SOME EXPANSION THEOREMS FOR STOCHASTIC PROCESSES, II

By Hironisa HATORI

1. Let F(2) be the spectral function of a continuous (weakly) stationary process
&(H) with mean zero, and consider X(@)=f()+&(*), —oco<t<oco, where f(f) is a
numerical valued function. Assume that

(i) S“’ | 2 [r+2e dF(3) < co,

—

(i1) H(u) is of bounded variation in (—oo, o),
(iii) r 2|7+ | dH(w) | <oo,
@iv) | flw) | =C (A+] u|*=) for all # and a positive constant C, and

® fetu=5 720

where 7 is a non-negative integer and a is a constant with 0=a<1. From the con-
ditions (i)—(v) it follows that

2 1

}=0< n2r+2a )'

wto(| u|™),

L0 (=

wn BT x(- )2

=0 k! n*

—oo

This is an expansion theorem for the integral

® s
j_w X(t— 7>dH(s),
which has been treated by Kawata [3] for »=0 and a=1/2 with somewhat different
conditions, and extended by the author [1] for =0, 1, 2, --- and 0=<a<1 with the
above conditions (i)—(v). In this paper, we shall show (1.1) for X®=/()+¢()E®),
where ¢(u) is a numerical valued function. If ¢(s)>0, —oo<s<oo, then, for this
process X(#), the correlation coefficient of X(f) and X(s) is a function of ¢{—s only.
In section 2, Taylor expansion of &(¢) is discussed and, in section 3, the expansion
theorem for

—o0

r X(t— %) dH(s)

is given, where X()=f®)+¢(H)&(#), —oo <t oo,
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128 HIROHISA HATORI
2. Let X{(#) be a stochastic process with E{] X(#) |2} <oo, —co<t<co, If
Lim. X(©)=X({) ie. E{X&—X@®|?}—0 as t—t,
=

then X(¢) is called to be continuous at ¢#. Let K(¢#) be of bounded variation in any
finite interval and consider a division of an interval (A, B):

4 A=t <h<--<t,=B
If

Lim. 3 X(e) [Kt)—Kt-)]=S  ( max (f—tees) —0),
4 k=1 k=1,2,,n
where #-1=t=#, (k=1, 2, ---, n), then S is denoted as
B
s X(t) dK (@),
A
We can easily prove the following

LemMmA 1. Being continuous in an interval [A, Bl, X(¢) is uniformly continuous
in [A, B]. Moreover,

B
S X(t) dK(?)

exists in the above sense.

LEMMA 2. If X®®) (k=1,2, -, ) exist in the sense that
X(k—l)(t_‘_h)_X(k—l)(t)

X(k)(t)= l.i.m. (k=]—’ 2: Tty 7’),
hoo h
where X©O =X, and X®¢) (k=1, 2, ---, ¥) are cantinuous in [a, b], then
X/(a) X(r-l)(a) et
Xb)=X@)+ ——=0—a)+ - 70—1)! (b—a)
2.1
+——1—— r b= XD dt (a.s.)
r—=1! Jao o

Proof. The existence of the integral in (2.1) is ensured by Lemma 1. Y beir_l_g
any random variable with E'{| Y |2} <oo, the numgrical valued function ¢(t)=E{X(#)- Y}
is differentiable » times and ¢ #®)=E{X(¢)- Y} is continuous in [a, b]. So we have

(a) Ic 1 b r—1.(r
p(b)= Z= 90 (b—ay+ D1 Sa(b—t @ (1) dt
or
X ((l) k__ r—1 7
E[[X(b)—kg0 b—ar— =5y, 6-trx 0 dt|- 7| =o.
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Choosing
=1 X®(q) 1 b R
X~ 5,57 b=a¥— =T j Gty X0 dt
as Y, we have
_ r—1 X(k)(a) 1 b - . 2 B
E”X(b) 2 A2 0-ar— =y | 6-trx00) at| -0

which implies (2. 1).

