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BY KEN-ICHI YOSHIHARA

1. Summary.

In Chernoff [2], a procedure was presented for the sequential design of experi-
ments where the problem was one of testing a hypothesis. When there were only
a finite number of states of nature and a finite number of available experiments,
the procedure was shown to be " asymptotically optimal" as the cost of sampling
approached zero. An analogous procedure can be applied to the problem of testing
a hypothesis with respect to a Markov process, and this procedure will also be
shown to be " asymptotically optimal".

2. Assumptions.

Let Θ be a parameter space which consists of finite elements. We shall test
the hypothesis θzHi against the alternative 0$HZ where Hi and Hz are two non-
null disjoint subsets of Θ. In what follows, we make the following assumptions.

Al. Θ is a finite set. Hi and H2 are two non-null subsets of Θ and Hι\jH2 — Θ
and HιΓiHz=ψ.

A2. {Xk\ &=0,1, 2, •••} is a Markov chain with state space (36, 21) and with
stationary transition measures pβ(ξ, ) (Θsθ) which satisfy the following conditions:

(a) For each #€<9, the transition measures pβ(ξ, ) satisfy Doeblin's condition (D)
in Doob [3], and there exists only one ergodic set and the transient set is empty;

(b) For each #€<9, the transition measures pβ(ζ, ) admit of a unique stationary
probability measure pβ( )

In what follows Eθ( ) will denote an expected value computed under the assump-
tion that Θ is true and that pβ( ) is the initial distribution.

A3. There is a measure λ on 21, not necessarily finite, with respect to which
all the transition measures pθ(ξ, ) have densities /(£, η: Θ) and the initial distribution
pβ( ) has a density f(ξ: Θ) for each Θ. These densities satisfy the following con-
ditions:

(a) For each Θ, /(£, η\ θ) is measurable in ξ and η, and f(ξ: Θ) is measurable
in £;

(b) If θ, φ are in Θ and θΦφ, then

Pβ[f(X0, Xi. θ)*f(Xo, Xi. φ) I -XΌ=f} >0 for almost all ξ.
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A 4. There exists a positive number <5«1) such that for any ίe(0, δ) and for
any pair θ, φ in Θ

sup4Xp(πogf^^W*-1=fl<co.£eae [ \ f(Xk-ι, Xύ φ) / \

We remark that, by A 4 (b), if θ, φ are in θ and 0=£#?, then

f(Xk-ι, Xk. φ)
(1)

where

.l9 Xk. θ)

I(θ, p) = £e|lθg
f(Xk-l, Xk.

f(Xk-ι> Xk. ψ)

3. " Asymptotically optimal" procedure.

Define

Z0(θ, φ) = lθΓ f(X°' θ)

Sn(0, φ)=lθg

and

f(X,-ι, Xj. θ)
f(X,-ι, X,: ψ) '

Sn(θ, φ)- ^Z}(θ,ψ)

n

Sn— Σ Zj(θn, i

j = 1,2,3, ••-,

where θn is a maximum likelihood estimate of θ under β, based on the first n+l
observations and θn is a maximum likelihood estimate of θ under the hypothesis
alternative to θn

We define " procedure Λ " as follows. Stop sampling at the w+l-st observation
and select the hypothesis θn if S f t>— log c, where 0<c<l.

4. Bounds for ^{^-^n^^} and ^{eίs«^^}.

At first we shall prove the theorem which is needed later.

THEOREM 1. For any pair θ and φ in θ and any ε>0, there exist two positive
numbers A=A(ε) and B=B(έ) such that, for all n(^l) and for sufficiently small

f 3 \

and
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(4) Eθ{

Proof. At first we show (3). Let

Rn= ~ Σ Zj(θ, ψ).
3=1

Since, for any t (O^^l) and for any &(^1),

(5)

so, we can define

(6)

If n=j+k, then

-i, Xk:φ)
Xk-l — ^1 for all ξ,

Xlt

^ψ(j, t) φ(k, t)

