
LINEAR MAPPINGS AMONG THE FUNCTION
CLASSES ON RIEMANN SURFACES

BY MlTSURU OZAWA

Introduction

Let W be an open Riemann surface and G a non-compact subregion of W, whose
relative boundary dG consists of at most a countably infinite number of analytic
components which do not cluster at any compact part of W. Let R be a collection
of compact or non-compact subregions of G all boundary components of which con-
sists of a finite number of analytic curves and cluster at only the ideal boundary
of W. We assume further that any point on the relative boundary is freely ac-
cessible from both sides of curves.

Let { W n } be a sequence of compact domains satisfying the following conditions:
(1) WndWn+1,

(2) d Wn consists of a finite number of components each of which consists of a
finite number of analytic curves, and
(3) for any compact subset K there exists such a number n0(K) that K is con-
tained in Wn for any n^nQ(K).
We say this sequence {Wn} an exhaustion of W, however our notion of exhaustion
presented here is different from that usually availed. Indeed there may exist a
finite number of islands any member of which does not separate any ideal boundary
element and a stronger condition Wnc:Wn+ι than the one claimed in (1) is not
postulated here.

We shall make use of the following notations:
H: a class of harmonic functions, which is equal to zero on the relative

boundary if it exists. P: a class of positive functions. B: a class of bounded
functions. A(X): some function class A defined in X.

We shall introduce several linear mappings among several families of functions
some of which are well known.

For each uςPH(G) the upper envelope of the set of members of PH(R) which
are dominated by u in R is itself a member of PH(R). We define a mapping T of
PH(G) into PH(R) by requiring that for each uεPH(G) Tu shall be the above upper
envelope. In another direction, we define for each UξPH(R), its standard subharmonic
extension C7* by U*=U in R, =0 in G—R. Let QR denote the subset of PH(R)
consisting of those U for which £7* admits a harmonic majorant on G. We define
the map 5 from QR into PH(G) by requiring that SU shall be the least harmonic
majorant of £7* on G. It is immediate that both T and S are positively linear.
Then we see that 5 is univalent and TSU=U for any UsQR. If vePH(G) is
dominated by some member of S(QR), then vεS(QR). Now we can define a mapping
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ST from PH(G) into itself.
Ref ering to the exhaustion { Wn} we shall redefine the above mappings 5, T and

ST. Let Gn and Rn be G^Wn and R^Wn, respectively. For each u$PH(G} we
shall define a positive harmonic function un in Rn such that un=Q on dR^Wn and
un = u on 7?^dWw. Then ^ is decreasing with increasing n and Q^unί^u in 7?w,

therefore M» converges to either a non-zero function or zero function. We can say
that this mapping u—*\imun coincides with the earlier T and Tu^u. For each

UzPH(R) we shall define a positive harmonic function Un in Gn such that Un=Q
on dG^TF»+dWV^(G— J?) and Un=U on /?^dTft». Then Un is increasing with
increasing n and Z7n converges to either a function which is not constant oo or to

a constant oo. We can say that the mapping U— »1im Un coincides with 5, if lim
Z7n5:oo, and SU^U in 7? and that the image set T(PH(G)) excluded {0} coincides
with QR — {0} and any non-zero element of PH(R) having an image element in
PH(G) coincides with QR~{Q}. Therefore the mapping ST: PH(G)^PH(G) can
be redefined as follows: For any uePH(G) we construct a positive harmonic func-

tion Vn in Gn such that F»=0 on dG^Wn+dWn^(G-R) and Vn=Tu on 3Wnr^R.
Then Vn converges to either a non-zero function or constant zero. We can say
that lim Vn=STu>Q in G if lim Vn^0 and this is the case if and only if Tu^O.
Evidently we have STu^u. For the above facts we recommend [2], [3] and [5].

In connection with the above facts our problems occured. For any u$PH(G)
or PHB(G) we construct a positive harmonic function Xn in Gn such that Xn=Q
on dG^Wn+dWn^(G—R) and Xn=u on dWn^R. Does there exist the limit lim

Xn? Does any limit such as lim Xn or lim Xn coincide with STu? It may be ex-

pected that somewhat interesting versions with respect to the relative situation of
R in G can be revealed when the problems are negatively solved. We shall discuss
the problems in reference to the classes PHB(G) and PH(G) and partly solve them

negatively. In Chapter I we shall concern with the linear mappings among the
function classes PH. Several notions of niceness of R in G and equivalency of two
subsets in G are introduced and their global notions are also introduced. Somewhat

troublesome algebraic calculations in order to obtain the relations among various
operators are not avoidable for our purposes. In this Chapter the two-sideness
condition which will be defined in a later part plays a role. In the last part of this

Chapter we shall introduce a notion of tangential path or non-tangential path and
we shall prove modification theorems which seem perhaps intuitively evident.
However so far as we concern there is no such formulation in any existing biblio-

graphy. And these modification theorems and their generalizations play an important
role in the next Chapter II. In Chapter II we shall extend our definitions of
operators to be more available and we shall offer several geometric or potential-

theoretic interpretations of the extended operators. In Chapter III we shall chiefly
concern with the class PHB. Here we shall discuss the relations between two

classes PH and PHB. In the last part we shall offer several unsolved problems,

which seem somewhat important.
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Chapter I. Linear mappings in PH(G)

§ 1. Preliminary considerations on Martin theory. For PH(G) the major theory
due to Martin plays a decisive role. So we shall also refer to the theory [4].

Let W be an arbitrary Riemann surface of hyperbolic type. Let g(p, q) be the
Green function of W with pole q. We say u€PH(W) minimal in Martin's sense
if any element vcPH(W) satisfying an inequality 0<v^u reduces to a proportional
element ku(k>0) of u. Let K(p, q) be the Martin function defined by

where p0 is a fixed point in W. If lim K(p, qn} exists for a non-compact sequence
n— *oo

{qn}> then we say that [qn] determines an ideal boundary point. If {qn} and {qn
f}

determine the same limit function, then we say that two sequences determine the
same ideal boundary point. The set Δ of these ideal boundary points is called the
Martin boundary of W. For W^Δ Martin's metric can be introduced by an integral

dns

K(P(s\ q,} - K(p(s) q,) ds

or any other equivalent forms, where kr is a circumference with the centre q0 and
with the radius r in terms of a fixed uniformizing parameter. By this metric W^Δ
is a compact Hausdorff space, A is closed subset and W is an open dense subset of
W^Δ. And the topology induced by the metric is equivalent to the ordinary surface
topology in W. Any minimal function in PH(W) coincides with a function K(p, q),
qzΔ. If this is the case for a #eJ, then q is called a minimal point in Martin's
sense. The set Δl of all Martin's minimal points is a closed subset in Δ. Then for
any uePH(W) there is a suitable positive Borel measure σ on Δ for which u can
be represented by an integral

0 dσ(q).

If σ(Δ—Δ1)=Q, then σ is called canonical. Any u in PH(W) can be uniquely repre-
sented by an integral with a uniquely determined canonical measure σu

u(p)=\ K(p,q) dσu(q).
Jjl

We are able to make free use of a nice description of the Martin theory by
Konstantinescu-Cornea [1]. Let G and R be the ones defined in the introduction.
We shall consider only the identity conformal mapping R into G and the class
PH(G\ Thus all the situation discussed in [1] are fulfiled by their theorem 6 (p. 10
in [1]). For PH(G) any Martin's boundary point q of G defined by some compact
point-sequence considering as the one in W, that is, any one lying on some point
on the relative boundary 3G plays no essential role, so we can omit these boundary
points from the Martin boundary of G. The remaining set is denoted by Δ or Δθ,
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if necessary, and the corresponding Martin's minimal part of Δ is denoted by Δl

or Jp. Then we have the canonical representation theorem:

u(p) = \ K(p,q) dσu(q)

for any u€PH(G), where σu is a uniquely determined Radon measure on Jlβ Further
ΔI and J are closed in Δ and in the original Martin boundary of G, respectively.

Two linear mappings T and S1 between PH(G) and PH(R) are defined as already
described in the Introduction. Let Δ(R), Δλ(R) indicate the sets

If u(p)sPH(G) is represented by a canonical integral

K(p, q) dσu(q) ,

then by theorem 15' in [1] there holds the representation

K(p,q) dσu(q).

Any point q in Δλ is accessible along some non-compact curve in G. This was
shown in [1], p. 28. Then any point q in Δλ(R) is accessible by a non-compact
curve in R which determines the point q. To that end, it is noted that the map
Tg preserves the minimality if T% has sense. By the definition of Δy(R), T%K(p, q}Φ
0, that is, Tg has sense for K(p, q). Therefore T%K(p, q) is also a Martin minimal
function in PH(R). By this fact some Martin minimal point q' in Δ? is uniquely
determined and hence qf is accessible by a curve γq> in R. Then S%T%K(p, q) =
K(p, q) by a fact that the minimality is also preserved by the map S% if it has sense.
Therefore γq, determines a minimal point in Δ?(R) = Δ^(R) which must coincide with
the q. That is, q is accessible by γq,. Such a curve is called the defining tail of q.

In order to enter into the discussion of the algebraic properties of λ and μ, we
shall give some representation in [1], where λ and μ are defined in the next section.

If ult u^PH(G} and

) dσu.(q), /=!, 2

and U^HZ, then there exists a measurable function θ on J?, O^^^l, for which

σul(A)=( θ(q) dσU2(q)
JA

for any Borel set A in Δλ

&. If

Q K(p, q) θι(q) dσ(q) ,
1

where ί̂ is a non-negative σ-integrable Borel function, then
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θ^θt . ί σ ] ,

that is, θί ^ θz holds almost everywhere on Δ? with respect to σ-measure. This is
the lemma a in [1],

Through this chapter we assume that any open set or subregion Dm W or in
G has its relative boundary with the following two-sidedness condition in W or in
G: Let p be any proper boundary point and N(p) be some suitable neighborhood
of p. Then there are only two components one of which belongs to the set D and
another of which does not belong to the set D. This definition of two-sidedness
can be extended to a more general set.

§ 2. Linear mappings and their representations. In this section we shall define
several linear mappings and discuss their representations.

For each uePH(G) we construct a positive harmonic function un in Gn such
that un=u on dWn^R and un=Q on dG^W»+dWn^(G-R). Then un^u in Gn.
Let μ u and λ u be

inf lim un and sup lim un,
n n

respectively, where inf and sup are taken over all exhaustions ({TFM}) of W, then
we have

STu !g μu ̂  λu ̂  u

by Un^Tu in Rn

For each uζPH(G) we construct a positive harmonic function u(n, m) in Gn,m

= Gm-(Rm-Rn) such that u(n, m) = u on dWn^R+dR^(Wm-Wn)+dG^Wm,=Q on

dWm^(G— R). Then u ̂  u(n, m) ̂  u(n, m—1) in Gn,m-ι and hence lim &(w, m)
ra->oo

= u(ri) exists. And further u(n) decreases with increasing n and hence tends to a
harmonic function in G. Putting this limit function λ^u, then λλu^PH(G) and
λ^u ^ u in G.

Let W' m be a positive harmonic function in Gw' m=Gm— (G— R)^(Wm— Wn) with
boundary value u on dWV^ + dG^W» and 0 on dWn^(G-R) + dR^(Wm-Wn).
Evidently we have un> m^un' m+1 and un+1'm^un'm, which imply the existence of
a function

lim lim un> m ,
n— >oo m— >oo

which belongs to the class PH(G). Then we put this limit function μ^u. Evidently
we have that μ^u ^λ^u^u and ̂  and μλ are positively linear.

Next we shall put μ*u = STu and λ*u = u — μ^G

G.pU, where we indicate the
linear mappings λ, μ between PH(G) into itself with reference to R by Λg, μg,
respectively, and so on.

Let w be canonically reprevsented by an integral

u(p)=\ K(p,q) dσu(q).
JJi
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Let Aίΐ be a set of minimal points belonging to Δ^ which can be defined by some
non-compact point-sequence lying in R. This is an Fσ set. Then we put

p _
λgu = \ K(p, q) dσu(q) , μ%u = u — λ^^

J ΔIR

Let r be a minimal point in Jf. Let Ne(r) be an ε-neighborhood of r in Martin's
metric and Ns = Nf(r)^G. Then T%sKG(p, r) > 0 for a minimal function KG(p. r).

See [1], p. 28.

THEOREM 1. For any u^PH(G) there holds a system of inequalities

Proof. By the maximum principle we have u(n, m) ;> un in Gw whence follows

u(n) ^ &w in Gw. This shows λ±u ̂  ϊim un in G for an exhaustion {Wn} of W. On
the other hand λλu is independent of the exhaustion, that is, two different exhaus-
tions determine the same λ^u for any given usPH(G). Therefore we have

λ±u 2> sup lim un = λ u .

For any ε > 0 and for any compact set K, there exist two numbers TV and 7VΊ for
which

I u(n, m) - u(n) | < e/2, | u(n) - A,u |< ε/2

hold in K for any n > N and m > N^m > n) And hence

) — λλu I < ε

for any m > n > 7VΊ in K. From the original exhaustion {W n ] we shall construct
a new exhaustion. Let p be the sum n + m, then two inequalities n < n' and
m<mf imply an inequality p<pf Putting Wp = Wm^(W — R)^Wn, {Wf

p} is
an exhaustion of W. For a sequence ε/2^1 we can determine a sequence of pairs
of integers (n]y mj) such that n3 < nj+1, m} < mj+1 from the above consideration.
And hence we can construct a sequence of integers {pj} by {n3 + m^ } and a cor-
responding exhaustion {W'PJ}. For this exhaustion {T7xpy} we can construct UP]

and TirϊΓ upj. Then we can say

λu ^ lim %^

in G by the definition of λ it and upj = u(njy mj). On the other hand

in K, whence follows that

λλu ̂  lim (UPJ + ε/2-7"1) ^λu
J-+00

in K. Since /Γ is an arbitrary compact set in G, we have
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λλu ̂  λu

in G. Therefore we see that λλu = λu in G for any u$PH(G).
Similarly we can prove the following fact :

μlu — μu

for any ucPH(G).
Further by the definitions of linear mappings λ, λly and μ, μ1 we can easily prove

that

remain valid for any u^PH(G).