In the following, let &), —oco<t<oco, be a continuous (weakly) stationary
stochastic process with E{€(#)}=0 for all £ We note that &(#) is continuous in
the sense stated at the beginning of this section, if and only if the covariance
function p(x) of €(¥) is continuous.

THEOREM 1. Let F(X) be the spectral function of &(t). If

©2.2) r | 2|2r+2a dF(2) < oo,

where v is a non-negative integer and a is a constant with 0=a<1, then

2.3) E{Ié’(i+u)-" F: Ay

wk
=0 k!

2
}-——o(l u |2 gs u—0.

Proof. 1t is well known that, under the assumption (2.2), & ®(¥) (k=1, 2, ---, 7)
exist and are continuous (weakly) stationary processes whose covariance functions are

o

ok<t)=j Rt dF(2)

—oo

respectively. Hence, by Lemma 2, we have with probability 1 that

R= é’(t—{—u)——ké‘) 8;:)'("‘) uk
ttu @r>
@4 - oot | trere @ a £00
1 t+u
T D! f (ttu—ay gD =T W] dr
and so
1 t+u
BURF)= oo B|f, 0o iew@-eonnd

. Si+u(t+u——o)r-1 [EP(@)—£ D do }

t+u Cttu
:T(r—:}m]_fj‘t St (t+u—o)y (¢ +u—o)*
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- E{[eP(2)—8 B [€ (o) — & (D)} drdo

t+u (Ct+u
S N [ j {0z —0)— sz — 1) p:(t— )+ 01(0)}

[((r—D!* J.
c(tHu—o) '+ u—o) dedo
1 t+u (fttu o i . )
(2. 5) — m j‘t j.t l:j‘_w{e‘t(r—a))_el(r—t)_el(t—a)l_,l_l}

e dF(z)] (4 U—y -1+ u—a)— deds

- -z

: AZTdF(X)] (41—t (t+u—o)-' dedo

2
A2 dF(2)

t+u
g (elrl_ettl) (t_’_u_f)r—l df

t

~ D).

2
22 dF(4)

S: (ei£1 — 1) (u___g)'r—lds

- DT e

=
~ =D

This estimation implies with Minkowski’s inequality that

Sw {SH [ =T [l [ &) d$]2| A |ere2adF(2).

—o0

I RI2V 1 tul ” i£2 2(1—a 27r+2a i« __&\r-1
2.6 VETRFI= Gogyp |, | 1ew—1i00 [2presedp ] eo ) —eyde,

Since | ettt —1 |20-0—0 as £-0 and |ef—1|20-0 <20~ [y the assumption (2.2)
and Lebesgue’s theorem it holds that

2.7 lim Sw | eiEr_1 [2-a | |2r+2a R (2)=0.

£0 ) o

Hence, for any positive number e, there exists a positive number » such that
L4 3
[S | gifr—1 2= | |22 R <e for | &<

And so, we have

2 _L_Slul a —E&)yr-1 _6—_ r+a

2.8) «/E{|R|}<(r__1)! , (lu|—=8)r1dé< —D1 [ 2| for 0<]u|<y,
which proves Theorem 1. (The proof of the case =0 will similarly be done with
slight modifications.)

ReMARK 1. In the case a=0, we can prove (2. 3) for X(¥) in Lemma 2. Because,
choosing a positive number § such that
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VE{[XP@)—XD@® P} <e for |r—t|<3,

we have

‘ SZM VE{([XO@=XO@) "} - | t-+u—z ™= de

R e B = alE

In the following, let f(#) and ¢(¢) be numerical valued functions.

THEOREM 2. In addition to the assumptions of Theorem 1, we assume for some
fixed t that

2.9 f(t+u):k§f(]l:$t) w-o(| u|7+) as  u—0
and
@.10) $(t-Fu)y= ;0 P20 yetouly  as .

Putting X(s)=1(s)+d(s)E(s), —oo<s< oo, we have

@11) E{ ‘ x+u— 5 X700

=o0(] u |?7+2=) as u—0.