Thus, φ(n, f)^φ(j,f) φ(k, f) and if n=dm-\-l (Og/<d), then

( 7 ) φ(n, f) g y5(wύ?( 0 - φ(l, t) g [̂ (J, 01" Φ(l, O

Since, by Doeblin's condition (D) in A 2 (a)

— Rn I Xo=ξ \—*—I(0, ψ) uniformly in f,

so, for any «>0, there is an integer do such that

uniformly in f,

Therefore, for sufficiently small £>0, we have

(8) g

7(0,

d° \j=ι I

exp^Σ I Zj(0, φ) \\

o— so

Now, we evaluate
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Let >?>0 and let

k. log
f(Xk-ι, Xk. φ)
f(Xk-^ Xk. θ)

for fixed

Bή(Xk-ι) = \Xk. log Xk 1? k'φ ^—nη for fixed
J(Xk-l, Xk'. U)

and

Then, for any £e(0, δ) (δ being the one in A4)

-l, Xk'. 0) Ί

for all f. Thus, by (5) and A4, there is a constant AI, such that

( 9 ) Pθ{Bn(Xk-ι) I Xk-ι=ζ] ^Ai e-**" for all k and w,

independent of ξ.
Let £o be any number in (0,5) and p=e~n^t\ Then, for any /€(0, U\ petr}<l

and

= \ explί log- ,^ \ }

(10) = Σ exp (t log
/(fo,

independent of ζ0.
Similarly, for suitably chosen constants K2 and K%, we have

(11) EΘ{

and

(12) E,{\Zι(0, φ} |2 exptf I

independent of f0 For brevity, let
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(/=!, 2, 3).

do-l
\ V , φ)

and for &=1, 2,

Let y,= —

*-ι)= Wl*d.-*^

Then, we have

Proceeding inductively we obtain

and finally

exp

Thus, we have
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ίoP exp (f Σ

(13)

independent of f0, where G(t) is defined for (0, t0) and is bounded.
By (8) and (13), we obtain

Eθ{etRd* I

l-f-ε

for sufficiently small ί(e(0, £0)) Thus

(14) 0(d0, 0^^~ίd°c/c^ v

and, if n=md0+l(Q^l<d()), then, by (7) and (14)

0(w, 0^#(/» 0 ' e-^Λ ^
(15)

where AQ is a suitable constant. Since, for any t(Q^t^l

Eθ\exp(tlog~

so, by (15), we conclude that, for any ε>0 and for any sufficiently small /(e(0, /0)),
there is a positive number A such that

(16) ^ a e x p ί log r 'Φ(n, t)

for all n.
In the same way, we can prove the latter half of the theorem.

5. Main results.

From now on, we represent the true state of the parameter by #0 which we
assume to be in Hi and all probabilities and expectations refer to 00 unless clearly
specified otherwise.

Let a(θ) be the set alternative to θ and

(17) 7(0)=min7(0,p).
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Then, by A3(b), 7(0) >0 for all Θ<=Θ.

We prove two lemmas.

LEMMA 1. If the stopping rule is disregarded and sampling is continued, then
there exist two constants K and fr>0 such that

(18)

where T is defined as the smallest integer such that θn=θo for n^T.

Proof. Assign a priori probability 1/5 to each value of the parameter. Then
θn is the value of θ which maximizes the a posteriori probability after the n+l-st
observation. Furthermore, θn=θo if Sn(§n, #)>0 for all Θ=ΘQ. Thus, to prove
Lemma 1, it suffices to show that for each OΦΘQ, there exist constants K and
such that

Using an inequality in Loeve [6], p. 157, we have

for all t>0 ana, from Theorem 1, for any ε>0 and for sufficiently small t>0,

there exists K=K(έ) such that

n(θ», θ) I </£g-wί[I(0o, 0)/α+e)-OU)]

so, for a sufficiently small fι>0 such that fι€(0, t0) and b=tι [7(00, 0)/(l+s)—O(fι)]>0,
we have

P{Sn(θ0, θ)^0}^

and Lemma 1 is proved.

LEMMA 2. For procedure A, we have

(19)

where A^+l is the sample size required to reach a decision.