Further we have u ̂  T%u in R and hence un ̂  (T%u) in G^Wn, which implies
lim un ^S%T%u for any exhaustion {Wn} . Therefore we have μ%u = inf lim un

^ SB T%u = μ*%u. The following fact is a simple consequence of the above fact:

Λ*g u — u — μ*G-$ u^u — μ^-a u — λ%u.

Next we shall prove ΔG(R}^ΔG — ΔlJ_^. Let r be a point in ΔG — Δ^G

G_R, then
d(r, G—R)>Q in Martin's metric in G^ΔG. Indeed, if it is not so, then there is a
point-sequence {qn} in G—R and hence in G—R which tends to the r. This sequence
defines the point r in ΔG. This implies that reAJ-*, which is untenable. Thus
any point r in Jp — Δλ

G

G_R has a positive distance from G—R and hence G—^?.
Therefore we can construct a neighborhood N(r) of r satisfying d(/>, r)<d(r, G~R)
= d(r, G-R) for any p$N(r). N(f) = N(r)^G^R is thus obtained. Then TN?r)

KG(P, r)>0 and hence TgKG(p, r) ̂  TN

G

r)KG(p, r) > 0. This shows that rsΔ?(R).
By this result or by a similar method we have Δ&Ξ2Δ0. — Δξ(G—R). Therefore we
have

μ**U =\ G KG(P' ^ d(Ju^-\ΔG_Δ G _K°(P> ri dσu(Φ

f
= u(p) -\ Ks(/>, ^) ^σM(^)

Further we have λ^u = u — μ*%-Ru^u — μ%-au = λ%u.
REMARK 1. In the inequality μ^u^μ^u there is an example excluding the

equality. In the following Fig. 1 q has a defining tail in Rc:G. Therefore
μ*%Ko(p, q) = KG(P, q) > 0. However q also belongs to Δ1

G

3_R and hence q does not
belong to Δξ — Δ1

G

3_R. This implies that μ%KG(p,q) = 0. This also implies ^g_^

Ka(P,4)^**%-*Kβ(P,<l) = 0.

REMARK 2. In the inequality μ*gu^μ° R u there are some examples for which
the equality occurs for any uζPH(G). See Fig. 2 and 3.
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= j ΰ H = 0

Fig. 1 Fig. 2 Fig. 3

REMARK 3. It should be remember that dR is freely accessible from both sides,
that is, R satisfies the two-sidedness condition. This condition is essential for the
inequality μ*% ̂  μ%. In fact, if it is not so, then we cannot conclude that

N(r) = N(r)^G c R

even if d(p, r) < d(p, G-R) for any peN(r), since d(p, G-R) ^ d(p, G-R) = 0 in
some example which is easy to construct. If d(p, G—R) > 0, then the situation is
the same as in Theorem 1 and this implies N(r) £ R and hence N(r) £ R.

REMARK 4. Let λ%u be an operator defined by

for

dσu(q),

where J?(G— R) is the closure in Martin's topology. Evidently we have
On the other hand J?(G—/?)£4,£?-j? and the later one is closed in J? and hence

. Therefore we haveΔ<*(G-R} £ This implies Δ?-Δ?(G-R) 2 J?-

Let M be canonically represented

then

G
Δl,R

K(p, q) dσu(q),

) dσu(q) , μ°Ru=\ K(P, q)
Δl ^H) J Λl ~~a \.G-R

However these are also represented by the canonical integrals
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λgu = Δ K(P> q) dσ_u (4), λ*gu = ΔK(p, q) do (qY

? K(P, q) dσ^ (q) , μ% u = ^ UΓ( A 4) Jσ

Therefore by the above fact

σ_G (A)=( θ^q) dσu(q\ σ (A) = ( Θ2(q) dσu(q) ,
λgu JA *>&* J A

for any Borel set A, where θlt Θ2, ΘB and Θ4 are measurable on J? and satisfy the
following conditions

1 on JJ I I on Δ? - Δ<?(G - R)

0 on Λ?-4g, V 0 on Δ?(G-R).

1 on 4σ(/?) I 1 on J? - J1§g_^

0 on Δ?-Δ°(R), \ 0 on J l fg_ 5 .

If u ^v and w, vePH(G), then two canonical measures σw, συ satisfy an equation

<7tt(A) = θ(q) dσv(q),
JA

and hence <7W(A) ̂  σv(A) for any Borel set A.
In the sequel we shall use the words " for any λ " and " for any μ " in the sense

of " for I, λ* " and " for μ , ^* ".
If u ̂  v and M, vGPH(G), then λu ̂  λv and μu ̂  μυ for any Λ and for any μ.

Further we have for any u and 0 in PH(G) Λ(u^v) = λu^λυ and λ(u^v) = λu^λυ,
μ(u^v) = μu^μv and μ(u^v) = μu^μυ for any Λ and for any μ. For these it
should be noted the lemma & in [1]. Further, if Rl z> ^2 in G, then there hold
Λi« ̂  λG

Rίu, μG

Rίu^μ^u and λ*%,u ̂  ̂ *g2w, μ*^u ^ /£*g,M for any uzPH(G). To
that end, by the representation of these operators it is sufficient to prove the fol-
lowing relations:

4&24& and Δ?(R^Δ?(RJ

for any R1^>R2. By the definition of JJ2, q£Δ£t implies the existence of the defining
point-sequence {qn} in R2 by which q in Δ? is defined. This sequence also belongs
to R1 and defines the same q. If qeΔ?(R2), then T%aKG(p, q) > 0. However Tg2

is equal to Tξl Tglf which implies TgίKG(p,q)>^ This shows that
G-R^G-R, implies J?-Jlig_j?l3J?-Jlιg.J?i and J?-
which are equivalent to /zg,u^μ%,u and ^*g, w ^ ^*g2M for any uzPH(G), respectively.

If ww converges to u monotonically in PH(G), then λ%Un, A*%un, μ^un and μ%Un
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converge to Igw, λ^u, μ*%u and μ%u monotonically, respectively. Indeed this can
be proved in the following manner : Let un and u be represented by the canonical
integrals

Δ?K(p, q) dσUn(q) and 4?K(p, q) dσu(q) ,

respectively, and ιtn^u, then σUn(A)^σu(A) for any Borel set A or more precisely

σUn(A) = \ θn(q) dσu(q)
JA

for some measurable function θn, 0 ̂  θn ̂  1. Thus we have

Further, if un tends to u increasingly, then θn(q) is monotone increasing with n and
tends to 1 almost everywhere in Δξ. Then

= \λ<iK(p9q) θn(q) dσu(q)

tends to

For any other cases similar proof can be carried out.
Let n be a minimal in PH(G) and if P.RU> 0, then u=λ(jtu—λ*%u=μ*(jίu=μ%u.

In fact u is equal to k KG(P, q\ qζΔξ. μ%u = cu = ck KG(p, q), since μ%u>0 implies
the equality. On the other hand

C ( k if qeA
u(p) = \ Ka(p, r) dσu(r), σu(A) =

J^? t θ i f #$A.

This implies

^« = J " Λ ^ = \ j σ _ 4 β _ Ko(P,r) dόu(r)

and hence q€ Jf—JI.^-Λ Thus μ%u = k Ko(p, q) — w.
If μ*gw > 0 for a minimal K in Pf/(G), then u = λ%u = λ*%u = ^*gw. If /ί*g^

> 0 for a minimal M, then u = λ%u = ^*g w. If >ίgM > 0 for a minimal u, then w
= Jg u. Further these facts imply that the minimality is preserved by any operators
if the resulting function is positive in G.

Let u be_singular in PH(G), that is, O^v^u for any vsTHB(G) implies
υ = Q. Then Jg u, λ*% u, μ*% u and μ% u are also singular if they are positive. This
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is evident by the singularity of u and by theorem 1.

§ 3. The P-niceness and their relations. In this section we shall define several
sorts of P-niceness of R in G by making use of the operators and discuss their
relations.

If λ^u = μ*%u for any u$PH(G) remains true, then we say R a P-nice subset
in G. If this holds for any G with some relative boundary dG, then R is called
extremally P-nice. If ~λ%u^μ%u remains true for any u$PH(G), then R is called
most P-nice in G. If this is the case for any G with some relative boundary dG,
then we say that R is extremally most P-nice.

The following figure shows that our original plan of investigation should be
carefully done by its pathological nature.

Fig. 4

In any simply-connected domain G any accessible boundary element in the
sense of Caratheodory corresponds to a Martin minimal point and inversely any
Martin minimal point corresponds to some accessible boundary point. Thus any
defining sequence of boundary element in the sense of Caratheodory defines a Martin
minimal point. The proof of this fact is easy to perform by the Riemann mapping
theorem and the in variance of Martin's whole theory under any univalent onto
conformal mapping. In our above example, in G2 q is a point of Jf2 which is
different from q' which is also a point of Δ?'. However q coincides with q' as a
point of Λ?1 which consists of only one point q'. Therefore the set R defines a
Martin minimal point q' = q in Gλ. These considerations show that μ*R>KG2(p, q)
= 0 and λ*% KG2(p, q) = KG,(p, q). However μ*% KGl(p, q) = k μ*% KGl(p, 0')=0 and
λ*$KGl(p, q) = k KGl(p, q'). Further we have 4,g; - q' and Δ*(RJ = qf = 4Jί-*n
which shows that λ%\ u = λ*& u = μ*g; u > 0 for u = KGl(p, q1) and μ%\ u = Q. Thus
R1 is not most P-nice but P-nice in d. Evidently Px is not P-nice in G2.

Next figure 5 shows that the notion of most P-nice in G is also a relative

notion. Indeed in this figure 4Jl is a closed segment qr and Λ.GT'-J? coincides with

two closed segments sqf and rt. Thus Jp3—Δλ J3

3_^ is an open segment q'r. Therefore
R is not most P-nice in G2. However R is most P-nice in Gλ.



200 MITSURU OZAWA

Fig 5 Fig. G

Let G be the punctured unit disc [ \ z \ < 1} — 0 and G— R is an infinite number
of disc { \ z — l/n\ < l/10w!}, n = 2, 3, . . . , then Δ? consists of only one point {0}
and Δ?(R) also consists of only one point {0} by the irregularity of the origin in R.
Δξ(G—R) is empty and hence Jf — J?(G— R) consists of only one point {0}. Thus
R is P-nice in G. However both Δlt% and 4,c?-/? consists of only one point {0} and
hence Δ? — Δ?tG_£ is empty. This shows that R is not most P-nice in G. This
example shows further that the extremal P-niceness of R does not imply the ex-
tremal most P-niceness of R. In Fig. 6 the irregularity condition for 0 in R is
essential. If it is not the case, then Δ?(R) reduces to an empty set. Further in
this case R satisfies the conditions λ%u = Λ*g u = u = k log 1/| z \ and β% u=μ*<jtu=0.
For these phenomena we recommend our earlier paper [6].

We shall here introduce several other P-niceness. We make use of the following
terminologies :

R is exterior P-nice in G if Jg u = λ^u for any usPH(G),

R is interior P-nice in G if μ*%u = μgu for any u€PH(G) and

R is ordinary P-nice in G if it is exterior and interior P-nice in G.

Evidently if R is most P-nice in G, then it is ordinary P-nice in G. If any element
vePH(R) satisfies SG

RvzPH(G\ then Tg : PH(G}-»PH(R) is an onto positively linear
map and vice versa. If this is the case, then R is called onto P-nice in G. All of
these notions are not absolute.

Let R be most P-nice in G, then we have

4.g = Δ? - Δ?(G-R) = Δ?(R) = J? - AJ-* ,

Δl,
G

G.-R=Δ?(G-R).

Let r be a Martin minimal point in Δ? whose one defining point-sequence {qn}
belongs to R, that is, reΔlt%, then do(r, qn) the Martin distance from qn to r tends
to zero when n— oo. Jltg = Δ?(R) implies TgKG(p, r) > 0. Thus KR(p, r'} is deter-



LINEAR MAPPINGS ON RIEMANN SURFACES 201

mines as a minimal function, that is, a minimal point r'eJ? is determined. If the
r is also defined by a sequence {qn}^G— R, then r€J1(g_^ = Jf(G— 7?). This implies
that T%-SKa(p9r)>0. Since Δ?(R)Λ?(G-R) = φ, T%KG(p,r}>0 and Tg^/fr
(/>, r) > 0 lead to a contradiction. Thus there is no point sequence in G— R by
which r is denned. Therefore there is a small neighborhood N(r) of r for which
N(r)=N(r)^G entirely belongs to R. Let r and s be two different points in J l fg,
then / and s' are different in J?. Indeed TgKG(p, r)=KR(p, r') and TGKG(p,'s)
=KR(p,sf) are minimal and rf=sf implies KG(p, r)=SG

RTG

RKG(p, r)=SgKR(p, rf)
= S%KR(p, s'}=SG

RTG

RKG(p, s)=KG(p, s\ whence follows r=s in A?. This is a con-
tradiction. Let q be any point in N(r)^ΛG , then d&(q, r)<d&(dN(r), r) and dG(q, dN
(r)} > δ > 0. Let Ne(q) be a point set in G satisfying an inequality dβ(q, p) < ε < δ.
Then N,(q)^N(r)dR. Thus

o < r&(

implies

whence follows qζΔG(R). This fact shows that any connected component of Δξ
belongs to either Δ?(R) or d?(G—R).

THEOREM 2. //" /? /s wos/ P-nice in G, then any connected component of ΔG

belongs to either ΔG(R) = Δ^g or Δ?(G~R) = Δ^^. Δltg is imbedded in ΔR by T%,
that is, there is a umυalent correspondence induced by Tg which carries J l fg into
ΔR. If R is onto P-nice in G, then ΔR is imbedded in ΔG by SR and its image is
equal to ΔG(R) and vice versa.

Proof. It is sufficient to prove the last part. Let rf be any point in ΔR , then
by the onto P-niceness assumption of R in G there exists a minimal function K(,(p, r)
such that T%KG(p,r)=KR(p,r') and hence KG(p, r)=S%KB(p, rf\ where KR(p, rO
is a minimal function in R corresponding to the r'. Thus r€d°(R). By the mini-
mality preserving property of T% , this correspondence rf — > r is univalent. Any
point r in Δξ(R) corresponds to a point r' in Jf. Therefore the map induced by
SR carries Δζ univalently onto Δ?(R). Inverse statement is evident.