Proof. 1t can be easily seen that X® (k=1, 2, -+, #) exist and
k
XOO=ro0+ B(EsPOE0 (;=1,2 7.
V=
Putting

’(l‘) W=

=Lt

f(t+u)—k§ f(:?) ut=4,, g(t+u)— §0 e (t) ut=4,

by (2.9), (2.10) and Theorem 1 we have

(2.12) | di|=0(ul|™*), |de]=o0(u|™*)
and
(2.13) E{|R|?}=0(|u|**?**) as wu—0.
Since

xeto= 5 0w a5 EE P v a | SR

=0 k!

r X(k) t ® (¢ W(f
.19 =5 L O sy 3 £0.E0
= s

r o) )
=0 k! =0 k!
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by (2.12) and (2.13) we have

J ef[xern- X0,

@.15) =4+ 3 |¢(k)(t)| VPk(O) [ |E+i4| 4, | Z \/ﬂk(O) L
iy R

5T
k

éz} I(lb(k(t)l lk+|AZI

FVETRT |
:0(| u |T+a)r
which proves Theorem 2.
In the following, we shall give some examples as applications of Lemma 2.

ExampLE 1. For &(¢) in Theorem 1, we assume that

(2.16) " mari<e o=12,0.
Since
. 1 teo | 2
E{|Rn|z}:‘[m5_ S(e’“—l)(%—f)"‘ldf 20 dF(2)
=7 Jerm— 50 Lara,
where
B n 8(k)(t)
Ru=g(t+u)— 2 = u
we get that
oo (n) n (
@.17) ettw= 30 yr=lim 5 €20,
n=0 n n—oo k=0 k'
if and only if
(2. 18) }Limgm ot k;() (lul) ldF(z) 0.

ExampLE 2. For €(#) in Theorem 1, we assume that there exists a positive
constant ¢ such that

S 2
(2.19) S 22n dF(3)= o( b1} ) as  m—co.
Then we have (2.17) for any ¢ and # with | % |<4, because

D e A

w 2
[(—DIF |, (@8 —Du—ey= de| #rar(




(2.20)

ExampLe 3. Let {{.} be a sequence of real numbers with ¢,%¢, (n=1, 2, --
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& ) . -1 2 2n
émg_m{go (| w|—&rtdet 2 dF(d)
2 Gl
=) AEO

agn (=
= )
:0(1) as n—oo for ’u|<5'

133

)

and #,—t as n—co. Under the assumption (2.19), the random variable €(¢) for any

fixed ¢ is determined with probability 1 by the sequence {&(t.); n=1,2, ---

random variables.

} of the

ExampLe 4. Under the assumption (2.16) for any fixed positive integer #, we
have with probability 1 that

(2.21)

lim. % (7 )(—1re -+ )= @)

h—0

Since, by Theorem 1,

(2.22)

where
(2.23)

we have

(2.24)

and so

(2. 25)

E{| R |2} =0(h*™) as h—0,

e+in= 570 @y iR,

5 (5 ) (—rret+kh

=0

b

~E[EG) o B R ook,

k=0

—ew@h+ 3 (5 )R

d

[lfil" kéi(Z)“/”—Rkl—z}}Z:O(l) as  h—0,

1 n 2
k) Clrseerin—g@o ||

MIA

which gives (2. 21).
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ReMARK 2. The result of Example 4 has been proved by Kawata [2] in a dif-
ferent method. From Remark 1, we have (2.21) by assuming the existence and
the continuity of € (f) at the point ¢ without the stationarity of &(%).

3. In the preceeding section, we have defined the integral
B
S X(t) dK().
A

If it holds that

B
l.i.m.S X@® dK=1,
A A

~—»—00
B—oo

then I is denoted as

Sm X(t) dK(?).

