jmath} Y_{\imath, k}^{\jmath}-X_{\lambda, k}^{\jmath} Y_{\imath, h}^{\prime}\right) X_{\alpha}^{i} X_{\sigma}^{h} X_{\tau}^{k} . \tag{4.2}
\end{align*}
$$

Putting

$$
\begin{equation*}
Y_{j}^{\beta} X_{\lambda, h}^{j} X_{\sigma}^{h}=H_{(\lambda) \sigma}^{\beta}, \quad Y_{\imath, k}^{\lambda} X_{\alpha}^{i} X_{\tau}^{k}=H_{\alpha \tau}^{(\lambda)}, \tag{4.3}
\end{equation*}
$$

we get

$$
\begin{align*}
& Y_{j}^{\beta} \bar{R}_{i}{ }^{\prime}{ }_{n k} X_{\alpha}^{i} X_{\sigma}^{h} X_{\tau}^{k}=Y_{j}^{\beta} R_{i}{ }^{j}{ }_{h k} X_{\alpha}^{i} X_{\sigma}^{h} X_{\tau}^{k}+H_{(\lambda) \sigma}^{\beta} H_{\alpha \tau}^{(1)}-H_{(\lambda) \tau}^{\beta} H_{\alpha \sigma}^{(2)}, \tag{4.4}\\
& \alpha, \beta, \sigma, \tau=1,2, \cdots, m ; \lambda=m+1, \cdots, n .
\end{align*}
$$

As is well known, on $\iota(\mathfrak{Y}) H_{\alpha \beta}^{(\lambda)}, H_{(\chi) \alpha}^{\beta}$ are the components of the second fundamental tensor of the surface $\iota(\eta)$, in case of Riemannian geometry. By virtue of Theorem 2 , the left of (4.4) are the components of the curvature tensor of the induced connection γ^{*} from γ on \mathfrak{Y} by means of the field $1-B$. Accordingly, the formula (4.4) is the Gauss' equation in classical differential geometry. Thus, we can regard the formula (2.11) as a generalization of the Gauss' equation.

References

[1] Chern, S. S., Lecture note on differential geometry. Chicago Univ. (1950).
[2] Ehresmann, G., Les connexions infinitésimales dans un espace fibré différentiable. Colloque de Topologie (Espaces fibrés) (1950), 29-55.
[3] Ehresmann, G,, Les prolongements d'une variété différentiables I, Calcul des jets, prolongement principal. C. R. Paris 233 (1951), 598-600.
[4] Ötsuki, T., Geometries of connections. Kyōritsu Shuppan Co. (1957). (in Japanese)
[5] ŌTsuki, T., On tangent bundles of order 2 and affine connections. Proc. Japan Acad. 34 (1958), 325-330.
[6] Ōtsuki, T., Tangent bundles of order 2 and general connections. Math. J. Okayama Univ. 8 (1958), 143-179.
[7] Ōтsuki, T., On general connections, I. Math. J. Okayama Univ. 9 (1960), 99-164.
[8] Ōtsuki, T., On general connections, II. Math. J. Okayama Univ. 10 (1961), 113124.
[9] Ōtsuki, T., On metric general connections. Proc. Japan Acad. 37 (1961), 183-188.
[10] Ōtsuki, T., On normal general connections. Kōdai Math. Sem. Rep. 13 (1961), 152-166.
[11] Ötsuki, T., General connections $A I^{\prime} A$ and the parallelism of Levi-Civita. Kōdaı Math. Sem. Rem. 14 (1962), 40-52.
[12] Ōtsuki, T., On basic curves in spaces with normal general connections. Kōdai Math. Sem. Rep. 14 (1962), 110-118.
[13] ŌTsuki, T., A note on metric general connections. Proc. Japan Acad. 38 (1962), 409-413.
[14] ŌTsuki, T., On curvatures of spaces with normal general connections, I. Kōdai Math. Sem. Rep. 15 (1963), 52-61.

Department of Mathematics,
Tokyo Institute of Technology.

[^0]: 3) Since $\lambda(\gamma N)=P N=0, \gamma N$ is a tensor of type (1,2). The second term can be written as $\Gamma_{i h}^{\prime}(\gamma N) \Gamma_{m k}^{l}\left(N_{\gamma} P\right)$.