By Tg , ΔG(R} can be imbedded into ΔR. Thus there is a univalent corres-
pondence Tg: ΔG(R)-+ΔR. If r corresponds to r f , reΔ?(R), rfzΔR by Tg. Let
Ns(r) and Nδ(rf) be two neighborhoods of r in G^ΔQ and of r' in R^ ' ΔR defined by
d(,(p, r)<εand dR(p, r')<δ in the respective Martin metrices. Let 7Vε(r) and Ns(r')
be Nε(r)^G and Nδ(r')^R, respectively. We prove the following relation : Ns(r)
^Nδ(rf) Φ φ for any ε and δ. If it is not so, then there are some ε and some δ for
which M(τWVί(r') = Φ On the other hand

for two minimals K(,(p, r) and Kn(p, rf). Thus we have
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q)

and

0 < T%t(r.)KR(p, r') = Γjβ,(r/) Tg^CA r) - T%δ(r,,KG(p1 r).

Since Ns(r)^Nd(r')=ψ and #(?(/>, r) is minimal in PH(G\ the above two inequalities
are untenable. Thus Ns(r)^Nδ(r')^φ for any ε and for any δ. This implies that we
can select the same denning tail of r and r' in R.

In the next place we shall show that the following two implications

onto P-niceness ̂  P-niceness

are false in general.

Fig. 7

/p

\Λ

Fig. 8

Fig. 9

In Fig. 7 we have Δ? = [r, s], Δ°(R)
= 0, Δ?(G - J?) = [r, p)^(q9 s\ and Δ? -Δ?(G
—R)=[p, q]. This shows that R is not P-
nice in G. However Δ?=ΔR=<f> implies the
onto P-niceness of R in G.

In Fig. 8 Ή=[q,pJ^[p2, r], 4W= fe.
Al^lAί **]• This implies the P-niceness of
P in G and further the exterior P-niceness
of R in G. However Jf - [#, />JW(/>8)
w[/>2, r] implies Jf Ξg J?(7?), that is, P is not
onto P-nice in G. (The shaded part is a
component of the exterior of G.)

Even if R is a domain, the onto-P-
niceness of R in G does not imply the P-
niceness of R in G. In Fig. 9 Δ? = [p, q],
Δ?(R) = (p)^(q\ Δ? - Δ?(G-R) = [A rf and
hence R is not P-nice in G. However
4R=(p)^(q) (c:ΔR=[p,q]) implies the onto
P-niceness of R in G.

THEOREM 3. Let R be most P-nice in
G vnd Δ^=ΔG, then R is onto P-nice in G.

τn order to prove this theorem we shall
prepare the following two facts:

(i). If R is onto P-nice in Gx and GI
is onto P-nice in G2, then R is onto P-
nice in G2. If R is onto P-nice in G2 and
PcGiCG2, then R is onto P-nice in d.

(ii). If the proper part of dR in G lies
in a compact part of W, then P is onto
P-nice and simultaneously most P-nice in
G.
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Proof of (i). The first part is evident. Let u be any element of PH(R), then
there exists an element v such that T%*v — u and S%u = v. Let w be an element
of PH(G,) satisfying w=T%\v, then T%w=T% T&v=T%v = u. This implies the
desired result.

Proof -of (ii). By the assumption the proper part of dR divides G into two
parts. We can assume with no loss of generality that the proper part of dR con-
sists of analytic curves. Then we can construct a continuous superharmonic
function S in G satisfying the condition u ̂  S in R. In this process the bounded-
ness of (du/dri) ds on the proper part of dR in G is essential and the non-vanishing
property of the harmonic measure ω(p, dR, G—R) is also essential. Then S%u ̂  S
in G. Therefore we have S%utPH(G). This implies that TgS%u = u and hence
R is onto P-nice in G. The proper part of dR lies in a compact part of W, there-
fore JP(/?) = 4,g, JP(G-Λ) = 4.g_£ and hence

c Δ? c 4.2 + 4.g-s

This implies that P is most P-nice in G.

Proof of theorem 3. By theorem 2, there is no point in Δ®=ΔG being accessible
by two point-sequences one of which belongs to R and another of which belongs
to G—R. Therefore any point of ΔG is not accessible by a point-sequence belonging
to a proper part of dR. Thus a proper part of dR in G lies in a compact part in
W. By (ii) R is onto P-nice in G.

In the first part of (i) we can neither exclude the onto P-niceness of Gl in G2

nor replace it by the P-niceness of G1 in G2.

THEOREM 4. Let W belong to the class OG and G be a subregion of W. If R
is a subregion of G whose boundary dR clusters irregularly at the ideal boundary
of W, then R is onto P-nice and P-nice and exterior P-nice in G.

Proof. Let r be any point of J?, then there exists a defining point-sequence
[rn] of r in R. Then

QR(P, rn) ^ QG(p, rn), lim gR(p, rn) > 0
n-»oo

imply the irregularity of a minimal point f on J? which is defined by [rn] . Thus
r corresponds to r by S%. This is equivalent to a fact that R is onto P-nice in G.
Let f be any point of Δlt then there is a defining sequence {rn} of f in R. Then
any convergent subsequence {rVn} of {nj defines a point r in ΔR and further
0Λ(/>, r) ΞΞ lim gB(p, nj > 0 and gR(p, rvj ^ qG(P rVn). This implies that r is an

7Ϊ— »00

irregular minimal point of 4g and T%gG(p, r) ̂  kgR(p, r) > 0. Thus r is also a
minimal point of ΔR and f^Δ?(R\ This implies the desired two P-niceness of R
in G.
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§4. Algebraic calculations. In this section we shall discuss the algebraic pro-
perties of I, λ*, μ* and μ.

(1) λ%u + μ%-zu = u and λ*%u + μ*%.su = u.

( 2 ) μ*G

R μ*G

RU = μ*% λ*%U = μ*ξ λgu = λ*g μ*%u = λG

R μ*%U = μ*%U, λ *g λ*%u = Ig λ** u

Proof. μ*G

Rμ*G

Ru = SG

RTG

RSG

RTG

Ru = S%TG

Ru = μ*G

Ru. The following inequa-
lities μ*g w ^ ̂ *g u^λ%u^u imply two systems of inequalities

/ / * 7/ — I, ,, «, << / / < 7y <: // 7v <r //*ί ίy// RU — μ R μ RU ^ μ Rλ Ru ̂  μ RARU^μ Ru

and

/* _ / / //
^ R — I* R ft R = R

These imply the desired results. Further we have

λ*G

R λ*G

R U = λ*G

R(u-μ*G

G.-R U) = λ*G

R U-λ^ μ*G

G_-R U

We have the following two inequalities

Λ*g u = λ*GR λ*GR U^2*GχGu^ λ*G

and

by the inequalities λ*%u^λgu^u. We have the following representation

Jg M = \ K(p, q) dσu(q) = \ K(p, q) da _β (q)
J 1R J 1 R

= ( K(p,q) θ,(q) dσu(q)9 0^(q)=\
J Δ? I 0

1 on 4,g ,

on 4?-

Therefore we have

u= K(p,q) θ^

j6?"v^, j ) Oι(q) dσu(q) = λ%u.

By the above identity we can say that
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The inequalities βRu^ μ*g u ̂  Λ*g u^λgu^u imply the desired fact by operating
μ% and by substituting u by p%u.

(3) If R^R2 - ψ, then μ^μ^u = fa fau=0. Further we have μ*S-Sμ*$u

= μ*G

G-R **GR U = λ*g μ*G_R U = λ*G_R μ*g u = μ*g λ*G_R u= 0 and μG

G_-R μg U = μG

G.R μ*g u

= μ*n μo-R u = μo-R *%u = *% μG

G-R u = 0 .
( 4 ) Λ*g_β- ^*g e/-^*g ^*g_Λ- ^=^*g u-μ*% u=λ*%_-R u-μ^R u and λG

G.R λgu

^^u—μG

Ru=λG

G-Ru—μG

G-Ru for any uzPH(G).

Proof. λ*G

G_-R λ*G

R u = λ*%u- μ*G λ*g U = Ϊ*GU_ μ*G u

— \ G - G K(Pι q) dσu(q),

;<7 7y -G ΪG 7, — ΪG ?,
' — ΛR ** r1 R ΛR ^ ΛR **

= /!Γ( A )̂ dσu(q) - K(p, q) dσu(q) .
ΔI,R ~d

(5) ί*g

= ^*g_« u - μa

β-κU

_^ U = ^g-

= g-tfW - j«*g-ίM = M - (^*g_s + μg)u

for any uzPH(G).

Proof. /i*g_s Jg « = Ig «-/ι*g Ig M = Jg κ-/ι*g

= (

-μ°R U

( 6 ) J*g-ί (Jg-Λ*g)« = (?g-/«*g)«, *%-&*%-&$)«

for any uePH(G).

(7) Let d and G2 (od) be two subregions of W containing R, then for each

«eP#(Gι) satisfying S%iuePH(G2\ we have

Γg! A*g! Sg; M = Λί*g' « and Tg; A*g Sg; « g ^*g> u .

And for each v$PH(G^) satisfying Tg v > 0 in Gj, we have
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μ*κ v = Sg; μ*% Tg; v and λ*% v ̂  Sg; Λ*g Γg; v .

Proof. Γg; Λ*g' Sg; = Tg; Sg Tg« Tg; Sg;

By the definition of Sg; we have SG

G\u^u in Gj and hence Λ*g< Sg: M ̂  Λ*g' tt in
GP This implies that Γg:>?*ga Sg: K ̂  x^g1 u in Glβ For any vζPH(G2) we have
v^T%\v in G! and hence Λ*ga ̂  x*g' Tga # in d Therefore we have ^*g t;
^Sg ^Tg i; in G2.

Here it should be noted that the map T%ι : PH(G2) -* PH(G,) is not onto in

general and the map Sg,3: PH(Gύ-»PH(Gώ is not defined for any element of
PH(Gi). This is an important different point between the case PH and the case
PHB, which will be treated in Chapter III.

( 8 ) J*g λ*G[ u = λ*% u, μ*$ λ*G

G\ U = μ*% μ*G

G\ U = μ*% U and μ*% U^λ*G

R* μ*G\ u^λ*G

R>u

for any utPH(G2\ If G, is P-nice in G2, then Λ*g /<*£« = ^*ga^.

M ̂  Λ*£ w ̂  ̂ *ga M imply λ*% u ̂  ̂ *ga λ*G\ u ̂  ̂ *g x*g3 u = λ*% u. μ*% u
^ μ*%\ u ̂  λ*G\ u^u imply μ*% u=μ*% μ*% u ̂  j«*g μ*%l u ̂  μ*G

R* λ*G\ u ̂  μ*% u and
μ*G> u = μ*G* μ*ch u ̂  Z*G> μ*^ u ̂  ̂ *σ. ̂ . jf gχ is p.nice in G2, then /^*g: u = ^*gj M

^ >i*ga w. Hence ^*ga » = >^*ga >?*ga u ̂  ̂ *ga /£*g; M ̂  /ί*ga «.

( 9 ) Jga Jgί M = Jga u, /Iga Jg; u = μ% μG

G\ u = μ%u and μ% u^λf μG

G\ u^λ%u for any

u£PH(G2). If G! is most P-nice in G2, then Ig £g;« = Iga M.

Proo/. We can similarly prove this as in (8).

(10) Λ*ga Jgί ^Λ*ga U, U*% Jg: U=μ*% U, μG

R^ λ*G\ U = μ% //*£ U = μ% U, μ% U^μ*% μG

G\ U

^μ*%u, λ*G

R*u^λ%λ*G\u^λG

R*u, μ%u^λ*G

R*μG\u^λ*%u and Λ*g' u^Γλg* μ*G

G\ u^λ%u

for any uzPH(G2\ If G! is most P-nice in G2, then μ*g' μG

G\u = ^*ga u, λ% λ*%\u

= ^ga /^*g: « = *R u and ^*ga μG

G\ u - ^*ga M.

Proof. Λ*ga w - ̂ *ga Λ*g! w ̂  *ga λG

G\u ̂  ̂ *ga «. /^*ga u = /^*ga /ί*g! w ̂  ̂ *ga Jg! M ̂  μ*G

R* u.

μGR U = /Iga /Zg; M ̂  /7ga μ*G

G\ U ̂  μ% λ*G\ u^μ% λG

G\ U^μG

R> U. μ% U = μ% μG

G\ U^μ*% μ%\ U

^ μ*G

R> U. ^*ga U = λ*% λ*& U^λ% λ*& U^λ% U. μ% U^μ*% μ°G\ U^λ*g> μG\ U^λ*% μ*%[ U

^>?*ga U. Λ*ga U ̂  Jga λ*G\ U ̂  λ% μ*%\ U ̂  Jga λ*G\ U ̂  Jga U.

If G! is most P-nice in G2, then μG

G\ = //*g; = λ*%\ = ίg; and hence μ^μ^u =μ*(

R

1λ(

Glu
=μ*%u, Iga Ai*g;w=32 //g;^=Iga *>g;«=2g 5g;«=ί2 w and ^*gα

a /ig; «=^*g ;̂«=;*2 «.

(11) For any u<=PH(G2) Λ*g; >ί*ga^-^*ga^, >ϊ*g: ^*ga^ - μ*%l μ*%u - ^*ga^ and x*gaw

^ j"*g: ^*g2^ ^ V*R°U. If G! is P-nice in G2, then μ*^ λ*%u=λ*<R>u and ^*g;-c^*g'^

-0.
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Proof. λ*%U = λ*% J*g «^*gϊ λ*g U^λ*$U. μ*%U = μ*$ μ*g u ̂  μ*& μ*%U
^ λ*& β*%u ^ μ*%u. μ*%u^μ*% λ*%u rg μ*& λ*%u ^ λ*%u. If G1 is P-nice in G2,
then Λ*g;=Ai*g; and hence μ*%l λ*%u = Λ*g: Λ*g°^ = Λ*g'w. 0 - ̂ *g'M-/ι*g; λ*%u

(12) 3g; 5g «=5g M, Λg: μG

R*u=μG

G\ ρ$u=μ%u and 3g'«^/?g; λg'u^μftu for any w € PET

(G8). If Gx is most P-nice in G2, then /?g; ίg w=ίg ίί and ίg:_5l Ig «=0.