Proof. It is sufficient to show that for any given ε>0, there exists a positive
number c*(e) such that for all c<c*(ε)

(20)

For each φ, let Nφ be the smallest integer such that

SnO?o, 0>-log c for all n^N

Since A^^ max^^ (max (Nφ, T)), so

(21)
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To evaluate (21), we, at first, show that for any φeH2 and any ε/(0<ε/<ε),
there exist two constants Kι=Kι(ε, ^)>0 and bι = bί(ε/ ', ^)>0 such that

(22) P{Nφ>n}^Kι<r*» for

or, for any φ€H2 and any ε'>0,

(23)

for n>n0.
Let /fι=Jf£ι(ε'/2, £>) be the constant obtained in Theorem 1 for the above given

ε' and 9. If w is so large that n>n0, then, for ί€(0, ί0)

If we take jfι>0 so small that ίι€(0, /0) and

then we obtain (23), and thus (22).
On the other hand, by Lemma 1, there are two constants Kz and bz such that

(24) P{T>n}^K2e-b™ for all

Thus, by (21), (22) and (24)

(25)

for all n>n0, where 5 denotes the number of elements in H2, and K and b are
suitably chosen positive numbers.

Using (25), we have

E(N)=ΣP{N>n}
n=Q

= ΣP{N>n}+ Σ P{N>n]

n=no+l
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where M and bQ are two positive constants. Therefore, we obtain (20), and com-
plete the proof.

LEMMA 3. For procedure A, the probability of error (rejecting Hi) is a=O(c).

Proof. Let Anφ be the set in the sample space for which we reject the hypo-
thesis Θ^Hi at the »+l-st observation and for which θn=φ£H2. Since on the set

so we have

Σ Zj(φ, #o)^ Σ Zj(θn, fe ~ lOg C,
.7=0 j = 0

f(χQ: 00) Π/(Λ?J_I, Xj . Θo)^cf(x0: φ) Π/(Λ?,-I, x3\ φ).
j=ι 3=1

Thus

P{Anφ] = f(x»: 0o) Π/to-i, x3: Θ0)λ(dx,)λ(dxι) -λ(dxn)

S
n

f(X0: φ)Uf(Xj-ι, Xj\ φ)λ(dxQ)λ(dXι) λ(dxn)
Anψ ^=1

and the last integral is the probability of the set Anφ when φ is the true value of
the parameter. Therefore,

«(0o)= Σ ΣP{Anφ}^ Σ c<sc=O(c).
φ£H2 n = 0 φGHz

Thus we have the lemma.

Let the risk function R(θ) be

(26) R(θ)=γ(θ)a(θ)+cEθ(N) for

where r(θ)=0 if θζH^ and we accept the hypothesis Hs, r(^)>0 otherwise.
Combining Lemmas 2 and 3, we have the next theorem.

THEOREM 2. For procedure A, the risk function R(θ) satisfies

(27) R(θ)^-(l+o(l))~ for all θsθ.

LEMMA 4. // φεH2, P{accept HI \ θ=φ}=O(-c log c\ P{reject Hi] =O(-clog c)
and 0<ε<l, then

(28) P{S(θ0,

where

. As
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P{accept H1\θ=φ} = O(-clogc),

so there is a number K such that

(29) -Kc log c^P{accept Hi \ Θ=φ}.

Let An be the subset of the sample space for which S(θQ, φ)<— (1— ε)logc and Hi
is accepted at the w+l-st step. Then

P{accept Hi \ θ=φ}

^ Σ

„ , /(a;0: y)Π/(xt_ι %: <o) n

(30) έ Σ \ - ̂ - /(«,: ff.) Π /(#*_!, α;t: β^dx^dx^ λ(dxn)
n~° jAn f(x<,: βύUftCi-! xc. 0.) l=1

= Σ

71 = 0

Combining (29) and (30), we obtain

(31) ΣP{^
n=0

and since, by assumption, P{reject H1}=O(— clogc), so, using (31) we have

P{S(θo,φ)<-(l-e)logc}

^ Σ P{Ar,}+P{reject H1}=O(-cεlogc).
n=0

LEMMA 5. // ε>0,

(32) P{max min Sml^m^n ίo€^2

β5 ^-^oo.