—o0

LemMA 3. If X(?) is continuous in (—co, co) and there exists a non-negative
valued function g(t) such that

3.1 VE{[ XD Y=g for all ¢
and
(.2 \"_ ool dk®|<eo,
then there exists
Sm X(t) dK(®).
Proof. Since
| A 2 A’ 2
3.3 E“S X dK(t)‘ ]g[ { g(t)IdK(t)Il,
A A
we have by (3.2) that
(3.9 Jim. (" x aro=o
and
B’
(3.9 Lim. S X(t) dK(t)=0,
B> ) p

which ensure the existence of the integral

Sw Xt dK ().
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THEOREM 3. Let H(u) be a numerical valued function of bounded variation in
(—o0, c0) and we assume that

(3.6) \"tulre ) | <eo,

where r is a non-negative integer and a is a constant with 0=a<l. If X(t), —co<t
< oo, 1S a continuous stochastic process such that

CX0 VE{[X() FY=CA+|s|*)
for all s and some constant C and
r (k.
3.9 Bl |xt+w— 5 Fr0wl | —auir e

then it holds that

EI S:’ X<t—_)dH(s) gt; (_lwg_ st dH(s) jzl

G
(3.9

1
=0 W as mn—oo,
Proof. (3.6) and (3.7) ensure with Lemma 3 the existence of the integral
Sm X(t—i>dH( )
» . s).

Put

1=\" xS )aro- SAZYELON wan

=S:[X<t—%) isz(t)< ;)k]dH(s).

Then we have that

(3.10)

n7+a,\/E_{W§nr+aSw \/E{

—c0

(3.11)
=" o(= ) tsilamo),

where

P(u)=| u!"—“\/ El lX(t+u)— kéo X;:)'(t)

2
u"}

for #=0 and ¢(0)=0.
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Since, by (3. 8),

3.12) d(u)y=0(1) as  u—0,
we can choose a positive number d such that
(3.13) d(u)=1 for |u]<aé.

On the other hand, we have

gl VETXE T+ 5 VELEPOT) e ]

=lulr| caierulrn+ 3 VEIXDO T, ]

orte—k

(3.14)
L™, & VE{[X®®) [}
=k +(1+ 5 > J+ & AN
EK fOr |MI_Z_5,

which implies with (3.13) that

3.15) ¢<~ %) <K+1 for all s,
Next, (3.12) shows that
(3.16) lim ¢<—%)=0 for any fixed s.

Since K is a constant independent of s and #, it is obtained by (3.6), (3.15), (3.16)
and Lebesgue’s theorem that

(3.17) tim (" g (<= )isiee @ 1=0
and so
(3.18) lnl_Iilo wr N E{| I% =0,

which gives (3.9).
From Theorem 2 and Theorem 3, we get the following

THEOREM 4. Let f(s) and ¢(s) be continuous in (—oo, co), H(s) be of bounded
variation and & (s), —oo<s<oo, be continuous (weakly) stationary stochastic process
whose spectral function is F(2). If, in addition to the assumptions (2.2), (2.9) (2.10)
and (3.6), we assume that

(3.19) [A(s)| = CA+] s|r*e)
and
(3.20) [4(s)| = CA+|s]|+)
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for all s and some positive constant C, then we have

R T )

(3.21)
= 0<nTl+-2;> as n—00,
where X(s)=1(s)+¢(s)&(s), —oos<oo.

ReMARK 3. The continuity of f(s) and ¢(s) is used to ensure the existence of
the integral

S: X<t—— -Z-) dH(s)
only.

REmARK 4. Let &.(f) (v=1, 2, ---, N) be stationary processes satisfying the con-
ditions similar to the one on &(¢) in Theorem 4 and ¢,(¢) (v=1, 2, ---, N) be numerical
valued functions satisfying the conditions similar to the one on ¢(#) in Theorem 4.
Then we have (3.21) for

N
X =1 +V§1 P E.(8), —oo<lt<loo.

The author expresses his sincerest thanks to Prof. I. Amemiya who has given
valuable advices.
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