Proof. It is quite similarly proved as in (11).

(13) λG

G\ tt*g M - /£*g% Ig; **g*U = λ*%U, λ*& μ%U = /^*g: /ϊg w = μ$u, λ*$U^λ*& λ%U

^ *% u, μ*% u ̂  μ*& Ig3 u ̂  Ig2 u and μ%u ̂  μG

G\ /£*g K ̂  /7g; ^*ga

 M ̂  >ί*g3 M for any

u£PH(G2). If d is most P-nice in G2, then /Ig; >ί*|2w = Jg: /ί*gaw = λ*$u, μ&μ*$u

= Ig: ̂ *g2^ = μ*%u and /Ig: Jg'« - μ*%l λ%u = λ*<*\ Jg « = Jg; Ig « = Jg ».

^*g «^^*g «. /7g' w=/£g; /Zg w^*gj /?g w^^*g: /Iga u

(14) If G! is P-nice in G2, then

^*g « = 5g: ^*g« Tg:^ and λ*$ v - Tg; g Sg: υ

for any u€PH(G2) and for any vsPH(G^ satisfying S%[v< oo.

. By (7) we have for any u£PH(G2)

On the other hand by (8) and (11) we have

- sg: rg: sg: rg: M ~ sg: rg: μ^.-R sg: rg: M

= sg: ^g: « - 5g? T g; ̂ *g:-Λ- sg! rg: ̂  ,
since Tg: Sg: Tg: u=T%iu if Tg: M > 0. Further since //*g3

a_^ x ^ /^*g:_^ α? for any
X€PH(G2), we have

5g: rg: ̂ *g:_* sg: r g: u ̂  sg: rg: ̂ *g:.Λ- sg: rg: «

by (7). Thus we have an inequality

Λ*g2 u ̂  sg: rg: u - sg: ̂ *g;.̂  rg: u = sg: ̂ *g« r g: « ,
which leads to the desired result if rg:&>0, uePH(GJ. If rg:^ = 0, then

^*g° u - sg: r g: λ*% sg: r g: M = o = sg: ;ι*g r g: M .
If Sg:z;<oo, vsPHfa), then we put u = SG

3\v. Then we have TG

3\u= Tg Sg t;
= 0 > 0. By the first part we have
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**% SSlv = Sgiλ*$v.

This is the desired result.
(15) Let G1 and G2 (nGJ be two subregions of W containing R, then for each
usPH(GJ satisfying SgluePH(Gz), there hold

TG

G\ μ$ Sg: u = μ$u and TG

G\ Ig2 Sg: u^λ%u.

For each vePH(G2), there hold

μGR v = Sg: μ% Γg: v and Jg2 υ ̂  Sg: Ig1 Tg: t; .

If Gj_ is P-nice in G2 and Ig: = Λ*g: , then the above two inequalities reduce to the
equalities respectively under the same assumption.

Proof. It is sufficient to prove the parts claiming the equalities.

. — ;#* jGa TGί-i _ ;*#!> 5#2 3*^2 11 _ ,.*G* ΪG tt*G ιι— ΛGl ΛR ΛGl V — Λ GίΛR Λ GίV — μ Gl ΛR μ GlV

= Sg; Tg ίffSg: Tf,υ = Sg; Tg Sg; Tg:w-Sg; Γg^-β Sg; TfίV

= Sg; Γg; » - Sg; Tg; /7g;_s- Sg; Γg; »

That is, Jg2 v = Sg: Ig1 TG

G\ υ holds for any v£PH(G2). By the assumption Sg: u < oo,
we can transform this identity into the identity

•*• (?ι ΛR* Ogf2 U — ΛR U

for any uzPH(G^ with Sg^<oo, putting u= TG

G\v. Because for this we have
sg: u - sg: rg: v = v < oo.

Next we shall prove the first equality.

TG

G\ μg* sg: u = rg: sg: ̂  - r g: ̂ g:_^ sg: ̂

by λ%ι_Rx^λ%ι_RX for any χςPH(G2). Since Sg:^<oo implies Tg:Sg:^=w, we can
say that

τG

G\ sg: u - rg: 3g:-5 sg: u ̂  u - n\-n u = μ%u,
which shows that Tg: /Jga Sg:̂  ̂  /Jg1 u for any u£PH(GJ with Sg: K < oo. Since the
inverse inequality is evidently true, we have the desired equality. The remaining
identity is a simple transform of this identity.

§5. Applications. We shall now apply the above algebraic calculations to
investigate the relative situation of R in G.

THEOREM 5. If R is interior P-nice in G± and if G^G^ then R is interior
P-nice in G2. If R is interior P-nice in G2 and Gλ is onto P-nice in G2, then R is
interior P-nice in Gλ.
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Proof. By the assumption
(15) we have

holds for any

209

By (7) and

~Ga 1) - Cί?2 ~Gι 'TΌί^j //*#:> 7) - <?Ga fι*Gl T^Gί*,μR V — oGl μR L Gl V , μ R V — OGl μ R 2 Gl V

for any v€PH(G2) satisfying T%\v > 0. Then for such a v we have

If Γg;z; = 0, then «*g 0 = Sg2 Γg't; - Sg3 Tg1 Γg t; - 0, which shows that μ*g t;
= μ%3v = 0. Therefore in any cases we have the desired result : μ^v — μ^v for
any vzPH(G2). By the assumption of the later half μ^u = μ*%* u and S&u<oo for
any u€PH(Gj). By (7) and (15) we have

for any u

ΐ*=T g: /# Sg: ff - Tg: μ*

This is the desired result.

As is shown by the following figure, the in-
verse of the first part does not remain true if
no assumption is imposed on d In a neigh-
borhood of p a component of dR coincides with
dGi and another component enters into p touch-
ing very strongly to J? and lying in d Then
we have

Λf'= [p, q] , A,gί-* = [/>, q], Δ?'(R) = (P}

and Δ?1 - Λ.gί-^ = ̂  This shows that μ£K(r, p)
= 0 and μ*%K(r, p) - K(r, p). Thus Λ is not in-
terior P-nice in d, however R is interior P-nice in G2.

Fig. 10

THEOREM 6. Let R be exterior P-nice in Gl and d be most P-nice in G2, then
R is exterior P-nice in G2. Let R be exterior P-nice in G2 and d be P-nice and
onto P-nice in G2, then R is exterior P-nice in d

= λ*% u

Proof. Let u be any element of PH(G2)} then

if Tg: M > 0. If Tg: M = 0, then

which implies that ^ga& = λ*%2u= 0.
By the onto P-niceness of Gl in G2 there holds Sg:^< oo for any

thus we see

M1 u^τ%ι 32- sg: M - rg: *»g sg: M - ̂  M

for any u^PH(G^. Therefore we have 3g1w = ^g1^ for any ^eP#(d).

THEOREM 7. If R is P-nice in G1 and Gl be P-nice in G2, then R is P-nice in
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G2. If R is P-nice in G2 and G! ts onto P-nice in G2 and G^R, then R is P-
nice in Gx.

Proof. Let u be any element in P//(G2) satisfying T%\ u>0. Then we have

λ*$u = S%\λ*$T&u = S&μ*$T%\u - u*fu.

If Tg; u = 0, then there holds

λ*$u = φλ*&u = λ*g μ*&u = λ*%SG

G\TG

Glu - 0.

Further we have

μ*g*u = Sg Γg K = Sg Tg'T^tt - 0.

This implies the first part of the desired fact. In this part we cannot replace the
P-niceness of G! in G2 by the onto P-niceness of G! in G2. This is shown by an
example which is easy to construct.

By (7) we have

\u and λ*$u £ TgW*g SG

G\u

for any u e PH(GJ, since Sg w < oo by the onto P-niceness of G! in G2. Since R
is P-nice in G2, we have μ*% = /i*^2. Thus we have the desired fact :

THEOREM 8. jy P w mosί P-nice in G2 β^ΰ? Gx /5 onto P-nice in G2, G^R,
then R is most P-nice in GP // R is most P-nice in Gl and Gλ is most P-nice in
G2, then R is most P-nice in G2.

Proof. By the assumption we have

if Sg w < oo. On the other hand we have S&u < oo for any u e PH(Gλ) if (̂  is
onto P-nice in G2. Thus we have the desired fact μ^u = Jg1^.
By (15) we have

.-7̂ 2 Ί, — Cβa .76?! T^'ί!/ — ^Gt lGl TG*1J — 2G*1JμR u — OGΊ μR i Gίu — oRl AR i Glu — ΛR u

for any usPH(G2), T%\u > 0. If T%\u = 0, then

λ%u = Iga 3g 21 ^Ig4 ̂ *g!w = 0

and

^g M ^ ̂ g M - 0.

This implies the desired fact.
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The later half of the above theorem can be extended in the following manner :
If R is most P-nice in G± and Gl is exterior P-nice and P-nice in G2, then R is
most P-nice in G2.

If two open sets R1 and R2 with two-sidedness condition satisfy the conditions
*RI = Ϊ R and μ/j i = μίL then we say Rl and R2 are 1st P-equivalent in G. If R1

and R2 satisfy the condition λ%, = 1*%, and //*& = μ*£, then Rl and R2 are said to
be 2nd P-equivalent in G. If Pj and P2 are 1st and 2nd P-equivalent in G simult-
aneously, then they are said to be most P-equivalent in G. If λ%, = Λg2 and /*&
= Λ*g2, then they are said to be exterior P-equivalent in G and if /**& = μ*ijL and /7g,
= μ%» then they are said to be interior P-equivalent in G. These are also relative
notions.

THEOREM 9. // R± and R2 are interior P-equivalent in G± and G2 D G!, then
they are also interior P-equivalent in G2. If R! and R2 are interior P-equivalent
in G2 and Gl is onto P-nice in G2, then they are interior P-equivalent in Gλ.

Proof. For any u € PH(G2) with T%μ < 0 we have

and

μ&* = S% jίgTglu = SG

G\μG

R\TG

G\U = μ&u.

This shows the first desired result for Tg w > 0. If T%\u = 0, then μ^g\u = ^*g:
μ*G>ιU = o and //*g;w = /**g^*g;M = 0. This implies μg\u = //gw = 0 for Tgjw = 0.

By the onto P-niceness of G± in G2 any ^ G PH(G^) satisfies 5g'w < oo. Then we
have

μg\U = Tglμ&SSlU = TG

G\μg\SG

G\U = μg\U

and

μ*
G

R\u - τs\μ*&s%u = τg://*gsg;M - ^*g:w

for any u € PH(G,).

THEOREM 10. If Rί and R2 are exterior P-equivalent in Gλ and Gλ is exterior
P-nice and P-nice in G2, then R1 and R2 are exterior P-equivalent in G2. If /?! and
R2 are exterior P-equivalent in G2 and Gλ is exterior P-nice and P-nice and further
onto P-nice in G2, then R± and R2 are exterior P-equivalent in G±.

THEOREM 11. If R± and R2 are second P-equivalent in Gλ and G± is P-nice in
G2, then they are second P-eqmvalent in G2. If R! and R2 are second P-equivalent
in G2 and Gl is onto P-nice and P-nice in G2 and G^R^R^ then R± and R2 are
second P-equivalent in Gλ. If Rl and R2 are first P-equivalent in Gl and Gx is
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exterior P-nice or more strongly most P-nice in G2, then they are first P-equivalent
in G2. If RI and R2 are first P-equivalent in G2 and Gλ is onto P-nice, exterior P-
nice in G2, then they are first P-equivalent in Gx. If Rλ and R2 are most P-equivalent
in G! and Gl is exterior P-nice and P-nice in G2, then they are most P-equivalent
in G2. // RI and R2 are most P-equivalent in G2 and Gx is onto P-nice, exterior
P-nice and P-nice in G2, then they are most P-equivalent in Gλ.

Proof of theorem 10. By the P-niceness of Gx in G2 we can apply (15) and
we have λ%\u = SG

G\λG

R\TG\u = SG

G^
G

R\TG

G\u = λglu and λ*gu =
= λ*%\u for any uζPH(G2) with T%\u > 0. If T& «=0, then
= 0 = λ&μ*&u = λ&G\u = λ%\u. This implies Λ*g;κ = 0 - λ*%\u. Thus we have the
desired fact. The remaining half is quite similarly proved.

Proof of theorem 11 is quite similar as in theorem 9 and 10.

THEOREM 12. Let Rl and R2 be two open sets in G with two-sidedness condition,
then

and

for any u € PH(G\

Proof. We construct a positive harmonic function un(X) in Wn^X so that un(X)
= u on X^dWn, = 0 on 3X^Wn. Then we have un(R1^

fR2) + u^R ̂ ^R^ = un(R^
^R2) on dR^R^Wn + dR^R^Wn, =2u on dWn^Rl^R2 and un(Rύ + u»(R2)
= Mn(l?ι) on dR^R^ Wn, = MW(.R2) on a^1/-Λ^2/^TK, = 2w on dWn^Ri^R2, and
further Un(R^R2) ^ w»(/?ι) on ̂ ^Λj^TΓn and un(Rιr^R2) ^ w«(/?2) on dR^R2

^Wn> These imply an inequality

on Rir^Rzr^Wn. Let w tend to oo, then there holds

in Rlr^R2. By the standard subharmonic extension of the respective members in
the above inequality we have the same inequality which holds in the whole G. In
fact the left hand side member is equal to 0 on G — Rι^R2 and TRl(JRίu on (Rλ

~R^R2) and the right hand side member is equal to 0 on G
and Tg,u on Rλ ~ R^R2, Tgu on R2-R1^R2. Thus we have the desired

inequality. We now construct two least harmonic majorants of both sides and
then we have

Sgtu*.21u*,« + S&nΛT&nΛ.« ̂  S^TR1U + Sg.Tg.fi
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in G. This is the first desired result.

Since (G-R^G-RJ = G-R^R2 and (G-R^G-RJcLG-R^Rz, we have

This is the second desired result.

Let u be a minimal function in PH(G) for which μ*%,u = μ*%,u = u, then μ*%lURίu
= u. This implies that TgιnΛi« > 0 and Δ?(R^Δ?
Further we have

for any u € PH(G) if R\^R2 = Φ> In fact we have

71+̂  = Γiw + Tgu

for any ^ € PH(G) if Rι^R2 = φ. This implies the desired fact.
If (G - Λ! WG - J?2) = ̂ , then we have

for any u € «/(G).