Proof. For any ί<0

P{max min

^n max P{min Sm(θQ, φ)^
l^m^n

^n max

Using Theorem 1, for sufficiently small £>0 (/e(0, δ)),

[ίmin 5m(^
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rg min B

where 0<e'<ε/(/(00)+ε) and B=B(ε') is the one in Theorem 1. So we have

P{max min Sm(θ

— nβe-nt\_-ε'I<iθ* ) /Cl-eO + OCO]

and if we choose a sufficiently small number t2>0 such that ί2€(0, ίoO (^ox being a
number in (0, δ)) and

then

min

Thus, we complete the proof.

Combining Lemmas 4 and 5, we have the next theorem.

THEOREM 3. Let {Xύ k=Q, 1, 2, •••} be any Markov chain which satisfies A 2-
A4. Then any procedure, for which

(33) R(Θ)=O(-c log c) for all

satisfies

(34) R(θ)^ -(l+o(l)) g l°Sg. for all

f. Let

Since, if N^nc* and min^^ Ŝ , ̂ )^— (1— s) logc, then

max min Sm(θ, ψ) ̂  nc* (l(θ) + έ),

SO

^ Pθ { mav min Sm(θ, φ)^nΰ* [1(0) + ε] }
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+.P0{min Sjr(θ, φ)^—(1—ε) log c}.

As, by assumption, R(Θ)=O(—c log c) for each 0€θ, so lemma 4 can be applied
to each d and each φea(θ). Thus

P0{min &v(#, 0^1—(1—ε) log c}

^ Σ Pθ{SN(θ, φ)^—(l — έ) log C}^O( —Cε log c),

on the other hand, by lemma 5

P0{max mm Sm(ΰ, φ)^nc*[I(θ)-\-ε]}-+Q (nc*—*oo).

Therefore,

and, for all e(0<e<l),

and thus

which was to be proved.

By Theorems 1 and 2, we see that procedure A is " asymptotically optimal"
in the sense that for any procedure to do essentially better than procedure A for
any θ' implies that its risk will be of a greater order of magnitude for some θ" .

6. Examples.

Now we consider two examples.
EXAMPLE 1. Let 36 be the real line and let 91 consist of the linear Borel sets.

Let X0 be arbitrarily distributed and let {Xίt X2, •••} be defined recursively by

(35) Xn=aXn-ι+β+fPY»

where (X0, Ylt Y2, •••) is an independent sequence of random variables, the Yn each
being 91(0,1) and where |α|<l. Only the Yn are observed. In this case, the
unique stationary distribution is

Let #={(&, TV): r^>0, ί=l, •••, m,j=l, , «}. If ^ is taken to be Lebesgue
measure, then the transition densities are given by
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(36) /(£*_!, &: θ)= ^=*-<«*-««* -ι-W*r

and stationary densities are given by

(37) f(ξ0'. θ)= Λ^1-~^2- β-α-«2)(g.^/(l-α))2/2rφ

V 2τr^

The densities /(£*_ι, &: θ) and /(f0: 0) obviously satisfy A3 and A 4. Thus, we
we can apply the above testing procedure A to this case. For the densities /(&-!,

+ -
AΊΊ ^7*2 £ ?2

(38)

if θ=(βly TΊ) and φ=(β2,7*2).

EXAMPLE 2. Let the state space consists of the non-negative integers and let
the transition probabilities be

(39) />ί,t+ι(0)=0, ίΐ,l_ι(0) = l—0

for f=l,2, •••, while />0ι(0)=l. If Λ(0 = l for each ze#, then the densities are just
the pίj(θ). If we assume that 0<#<l/2, then the unique stationary distribution is
given by

Let Θ={^: 0<^<l/2, ί=l, ••-, /}. Then, for θeθ, pit t+1(ff), />ί(t-ιW and
satisfy A2-A4, and thus we can deduce the same conclusion. In this case

>t+ι(0) log-
t=υ ^

( a
(41)

Σ^t = l

1 (0 log—+(1-0) log
~ 2(1-0) Γx"β φ
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