THEOREM 13. For any uςPH(G)

^ΛιUΛ,« + 3&n*,tt ̂

and

. In general we can say that JgΛl

wJgΛl - J?ΛlUΛi and Δ?tRιnΔ?ιR

Therefore we have

πΛ.« - ί ^Γσ(A q)dσu(q) + ( KG(p, q)dσu(q)
J ^ g x u j B . J ^iSzmiz,

KG(p, q)dσu(q) + ( KG(p, q)dσu(q)
U ^ι.g. J \g,n ^1,2.

C X 6(P, q)dσu(q)+ { KG(p, q)dσu(q)
J ^l J 1̂

if we put

= KG(p,q)dσn(q).
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By the integral representation of fl$ it is the matter of the set of Martin minimal
points which do not belong to J^g-*. If p belongs to (Δ® — J^g^j^J^
- 4> g-s ), then d(p, G — RJ > 0 and d(p, G - R2) > 0. Thus there is a suitable
neighborhood N(p) of £ such that N(p) c J?i and N(p) c #2. This implies that
N(p)dR1^R2 and hence d(/>, G - R^R2) > 0. Further we see 0<d(p, G —R1^,R2)
^ d(p, G-R^R2). Therefore p belongs to Δ° - J1? g_^π^ and Δ° - J?_^n^,
simultaneously. If p belongs to (Δ$ - Δ?tG^^(Δ? — J^g-*,) but does not belong to
(Δ° - 4V*ιW4ισ - 4,g-je.), then either d(p, G - RJ or d(p, G -R2) is positive.
Thus we see d(p, G — R^R2) > 0. This shows that p belongs to J? — Δ^-R^ΓR^
Let u be canonically represented as in the above, then

KG(P> Φ dσu(q) + KG(p, q)dou(q)
-^iJ-^ J ^-^g-Λ

(ί +ί \KG(p,q)dσu(q)
\ J J?- Jιg-ΛΓϋS: J J? - Jig-5Iul5 /

THEOREM 14. L ί̂ ^j and R2 be two open sets in G and satisfy two conditions
μ*RιU > 0 and μ^u > 0 for a same minimal function u € PH(G\ then μ^R^
and Ri^Rz Φ φ If RI and R2 are disjoint, then for any u e PH(G)

If Rl and R2 are two open sets in G satisfying two conditions p^u > 0 and
for a same minimal function u € PH(G\ then μR^Rίu > 0 and Ri^R^ Φ φ. If
and R2 are disjoint, then for any u € PH(G)

Proof. Let u be a minimal in PH(G) for which μ*^u > 0 and μ^u > 0, then
μ*RiU = μ*%,u =u and μ*RltuRtu=u Thus there holds μ*RίnRίu = u. This shows
that Rί^R2 Φ Φ> These facts were already stated in [1]. If Ri^R* = φ, then

Tg+Rlu - Tgu + Tgu

by the definition of T mapping and hence there holds

S%1+RtTg+R3u = S&T&u + SgTgu,

which is the desired result.
Let u be a minimal in PH(G) for which μg,u > 0 and μgu > 0, then μ&u

— βGίU = u and μRίυRίu = u. Thus there holds μ%^Rίu = u. The corresponding
Martin's minimal point belongs to a common set of Rl and R2, that is, Rl^R2^φ.
This implies
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A G ΛG W AG — ( AG __ A G _ Λ / A G A G _ \
^i "~ U\,G-RI ΔI,G-RΪ — v/Ί ^iiG-RJr^\"i ~ UI>G-RZ>

<r // G A G _ <r /f G A G _
= ^1 ~ ^1> G-RiKR* = ^1 — AI, «7-Λι)U(σ-Λ )

We now assume that Rί^R2 = φ. Let w be any minimal function in PH(G), then
we can say either μ%lURίu = M or μi lUjBa& = 0. If the first is the case, then μ^u—u
and /Zg3M = 0 or μ£ w = 0 and /7gaw = w. If the second case occurs, then β^u
= P.R*U — 0. This implies that a minimal point # belonging to Δλ

G — ̂ J-sursi
belongs to either 4* - Jlfg.5l or 4G - 4,g-5i and (4* - J^g-^WJ^ - 4l9%-SJ=φ
if R^Rz = Φ> Therefore putting

u(p)=( KG(p, q)dσu(q)
}ΔIO

we have

KG(p, q)dσu(q)

, q)dσu(q) + Ke(p, q)dσu(q)

THEOREM 15. If RI and R2 are two open sets in G and R^aR^ then

**GR>U ^λ*G

Rί_-Rί U + λ*&U, β*G

R>U ^ μ*&-Sί U + μ*&u,

for any u e PH(G).

Proof. This is easily concluded by theorem 12 and 13.

THEOREM 16. If Rλ and R^—R^ are (most) P-nice in G, then R2 is also so in
G. If R! and R2—Rl are exterior P-nice and P-nice in G, then R2 is also so in G.

Proof. If R! and R2-Ri are P-nice in G, then λ*G

Rί = /**glf Λ*g,_5l = ̂ .-5..
Thus we have

which implies λ^u = >ί*gaw for any & € PH(G).
The remaining parts can be proved quite similarly.

Let R! and R2 be two disjoint open sets in G. We define two ideal intersection
operators as follows:

/^ #2; G) - λ*& + ̂ *ga - ^*g1+Λ3 and I2(Rlt R2', G) = I& + 3g. - ίg1+Λi.
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We shall now prove the following lemmas.

LEMMA 1. Let R± and R2 be two open sets in G, then
= /**uin«, and μ^μg, = μgμ^ = μln^

Pr00/. μ*£ ̂  μ*lίιnΛa is evident. Thus we have

On the other hand by theorem 12 we have

,,*e? i /,*£? ,,*# *> „*(? ,,#£ _ι_ tt*G ,,*G
R^R* -Γ μ Riμ RiHR* ^ μ Riμ Rί ~r β R,μ R2,

whence follows that

that is,

Another part of the first identity can be proved similarly. For - operator we can
proceed quite similarly using theorem 13 instead of theorem 12.

_ LEMMA 2. λ*gλ*g = λ*^*^ = λ*& + λ*^ - λ*%lΌRa and I&Ig. - λgλg = IG

Rl

~Γ ΛRs ΛRί\jRί.

Proof. By lemma 1 we can say that

= 7 - ^*g-Λ-a - ^g-j?, + A**g-^*g-j?,

= / — μ^-R! - μ*G-ϊ* + ^*(σ-j?ι)n(σ-j?,)
_ r x/*<7 _ /r*<7 _ ι_ f,*G __ ;*<7 _ ι ;*— -* μ G-RI μ G-RΪ \ μ G-RIUR* — Λ R\ ι Λ

The remaining ones are quite similarly proved as in the above.

By lemma 2 we have the following representations

THEOREM 17. //" GΛ is P-nice in G2 and contains two disjoint open sets /?x and
R2, then the vanishing of I^R^R^G^ implies that of I^R^ R2, G2). If G: is onto
P-nice in G2, then the vanishing of Iι(Rlt RZ, G2) implies that of Iι(Rlt R2, GJ. If
G! is most P-nice in G2, then the vanishing of IZ(R19 Rz\ GJ implies that of I2(Rlt

RU G2) If G! is onto P-nice in G2, then the vanishing of I2(Rlf R2\ G2) implies
that of I2(Rlf R2, Gι).

Proof. If Tg^^O, then we have Λ(/?ι, Jf?2; G) = Sg; /^i, /?2; d) Γg;. If
Tglu = 0, then we have I^R^ R2, G2)u = λ^g\λ^g\u = ^*g^*g/£*g;« = 0. By the onto
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P-niceness of Gλ in G2, S%\u < oo for any u € P//(Gι) and further I^R^ R2 GO
^ Tgll^R^ R2; G2)Sg* holds. For the remaining two results a similar method is
available.

If Rl^R2 = 0 and R^ and P2 are P-nice in G, then /Λ/^, P2; G) = 0 and if Rλ

and R2 are most P-nice in G, then /gC^, R2: G) = 0. If R^R2 = φ and /.(T^, R2; G)
= 0 and Rι^R2 is exterior P-nice and P-nice (resp. exterior P-nice, P-nice and
interior P-nice) in G, then R1 and R2 are exterior P-nice and P-nice (resp. most
P-nice) in G.

THEREOM 18. // R! and R2 are both P-nice in G, then R^R2 and R1^^R2

are also both P-nice in G. If Rl and R2 are both most P-nice in G, then R^R2

and Pι^~vft2 are also so. If R± and R2 are exterior (interior) P-nice and P-nice in
G, then R^R2 and Rιr^R2 are also so.

If P! and R2 are two open sets in G which satisfy

and

for any w € PH(G\ then we say that 7?! and /?2 are situated P-regularly in G. If
P! and P2 are P-nice in G, then they are situated P-regularly in G. In the above
definition of P-regular situation of R± and R2 in G we replace *operators by "operators.
Then we say that ^ and R2 are most P-regularly situated in G. If P! and P2

are most P-nice in G, then they are situated most P-regularly in G.

THEOREM 19. // R^ and R2 are situated P-regularly in Gλ which is P-nice in
G2, then R1 aud R2 are situated P-regularly in G2. If Rλ and R2 are situated P-
regularly in G2 and Gλ is onto P-nice and P-nice in G2, then Rl and R2 are situated
P-regularly in d If RI and R2 are situated most P-regularly in Gλ and is most
P-nice in G2, then they are situated most P-regularly in G2. If Rλ and R2 are
situated most P-regularly in G2 and Gx is onto P-nice and P-nice in G2, then they
are situated most P-regularly in Glβ

Let R± and P4 be two opan sets in G. If ^R,-R^R'^ = ^^-R^R~^ = 0^ for any
u € PH(G\ then we say Rλ and R2 truely P-equivalent in G. If Ϊ^-R^R U
= ~λR*-R3ϊϊΓ*u = 0 for any u € PH(G), then we say R1 and R2 most truely P-equiυalent
in G!.

THEOREM 20. If R± and R2 are truely P-equiυalent in G, then Rl and R2 are
second P-equivalent in G and they are P-regularly situated in G. If R± and R2 are
most truely P-equivalent in G, then they are most P-equivalent in G and further they
are situated P-regularly and most P-regularly in G^

Proof. By the assumption ^*g1_ιτn^w = 0 we have
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for any u € PH(G), which leads us to a fact λ^u = Λ*g ιnβaw. Similarly we have
λ^u = A*Rlf]Rίu and hence λ^u — Λ*glUΛs#. By a simple calculation

0 = Λ Rt-R^RtU = Λ G-R*-(G-R

= Λ*

which imply that

^g-j

and hence

for any M e PH(G). This is the first desired result. The proof of the remaining
part is quite similar and then we use 2%u ̂  λ*gu.

THEOREM 21. If R^ and R2 are P-nice and second (or interior) P-equivalent in
G, then they are truely P-equivalent in G. If R1 is P-nice in G and if R± and R2

are truely P-equivalent in G, then R2 is P-nice in G.

Proof. If A and B are disjoint open sets in G and μ*%u ~ μ^u for any
u € PH(G), then μ*$μ = 0. Indeed, if μ*%u Φ 0 for some u € PH(G), then we have
μ^μ^u = μ*<iu φ 0 but μ*ξμ*%u = ̂ *2n^ = 0. This is untenable.

By the P-niceness of R1 and 7?2 in G and hence that of G—Rl and Rl/^R2 in
G, we can prove the P-niceness of R1 — Rίr^R2 in G. Thus we have by a simple
calculation

Similarly we have an inversely directed inequality and hence we have an equality

~

On the other hand (R1—R1^R2)^(R2—Rιr~^R2) = φ, therefore we can apply a fact
stated firstly. Then we have the vanishing of each quantity. By the P-niceness
of R1—R1^,R2 and R2—Rl^~^R2 in G, we can say

^*Λ-5ΓnΛ« = ^*Λ.-2EήS:W = 0

for any u e PH(G). The remaining part is evident.

THEOREM 22. If R! and R2 are most P-nice and first (or interior) P-equivalent
in G, then they are most truely P-equivalent (and hence most P-equivalent) in G.

Proof. If A and B are disjoint open sets in G and μ%u = μ%u for any
uePH(G), then μ%u = 0. Indeed, if μ$u Φ 0 for some u € PH(G), then we have
μG

Aμ
G

Au == j"2^^0, μ%μAu = &A<\BU = 0, which is untenable. By this fact we can
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proceed quite similarly as in the preceding theorem.

THEOREM 23. If Rλ and R2 are truely P-equivalent in G± and G± is P-nice in
G2. then R± and R2 are also truely P-equivalent in G2. If Rl and R2 are truely
P-equivalent in G2 and Gl is onto P-nice and P-nice in G2, then Rl and R2 are
also truely P-equivalent in G^ If /?j and R2 are most truely P-equivalent in Gx

and G! is most P-nice in G2, then Rl and R2 are also most truely P-equivalent in
G2. If R1 and R2 are most truely P-equivalent in G2 and G± is exterior P-nice and
P-nice and onto P-nice in G2, then R1 and R2 are most truely P-equivalent in Gx.

§6. Definition of paths We shall define and discuss two sorts of paths.
Let q be a minimal point in Δ? and let γ be a curve which determines the q.

Let D be a domain in G for which γ is a part of 3D. If T%KG(p, q) = 0 for any
Dy then we say γ a non-tangential path to q. If there is a domain D for which
T%KG(p, q) > 0, then we say γ a tangential path to q.

If q is an isolated minimal point in ΔG or Jp, then to construct a tangential
path to q is a very important problem, that is, in this case it is not yet solved to
guarantee the existence of the path.

If q e Jp is not isolated in Jp, then there is an infinite number of minimal
points in any ε- neighborhood N& of q, where Nε is a point set on which dG(p,q)<ε,
p € ΔG . Let R(γ, p) be a domain bounded by γ and by a defining tail of p e Ns.
We can use this R(γ,p) as a testing domain D in the definition of tangential path
to q.

If there is a testing domain D in the right hand side of γ for which

T$Kff(p, q) > 0,

then we say γ a left tangential path to q. Similarly we define a right tangential
path to q. It may occur that γ is simultaneously a left and right tangential
path to q, then we cannot choose two disjoint testing domains Dl and D2 one of
which lies in the right hand side of γ and another of which lies in the left hand
side of γ and for which

p, tf) >0 and T^KG(p, q) > 0.

Indeed, if it is possible, then D1^-^D2 ^ φ. Therefore if γ is simultaneously left and
right tangential to q, then any testing domain D for which

TG

ΌKG(p, q) > 0

lies in both sides of the curve γ.

Let (D(t)} be a sequence of non-compact domains for which

u(t) = TG

D(t,u > 0 and Tξ[l}u(f) = u(s)

for a minimal u € PH(G) and lim (diameter of D(f)) = 0, then we say (D(t)} a
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defining sequence of a minimal point of G. And this sequence defines only one
point in Jf which corresponds to the function u.

Let D(t) be a domain defined by u > t if u is a singular minimal and u > M
(1—1/0 if u is a bounded minimal and supβ u = M. Then (D(f)} is a defining
sequence of a minimal point of G, since ΓgflJ (M— t) = u—s and Tgίί) (w— M(l — 1/0)
= uM (1—1/5) in the respective cases.

THEOREM 24. If γ is a tangential path to q in the above sense, then there is a
defining sequence (D(t)} of q for which D(f)^γ = φ for any t > t0 and vice versa.

Proof. Let R be a domain for which KD(p, q) = T%KG(p, q) > 0. Let D(t) be
a domain defined by KD(P, q) > t if KD(p, q) is singular minimal or KD(p, q) > M
(1—1/0 if KD(P, q) is bounded minimal and sup/)/!Cz)(/>, #) — M. Then we have

T^Kβ(p9 q) = TSmTgK0(p, q) = T§mKD(p, q)

(KD(p, q) — t, if .&? is singular,

\KD(p,q)-M(l-llt\ if /& is bounded and M=supDKD(p, q)<0.

Thus {Z)(OJ is a defining sequence of q. Further D(f)^γ = ψ. since KD(P, #)=0 on
7-. This is the desired conclusion.

Inversely if there exists a defining sequence (D(t)} of <? for which γ^D(t) = φ
for any t >ί0, then there is a domain 7? for which R^γ = φ and R^γ = 7- and G D

for ί > f0 Then

0 < TG

D(t}KG(p, q) = Ί%(t,TgKG(p, q\

which shows that T%KG(p, q) > 0. This is the desired result.

THEOREM 25. If R is a domain such that Δλ J = n and dR are two non-
tangential paths ending at q, then any non-compact curve lying in R is also a non-
tangential path to q.

Proof. If there is a non-compact curve γ lying in R and being tangential to
q, then there is an R1 for which T^KG(p, q) > 0. Then R1 contains a part of dR
and does not contain another part of dR. Thus Rz = R^R is a domain for which
T%,KG(P, q) > 0. This shows that a part of dR is not a non-tangential path to q,
which is untenable.

THEOREM 26. Let q be any point in Jf, then any level lines of the corresponding
minimal ending at q is a tangential path to q.

Proof. Let uq be the corresponding minimal to q and uq = a be the level lines
ending at q. Then the domain D = {uq > β > a] is a member of a definding
sequence of the q, since T§βuq — uq — β and Dβn {uq = a] = φ.

THEOREM 27. Any non-tangential path γ in G ending at a minimal point q
intersects with all the level curves of the corresponding minimal function Ko(p, q)
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Further this implies lim Ka(p, (f) = sup^ Ko(p, q).

Proof. If not so, then there is a positive member δ such that the domain Dδ

satisfying K(p, q) > δ and the curve γ have no common point. Then T%δKo(p, q)
= KG(P, q) — δ > 0. This shows that γ is a tangential path to q.

In this theorem we say that γ intersects with all the level curves if it
intersects with all the level curves {KG(p, q) — a] for supG Ko(p, q)> a> aQ.

By the same reasoning we can say that any non-tangential path γ to q inter-
sects with all the level curves of T%Ko(p, q) if it is positive and

ϊϊm TξKG(p, q) = sup TξKG(p9 q).
r D

If for a suitable continuous function ε(f) with lim ε(t) = 0 two curves γ1 — γλ(t)
£->oo

and γz = γz(t) satisfy d^γ^t), 7*2(0) < ε(0> then we say that two curves are ε(/)-near.
This depends on the parameter t, however it is a matter of sufficiently large t^t0.

THEOREM 28. If γ is a tangential path to q€ Jf, then there is a curve γf which
is ε(f)-near to γ and defines q and is also tangential to q.

Proof. By the assumption there is a domain D for which Ko(p, q)=T$Ka(p, q)
> 0 and whose boundary 3D contains γ as a part. Then any level curve
= (KD(p, q} = a] does not intersect with γ. Further /„ lies in D and is a tangential
path to q. Then between la and γ there is a curve γ' having desired properties.

THEOREM 29. If a defining tail γ of <?€ Δ? intersects with all levels la of any
TξKκ(p,q) with height α(> αr0)> then γ is a non-tangential path to q.

THEOREM 30. If γ is a non-tangential path to qsΔ?, then any curve lying ε
(^-neighborhood of γ with sufficiently small ε(t) is also a non-tangential path to q.

Proof. If in any sufficiently small ε(f) -neighborhood of γ there is a tangential
path f to q, then γ is also tangential to q by the above theorem.

A method choosing a suitable ε(t) -neighborhood is determined in the following
section.

§ 7. Modification theorems.

THEOREM 31. Let R be an open set in G with two-sidedness condition. Then
there are two open sets R' and R" with two-sidedness condition satisfying the follow-
ing conditions :
( i ) R'^RiiR" and dR'^dR = φ, dR"^dR = φ with the exception of any boundary
point belonging to dR^dG if it exists,
(ii) J l fg = 4,g, = 4,g,,, 4,g_5 = 4,8-^= 4,g-*", and
(iii) A?(R) = Δ?(R') = Δ°(R»)9 Δ?(G ~ R) = Δ? (G - R') - Δ?(G - R"\
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In order to prove this theorem it should be noted the following trivial facts :
If D is different from R only in a compact part, then the conclusions of our

theorem are evidently true with the exception of the condition (ί).
If a sequence of open sets D tends to R and each member D is different from

R in a fixed compact part, then any member of PH(D) tends to a member of
PH(R).

Proof of theorem 31. It is sufficient to prove our theorem for any normalized
family in each connected component of R. Such a family is denoted by Q(R).
Let R1 be an open set contained in R and defined by the following conditions:
The boundary dRl consists of three parts. The_first one coincides with dR and

lies in W— W^ The second one is a collection
of curves every of which joins two points on
dW and lies in R^^W ^ and lies in a small neigh-
borhood of dR. The last one is a collection of
two curves which are two parts joining the
points 3W1^R and the end points of the second
one along 3WΓ In this case we can construct

RJ so near to dR^W, that

sup
u ς Q(R) p

max u(p) ^ ε.

Then we have

0 ̂  u(p) - T^u(P) ^ £

in R!. Next we construct an open subset R2 of
R1 by a similar process which is done in
(Wz—WJ^Ri In tms Process we can construct
R2 so near to Rl that

in R2. We continue this construction process ad
infinitum, then we have at the n th step

0 rg

By the method of construction of {Rn}> Rn
decreases monotonically and hence tends to some

Fig. 12 set Xs *r φ. Further we can say that

V=0 -"

in X. c Rn. Tξnu(p) then decreases monotonically and hence there exists a limit

function
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lim Γ£X/>),
n— >oo

which is also harmonic in Xε being positive or not. Since Rn ^ Xε, there holds an
inequality

lim T*nu(p) ^ T$εu(p)
n—χχ>

in Xε. On the other hand it is evident that Tξn u^u in Rn and especially on
dWn^Rn = dWn^Xt. Further T§nu - 0 on 3Rn^Wn = 3X^Wn. Therefore there
holds an inequality un ̂  Tξnu in Rn^Wn, where un is a positive harmonic function
in Rnr^Wn defined by the boundary condition un=u on dWns-\Rn=dWnr^Xe,=Q on
9RΏ^Wn = dX^Wn. This shows that in Xε

Tξεu ^ lim T$nu,
n-»α>

since Tξεu = lim un there. Thus we have
n— »oo

u — 2ε ̂  lim Tjfww = Tf s^ ̂  ̂

in J^£, whence follows that T$εu € P/ί(Ze) for any u € P#(#). If V belongs to
PH(G) for which TgV > 0, then by the above fact Γ£ F-Γ|βTgF>0. If T|βF>0
f o r a VePH(G), then 0<T|£F=TiTgF implies TgF>0. This shows that Δ?(Xt)

Next we shall construct another set Ye contained in R in the following manner.
Let R1 be an open set having the same structure as R1 for which we impose the
following conditions : for any v € Q(R)

sup max SglfΓg.^) ^ ε.
rg_^>o p€

Then we have for any v

in G— R. Next we construct an open set R2 having the same structure as R2 for
which we have

A <; ςG-RtςG-RiTG _7. QG-RI^ΓG .„ < _L
U = ^G-R^G-R 2 G-RV — SG-R 1 G-Rυ = 2

in G — R. We continue this process ad infinitum, then Rn decreases and hence
G — Rn increases monotonically and tends to a set Yt. Further

increases monotonically and satisfies

0 ^ Sgli«Γg-* f; - Tg_Λ- 1; ̂  β < 2ε
v=o ^
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in G—R. Thus there exists a limit function

for any v with T%-$v > 0 and there holds

0 < Tg_* 0 ̂  lim SglΓΓg-* u ^ Γg_#; + 2ε.
tt~»oo

Evidently we have

OG-X*TG 7, > lim QG-RnTG -7)
^G-J? Λ G-J?^ = lim ^G~R * G-RV

?i— »oo

in G — R. On the other hand there holds

sg:frg_^^τg_^

on dWn^(G — R) and hence

in Wn^(G — Rn), where ww is a positive harmonic function in Wn^(G — /v?w) defined
by the boundary condition: un = Tg_^y on 5WW/^(G — R), = 0 on any other
boundary of W»^(£ -— Rn). Since ^w tends to a function

in G — Fβ, we have

1im ^G-Rnj^G _,. > cα-Γe'rα _,,,urn OQ,,̂  ^ Gf_Λz; ^ ^Gf-ί? -* G-RV

n-+<χ>

in G - Ϋ, for any ι» with T^sυ > 0. Therefore there holds

Γg-jf » + 2ε s lim Sglf Tg_ί » = S«:f' Γg-jfi; § Tg^ v > 0
W-»oo

in G—R. Thus we can say that

In ^-^^Fε we can write a collection of curves dR" such that X9^Yec:R"c:R
and dR"^dR = φ and #" satisfies the two-sidedness condition. For this open set
R" we have

and JpCG-^77) = J?(G-^) .

We further modify the above R" as follows : For any point p on dR there exists
a 5(w) neighborhood N(p\ that is, the set satisfying dβ(p, q) < 5(w), where δ(n)
satisfies

3(Λ) ̂  dG((Wn- Wn-J^G, ΔG)jn .

Let Zt be a set {MΛJ, P^R- In (^- 8̂̂ Fε)^Z5 we can write a collection of
curves dR" as before. By its construction we have further for this R"
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J l fg» = 4.2 and 4.g-*» = 4.g-j? .

Similarly we can construct an open set R'(DR) with the two-sidedness condition
satisfying the desired facts.

In a way we can prove the following another modification theorem.

THEOREM 32. Let R be an open set in G with two-sidedness condition. Then
there is an open set R' in G with two-sidedness condition satisfying the following
conditions :

(i) R'nR and dR'^dR=φ with the exception of any boundary point belonging
to dR^dG if it exists, and

(ii) J* = Jf'(Λ).

JProof. Let R± be an open set containing R for which Rιr^(W—Wl) = R^(W
— Wi). We impose the following condition to R! :

sup sup Sg1 u(p) ^ ε .

The method of construction of Rl is quite similar as in the former theorem. Then
we have

in R for any u$Q(R). Similarly we construct an open set Rz(ι^R^ such that
R^W^R^W, and R^(W-WJ=R^(W-WJ and

for any ueQ(R) in Rίt We continue this process ad infinitum, then {Rn} is an
increasing sequence and hence ^ε=lim Rn exists. Further we have

in R and S%nu increases monotonically in R. Thus lim Sξnu exists and satisfies
n— »o°

an inequality

S$ u ̂  lim S%n u

in R for any u£Q(R). On the other hand we have

S%n u ̂  un

in Rn^Wn, where un is a positive harmonic function in Rn^Wn with boundary
value un = u on 9TFn^/?n=3Wn^^=0 on a^^Wn^^s^Wr,. This implies that

S$ u ̂  lim S%n u
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in R, since lim un = 5|e u. Therefore we have u ̂  S%ε u = lim S%n u^u + 2ε

in J? for any usQ(R). This shows that ΔR can be imbedded into Jfs by Sie. We
can construct a collection of curves lying in XS—R. Then an open set Rf bounded
by this collection of curves is the desired one. Since we have SR Jf c Jf, Sjf' Jf
=Δ?'(R), which is the desired result.

Chapter II. Extensions and other linear mappings in PH(G).

In this chapter we shall extend our linear mappings in PH(G) in order to be
able to apply them to a more general set R in G and further we shall define several
other linear mappings in PH(G) making use of our earlier mappings in order to
reveal several other features of the given sets. In this chapter, save when the
contrary is explicitely mentioned, we do not assume that any given sets satisfy the
two-sidedness condition. We have already explained that in our general case we
cannot say an inequality μ*% ̂  μ% . Therefore many situations become very com-
plicated and troublesome. Thus we start from a new view-point and redefine several
operators in such a manner that they have various geometric or potential-theoretic
meanings.

§ 1. Linear mappings in a general sets. Let G be a subdomain of W satisfying
the two-sidedness condition. Let R be a subset of G whose connected components
cluster at the ideal boundary of G. Let U be any open set with two-sidedness
condition containing R and V be any open set with two-sidedness condition contained
in R. Then we define outer operators and inner operators in the following manner :

Ag = inf Jg, Λ*% = inf λ*%, M*g = inf μ*g, MG

R - inf μ%

and

Λ% = SUp Ig, A*g = SUP Λ*g, Af*g = SUp μ*$, MR = SUp μ$ .

Evidently we have their existence and the inequalities

ΛG

R ^ Λ*g i: ΛPg ̂  Mg
V I I V I I V I I V I I
ΛG > A G > M G > MG

ί±R = Λ*R = ML*R = Lϊi R

THEORE_M 33._ // R satisfies the two-sidedness condition and is open in G, then
there hold A\ - Λg = Jg, A*% - Λ*% = λ*g M*f = M*g = μ*g Mf = MG

R = μg .

Proof. Any open set U with two-sidedness condition containing R is a member
of open sets with two-sidedness condition containing R. Thus we have

A\ = inf Jg ̂  inf λ% = A%.
U^R U^R

Further R is_an open set with two-sidedness condition containing R. Therefore
there holds Jg = ~λ% . By the modification theorem we can construct an open set U
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with two-sidedness condition containing R for which Jltg = 4 J = JαJ and ΛJ-Λ

=4.σ-Λ=4tσ-i? This implies that Ig=Ig and Ig_0=Ig_5, and hence If ^ Ig and
M ^ μg . Thus we have the desired result :

Further evidently there holds Mf ^ μ% = M% , which implies the desired result :

In our case we have T^u=Tξu and hence μ^u^μ^gu for any u$PH(G).
Then we can construct an open set U with two-sidedness condition containing R
for which Δ?(R) = J?(t7) and Δ?(G-R) = ΔG(G-U). This implies that μ*% = μ*%
and /^*g_jB = μ*G-ϋ and hence

and

Thus we have the desired results :

THEOREM 34. If R satisfies the two-sidedness condition, then there hold A%

Proof. If R satisfies the two-sidedness condition, then the closure R and the
open kernel R of R satisfy the same condition. And we have

Ά\ ̂  Λg ^ΛG

R^ΛG

k = λl.

On the other hand there holds A\ = /if by the preceding theorem. Therefore

Λ°R = Λί = Λί = Λl.

The remaining equalities are quite similarly established and hence the inequalities
reduce to the trivial ones.

By this theorem it is reasonable to define the following notion : If Λ% = A% ,
Λ*g=Λ*& M*g=M*g and MG

R = £f g, then we say that R is almost two-sided in~G.
We shall here formulate two more general modification theorems.

THEOREM 35. Let R be a subset in G such that R = R in G. Then there is an
open set Rf with two-sidedness condition in G which satisfies the following conditions :

(1) R'ι>R and dR'^dR=ψ excepting the points on dG^dR,

(2) 41 - 4.g = 4,g, 4.g-* = 4.g-j? = ^GC-R and

(3) Δ?(R') = ΔG(R) = ΔG(R\ ΔG(G-R') = ΔG(G-R) = Δ?(G-R) .

THEOREM 36. Let R be a subset in G such that R=X, X=R in G. Then there
is an open set R" with two-sidedness condition in G which satisfies the following
conditions :
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(1) R"c:R and 3R"^dR = φ excepting the points on

(2)

(3)

In order to do the proof of these it should be here remarked that a fact ~R—R
in G is equivalent to a fact that there is no inner slit boundary of R, that is, the
part of dR which does not contain any accumulation point of the set (G—R)° and
a fact R = X, X — R in G is equivalent to a fact that there is no outer slit part of
dR, that is, the part of dR which contains no accumulation point of the set R.
Thus we can proceed to the proof in a quite similar manner as in the earlier
modification theorem.

In the sequel we always denote XR and YR as the open kernel of the closure
of R and the closure of the open kernel of R, respectively. Now we define the
first open kernel operators as follows:

Λ% = A\, 4*%=Λ*% M*g = M*g, Mg = £ .

Further we define the second open kernel operators as follows :

fa = Ai Λ*g = Λ*$Λ, M*g = M*°R, Mg = MξΛ .

Then we have evidently the following inequalities :

Λ% ̂  Λ*% ^ M*g ̂  Mg
V I I V I I V I I V I I

fa ^ °̂*g ^ M*g ̂  Mg

THEOREM 37. // XR = R, then the first open kernel operators and the second
open kernel operators and the inner operators coincide with each others, respectively,
that is, ΛG

R = ΛG

R = Λg, A*g = Λ*% = Λ*%, M*g = M*g = M^g, Mg = Ml - Mg .

o

Proof. As is already remarked, the condition XR = R is equivalent to a fact
that there is no inner slit boundary of R. Further R is an open set with no outer
slit boundary. Therefore any open set contained in R is always contained in the
closure of R in this case. Then we have

Mβ

XR = Mf .

Now we can apply the modification theorem 35 to R and XR and then we have the
following fact: there is an open set U~^R with two-sidedness condition in G for
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which J l fg = 4.g, 4.g-0 = 4,g-r«, *?(U) = Δ?(R), Δ?(G-U) = Δ?(G-YR} and d£/
^d^ = φ excepting the points on dG^dR. Since 3XR = dR, we can say that RaXR

c U. Thus we_have J1§g = Δ^-R = Jlpg, Jf (J7) = Δ?(XR) = J?(fl), J?(G- 0) = J?(G

- YΛ) = Δ?(G-XR\ 4,g_ff = Ji.g-r* = A.g-ifi, Therefore we have

These lead to the desired results.

THEOREM 38. If R = XR, then Λg = A°R = Λ% = ΛG

R ^ Λg = AG

k , >g=^*g=y4*g

= ¥*% = M*% = M4 > M% = Mg = Ml = Mg

As is already remarked, the condition R = XR is equivalent to a fact
that there is no outer slit boundary part. Thus XR and hence R are sets with no
outer and inner slit boundary part. Therefore any open set with two-sidedness
condition containing R contains XR^R^>XR. Thus we have

^ Mg ̂  MG

X

-

On the other hand dXR = dR = dXR = dR. By the modification theorem we can
construct an open set UaXn for which dU^dXR = φ in G and Λ.t/ = ΛiJ^, ^i.β-o
= Λ,g-jrΛ, Δ?(U) = Δ?(XR)9 Δ?(G-U) = Δ?(G-XR). Further U satisfies the two-
sidedness condition. Thus we have the first half of the desired equalities. Further
YR coincides with R. Then any open set containing YR(R) and satisfying two-
sidedness condition in G contains R(XR). We can construct^ such an open set U
with two-sidedness condition in G that U contains YR and R and 3U^dR=φ and

4.g=_4,?*, A,g-& = 4,g-Fn, 4flr(C/)=Λσ(FΛ), Λσ(G-t7) = J?(G-rΛ). This implies
C/2 /? = XR^>R^>XR and hence we have the second half of the equalities. The last
equalities are also obtained by the modification theorem similarly.

THEOREM 39. Let R be a general set in G, then

Proof. Let q be a point of 4J, then there exists a point-sequence {qn} such

that ^e^, JG(^Π, <?)-*0 (»—»oo). For each « there exists a point #w '€# for which
dcKqn'9 Qn) < εw and εw->0 («-»oo). Then by the triangular inequality

This shows that
we have

l

G

J for any with two-sidedness condition. Therefore
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This implies the following inequality :

It is evident that Λ% ̂  ΛG

R . On the other hand we can construct an open set U

with two-sidedness condition containing R such that JXJ = J l tg and dίf^dR — φ in

G. This implies that J| = ~λ% ̂  yίg. This shows that Jg = J|. In a way we have

n J1§g - 4 J .
C/^Λ

The set J?— ̂  consists of a set of outer slits of R and a part of dR. Since any
component of outer slits has no inner point, any open set U contained in R has not
its component in that component of outer slits. Therefore any open set V containing
R contains any open set U contained in R. This implies that

Further we can conclude by the modification theorem applied to R that Λ%=Λ<j!. In

a way we have

where U runs through all the open set contained in R.

THEOREM 40. M*g = M*g - Λf*f ^ M *g ̂  M*g = M*£ .

Proof. The set R—XR, XR — R, consists of a number of outer slits lying in G.
Let γ be the part of outer slits of R. For XR we can apply the modification
theorem and we can say that there exists a suitable open set U with two-sidedness
condition containing XR for which Δ?(XR) = Δ?(U) and dXR^dU= φ in G. Let γu
be a part of γ not lying" in £7. For any u€PH(G) we construct a positive harmonic
function ww in Wn^\(U + ru) with boundary value u on dT$V^(t/+r) and 0 on
dU^Wn + rσ^Wn. There is no such function if γu exists. So we conventionally
say un positive harmonic. Then un tends to a positive function T$+ruu or zero
function which is harmonic in XR and vanishes identically on γu. This limit func-
tion coincides with T%u in XR. This implies that γ (or γu) has no effect for any
T mappings. Thus we have Δ?(R) = Δ?(XR) - Δ?(XR)=Δ?(U). Therefore we can
say that

Similarly we can say that there exists an open set U' with two-sidedness condition
containing R for which Δ?(U') = Δ?(R) and U' — U has no effect for any T mapping.
This is done by a slightly modified method of proof of the modification theorem.
Then we have

Any open set containing R contains any open set contained in R. Thus we have
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M *g ̂  M*g. Any open set contained in R is contained in R. Thus we have M*f

iM*g. Since R^R, we have M*£ ̂  M*g. Thus we have M*£=M*g. The
remaining inequality is evidently valid by the definition. In a way we have

Π Δ?(U) = Δ?(R) = Δ?(XR) and U Λ?(U) = Δ?(R) .

By the above analysis we have

Π (Δ? - Δ?(G - 17)) = Δ? - U Δ?(G - U) = Δ? - U J?( F) = Δ? - Δ?((G - Λ)°) ,
t/Dβ ^22 FcG-β

Π (Jf - J?(G - C/)) = Δ? - U J?(TO = 4σ - ^?((G - R)°) - J? - J?(G - R) .
U^R V^G-R

On the other hand we have (G—R)° =Rccbc=Rbc=G—R, where c and b are symbols
showing G-R=R° and £=#δ. Therefore we have Δ?(G-R)=Δ?((G-R)°). This
shows that

*ί = 7 - Λf *&-»• = 7 - M»P ,̂.

Further we see that Rbΰ c R»e* implies /?6c c &»*»*'. Further Rb z> R implies
ζ-^δcδcδCQ Rcbcbc^Rbc^ sjnce Rct>c=R°c:R. Therefore we can say that R**=

that is, G-R = (G-R) = ̂ _^. This shows that

- Π (Δ? - Δ?(G - U)) ,
V^XG-R U^XR

whence follows that >g=Λ*£Λ=/i*σ. since there hold

*g = ̂ *σ= inf ^*g = j _ sup ̂ *g_ _ = jr _ sup ^
u=>& U^R VCG-&

= /-Aί»g-4 = /-Λf«g=35>

= sup χi*g = / - inf μ*%-0 = / - inf /ι*(g_m.

and

we have

Evidently we have

THEOREM 41. Λ*% = /l*g = .ί*g ̂  ̂ *g ̂  /

Similarly we have the following theorem.
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THEOREM 42. Mg = MG

R ^ Mg ^ Mg^

The above four theorems clarify the situations of the former preparatory
theorems.

§2. The geometric, topological and potential-theoretic meanings. By two
theorems 37 and 38 it_is reasonable to define that R is almost equal to XR in G or
R is almost equal to XR in G according as all the open kernel operators coincide
with the inner operators or with the outer operators, respectively. Then we have
the following fact : If R is almost equal to XR in G and simultaneously R is almost
equal to XR in G, then R is almost two-sided in G.

All the operators introduced above have their own geometric, topological or
potential-theoretic meanings.

THEOREM 43. If XR = φ, that is, R has no inner point, then all the inner
operators vanish identically and further M*g = 0. If R = φ, that is, R has no inner
point, then all the inner operators vanish identically.

Proof. The assertions for all inner operators are evident by their definitions.
Since T? = 0, we can say that Tg = 0 for a suitable open set with two-sidedness

condition containing R by the modification theorem. This implies that 0 = μ*%
= 0.

THEOREM 44. If R is dispersive in G, that is, any connected component of R is
compact, then M*% = 0. If R is dispersive in G, then Λf*g = 0. If XR is dispersive

in G, then Λf*g = 0.

Proof. If R is dispersive in G, then any open set U with two-sidedness condi-
tion contained in R is also dispersive in G. Then Tg = 0 and hence ^*g = 0. If
R is dispersive in G, then there is an open set U with two-sidedness condition
containing R which is also dispersive in G. Then T% = 0 and hence μ*% = 0.
Similarly we have the last assertion.

THEOREM 45. // R clusters irregularly at Δ?, then Λ*G- = 0. If R clusters ir-

regularly at Δ? , then Λ#% = 0. If R irregularly clusters at Δ?, then Λ*g = 0. If XR

irregularly clusters at Δ?, then A*% = 0.

Proof. By the irregularity of R we have Γg_£# g >0 for some qsΔf and the
corresponding minimal uq. Then by the modification theorem we have ΓgL^ uq > 0
for some open set U with two-sidedness condition containing R. This implies that
μ*%-ϋUq = uq and hence λ*$uq = 0. By the definition of Λ*Q we have Λ*G- = 0.

If R can cluster only at ΔG — Δ?, then we say R a non-effective set in G.

THEOREM 46. // R(XR or R) is non-effective in G, then Λg(Λg or Λ%) vanishes
identically and vice versa.

Further these results can be localized around a neighborhood of a single point
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qz Δ®. Let Ns be a set defined by the condition da(p, q) < ε, pzG. If we replace
R by Nε^R we arrive at the similar localized results.

We can introduce several other notions concerning the geometric or potential-
theoretic situations and further many other P-niceness of R in G and many other
P-equivalency of R1 and R2 in G. We shall postpone the discussions and applica-
tions of almost all their parts.

Let γ be a curve tending to the ideal boundary of G. Let /Γf and A*f be two
operators defined by

A? = inf Λ% and A*? = inf λ*g ,
R R

respectively, where R is an arbitrary open set containing γ and satisfying the two-
sidedness condition and the infimum is taken over all such domains.

If γ is a tangential path to a minimal point qeΔ?, then Λ"f = and /Ff ^ 0.
This is shown by the modification theorem and the definition of tangential path.

THEOREM 47. // A*? = 0 and A® Φ 0, then γ is tangential to any point in Δlt

G

r.

Proof. By the modification theorem we can construct an open set U with two-
sidedness condition for which Δ?(U) = Δ?(γ) = ψ, Δ?(G - U) = Δ?(G - γ\ 4,g = 4.*
and 4,Gr-ί/ = 4,G-r Then by the assumption A*<? = 0 we can say that Δ?(G—U)
= Δ?(G~γ) = Δ?. If q belongs to 4,*, then T%-GK0(p, q)>Q. Thus γ is tan-
gential to q.

It should be here noted that γ is tangential to two minimal points simultaneously
and hence it is not a tangential path, that is, γ does not determine a minimal point.

THEOREM 48. There is no curve being tangential and approaching to any
neighboring minimal point around a minimal point q if such a minimal point
always exists in any neighborhood of q.

Proof. If γ is tangential to a minimal point q and to any minimal point p,
pφ q, lying in N*(q) : {<?€ Jf, dG(p, q) < ε}, then γ oscillates between p and q. Thus
T intersects almost all level curves Kβ(r, s) corresponding to a minimal points lying
between p and q. This shows that γ is not tangential to 5, which is a contradiction.

Chapter III. Linear mappings in PHB(G).

In this chapter we shall apply our results in Chapter I to the class PHB(G)
and then we shall obtain several sharpened results. In a general case T% mapping
is an into positively linear mapping from PH(G) to PH(R), however its restriction
to the class PHB(G) is an onto mapping from PHB(G) to PHB(R). Thus Sg map-
ping is an into univalent mapping from PHB(R) to PHB(G). This difference brings
us some essential effects to our results. Further in PHB(G) there is a sort of
canonical functions such as the harmonic measure.
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Evidently we have

and

μG

Ru(P) =

for any usPHB(G), when u(p) is represented canonically by

) dσu(q).

We shall make use of these notations λ and μ instead of Λ* and μ* through this
chapter and we do not discuss the - mappings in this chapter, though there are many
problems to be treated. Through this chapter we make use of a notation ωo as
the usally availed standard harmonic measure in G. This may be the constant 1,
if GGOHB.

§ 1. l?-niceness and ^-equivalency. We can classify the relative situation of R
in G in reference to the harmonic measure ωG as in the following figures.

Fig. 13 ω = λω = Fig. 14 ω = λω>μω°> 0

Fig. 15 Fig. 16 ω>tω>μω> 0

Fig. 17 ω>λω>μω~Q Fig. 18 ω>λω = μω= 0
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If λgu — μgu for any u€PHB(G), then we say R a B-nice subset in G. If this
holds for any GD#, then we say R an extremally B-nice subset.

If λg^u^λg^u and μ%lu = μ%,u for any u$PHB(G) and for given two subsets
Rl and P2 of G, then we say that Rl and #2 are B equiυalent in G. If this
equivalency holds for any GnR^R2, then we say that R1 and R2 are perfectly

B

B-equiυalent. We denote this ^x ~ P2. These notions of equivalency of two subsets
/?! and R2 are different from the following fact : PHB(R1) is equivalent to PHB(R2)
as linear spaces.

We should mention here two examples by figures. The first one shows that R
is a B-nice subset in G but it is not extremally B-nice. The second one shows
that R! ana R2 are ^-equivalent in G but they are not perfectly ^-equivalent.

Fig. 19 Fig. 20

XRU = μ% u for any u^PHB(G1) but there is a member u of PHB(G2) for which
λ%2 u > μ%* u, for example the harmonic measure ωG2.

λ%\u = λ%iu, μglu = μgiu for any u^PHB(G^ but there is an element u in
PHB(G2) such that λ%\ u > λ%\ u, μ%\ u = μ%l u, for example the harmonic measure

If R is P-nice in G, then R is 5-nice in G. However the inverse is not true
in general. This is shown by Fig. 14. Further we can see by an example which
is easy to construct that ^j and R2 are not P-equivalent in G even if they are B-
equivalent in G.

§2. Algebraic calculations. In this section we shall list several algebraic pro-
perties of two mappings λ and μ.

( 1 ) λgu + μ^-RU^u, Λgw^μg-jjM = G.H.M. min (λgu, μG

G-nU} = 0 for any u$PHB(G).

( 2 ) T%.jiλgu= T%-ϊiμgu = Q for any uεPHB(G).

( 3 ) μ%λgu = λgμgu = μgμgu = μg u and λgλgu = λgu for each uePHB(G).

(4) μ%-ϊμ%U = μ%-Sλ%u = λZμ%_su = λ%-Sμ%U=μ%λ%-Su = Q and λ^
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= λgu-μgu = XG-RU - μ^-au for each usPHB(G).

(5) Let G! and G2(^Gύ be two subregions of W containing R, then for each

u^PHB(G1) we have

TGG\ μGR SG

G\ u = μ%u and TG

G\ λ% SG

G\ u = λgu.

And for each υ€PHB(G2) we have

μ°RV = S&μg TG

G\v and λ$υ ^ SM T%\v .

Proof. TG

G\ μ% SG

Gl = TG

G\ S% Tf TG

G\ SG

G\

= T&SgiS&'T$ = S&*Tΐ = μ$.

sg: μg TG

G: = SG

GI s% rg τG

G\ = s% τ% = μ% .
By the definition of S%l we have S&u^u in Gl and hence λg* S%l u^λgu in Gλ.
This implies that T&tgS&u ^ λ$u in Gλ. On the other hand we can say the
following relations by the first equality and by the monotoneity of μ

^ TG

G\ SG

G\ U-TGG\ μG

G\--R SG

G\ U = TG

G\ λ% SG

G\ U

for any uzPHB(G). Thus we have the equality.
For any v€PHB(G2) we have v^TG

G\υ in Gί and hence λ%υ ^ λ% TG

G\v in G,.
Therefore we have λgv ^ S&λg TG

G\v in G2.

Evidently this (5) corresponds to (7) in Chap. I, §4. In that formulation the
second relation is an inequality in general, however in this (5) the second relation
is an equality. This difference occurs from a different point stated already at the
top of this chapter.

λGG\u = λfu, μgλ&u = μg* μG\u = μgzu and μg* u ̂  λg* μ&u ̂  λg* u for any

u€PHB(G2). If G! is B- nice in G2 or more strongly Gl is extremally 5-nice and
z, then

( 7 ) For any uePHB(G2) λG\ λ% u = λ% u, λG\ μ% u - μ%\ μgu = μ% u and λ%u^μG

G\λ% u

^ μg u. If G! is 5-nice in G2, then λ%u = μ&λftu and λ%\-frλ%u = 0.

(8) If G! is ^-nice in G2, then for any u^PHB(G2)

•jG**., _ Cί72 3Gι TG*
AR M — *^Gri ΛR *• Gi

Proof. By (5) we have for any uεPHB(G2)

1G* «ι > QGz CΊ TGt ~.ΛR U ̂  OGl ΛR 1 GlU .

On the other hand by (6) and (7) we have
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= Sg; Tg; Sg; Tg; u - Sg; Tg; tfk-t Sg; Tg; u

= Sg; Tg; u - Sg; Tg; μ&_s Sg; Tg; « .

Further since μ%\_&x^ μf.-^x for any xePHB(Gί), we have

Sg; Tg; «g:_4 Sg; Tg w ̂  Sg; Tg; μβ

0\.R Sg; Tg w

-Sg ^g ̂ Tg w

by (5). Thus we have an inequality

λfu g Sg; Tfru - Sg;/*g;_* Tg;«

237

Therefore we can say that the desired result Λg3 u — S%l λg1 T%ι u holds lor any
ucPPIB(G2), if Gl is £-nice in G2.

It should be here remarked that in the in-
equality λ%*u ̂  Scl^R1 Tξlu in (5) there is an
example by which the equality sign must be
excluded if any other assumption such as in (8)
is not made of. In the following Fig. 21 we can
say that λ% u^q = Uj-q>Q and SG

Gl /g1 Tg w^ = 0 ,

where u^ is the harmonic measure ω(z, pq, G2) .
On the other hand λ^i ̂  μ%\, that is, Gl is not B-
nice in G2

( 9 ) Let Rλ and R2 be two open sets in G, then

j«ΛιJ"Λ. =j"Λ.^Λ = j"ΛιnΛ,

(10) Jg, ̂ g. - ^ga ̂  - ^gt + xg2 - Λ&υ*. -

Fig. 21

§ 3. Applications.

THEOREM 49. Let G be an extremally B-nice subregion. If R is B-nice in G,
then R ts also extremally B-nice.

Proof. Let Gl be any subregion of G and G! D R. By the assumption Λg = μ%
and by (5) we have

..GI «, — TG* ..G ς<7 7/ — 'TO IG ςα 7/ __ GI ,,, > t.Gι »,μR U — 1 Gl μR oGlu — ί Gl ΛR δGl u — ΛR U ̂  μR U ,

which shows that R is 5-nice in G^ By (8) we have 1G

G = μ% for any G7 z> G by
the extremal .β-niceness of G and

for any vePHB(G'). Therefore

λ% v = 8% λgTβa υ = μ% v ,

which shows that R is also 5-nice in G'. This and the first part of our proof
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imply that R is B-nice in any subregion of W containing R. Therefore R is ex-
tremally Eunice.

Any collection of ideal boundary components of W with compact relative
boundary is extremally B-nice. This is easy to prove.

THEOREM 50. Let G be an extremally B-nice subregion and Rl and R2 be B-
equivalent in G, then Rl and R2 are B-equivalent in any B-nice subregion Gl of W.

Proof. Since G is extremally B-nice, we have λ^ = μ%, and hence we can
apply (5) and (8). Therefore by the assumption λg, = Λg3 and μ^ = μ%, we have

and

Let G! be any B-nice subregion in W, then we can apply (5) and see that

Win — TW 1W ^W 1Λ — TW JίW ^W Ή — IG^1ΛΛRιU — J Gι λRι 3GlU — 1 Gl ΛRa OGlU — ARt U

and

μ& U = T^ μZ S%U = T* μ% Sg^μβ U .

Therefore Rλ and R2 are B-equivalent in any B-nice subregion Gλ containing R^RZ,
whence follows the desired result.

B

Evidently Rl — R2 if λg.ωo — λg^α = 0 for any G and this is the case if Λ}£ ωw

=λ%tωw = 0, where ωG and ωw are the harmonic measures in G and in W,
respectively.

Now we shall define the breadth of oscillation of dR in G by the function

Let γ be a curve tending to the ideal boundary of G or a collection of curves
or point-sets. Let R be any collection of domains being compact or non-compact
and containing γ. The oscillation measure OMG(γ} of γ in G is defined by inf R(λg
—μ$)ωβ.

We say that an element u in PHB(G) is a generalized harmonic measure if
u^(ωG— u) = 0. Then two mappings λ and μ preserve the generalized harmonic
measure. Thus the breadth of oscillation of dR in G (λg — μ%)ωG = λg λ(

G_aωG is a
generalized harmonic measure.

THEOREM 51. // GiCG2, then OMGl(r)^OMG2(τ) If γ be a collection of curves
tending to the ideal boundary of G, then OMo(γ) =

Proof. Let R be an open set containing γ for which

OMG2(r) + 2

By (5) we have
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^ OMGl(γ) .

This implies

Since ε is arbitrary, we have the first desired result.
In order to prove the second half of this theorem we need a modified modifica-

tion theorem stated in Chap. I, §7. By the modification theorem we can select R
so near to γ that a relation

(λg - μg)ωG(p) = 0

holds at any ideal boundary point which cannot be approached by any point-sequence
on γ. Since γ is a collection of curves, TgωG — 0 for these R. Thus we can select
R so that μgωG = 0. This implies that OMG(γ) = miRλgωG.

If γ is of zero oscillation measure OMG(γ) in G, then we say γ a non-oscillatory
set in G. If γ is non-oscillatory in any G, then we say γ an absolutely non-oscillatory
set.

THEOREM 52. If G is an extremally B-nice subregion and if γ is non-oscillatory
in G, then γ is absolutely non-oscillatory.

Proof. Since G is extremally £-nice, we have λ^ = μ%. Hence we can apply
(5) and (8). Then we can select an open set R containing γ such that for any ε>0

0 ̂  λgωG — μgωG < ε

holds in G. Since we have

= S%/g ΓgW and μ%ωw - S%μ

and further TgW = Q>G, we can say that

0 ̂  λ%ωw - μ%ωw =S^(

in W by the maximum principle. This implies that γ is non-oscilatory in W. Let
G! be any subregion of W containing R, then

o ̂  θMβί(r) ^ OMw(r) ^ ε
by theorem 51. Therefore γ is absolutely non-oscillatory. Of course ωw=l by the
definition of PHB(W) in the above proof.

THEOREM 53. A necessary and sufficient condition for a set R in G to be B
-nice in G is that OMG(R) = 0 or equivalently (λg — μg)ωG = 0.

Proof. We can construct a set R' so near to R(R'uR) that (λg, - μg>)ωG = (λg
— μg)ωG. This is a simple consequence of the modification theorem. Since ωG
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zPHB(G), the β-niceness of R in G implies (λg — μg)ωG = 0. Thus we can say that

0 ̂  OMG(R) = inf (λg,, - μg^ωo ̂  (λg, - μg}ωG = 0 .

This implies the necessity part of the theorem.
If u ̂  v in G and u, vzPHB(G\ then (λg - μg)u ^ (λg -

this is a simple consequence of the positivity of λg — μg or
€PHB(G) there holds u ^ Mωff for some positive number M.
we have

0 g (Jg -

μg)υ in G. In fact
g_^ λg. For any u
By the assumption

whence follows the niceness of R in G. Again we can construct a set Rf so near
that (λg.-μg.)ωQ=(λg-μg)ωQ. Further we can assume that OMG(R}+ε>(λg— μg,)ωG

for any positive number ε. By the assumption OMG(R) = 0 we can say that (λg
— μg)u>G = 0, since ε is arbitrary. This is the desired sufficiency part of the theorem.

Let Rl and R2 be two open subsets in G. If R1^~^R2=φ and λgίu+λgiu=λgί+RΛu
for any u€PHB(G), then we say Rl and R2 relatively disjoint in G. If this is the
case for any #-nice subregion G containing Rλ and R2, then we say Rλ and R2

perfectly disjoint.
I(Rlt R2\ GϊωG^λg^λgt—λg^R^ωQ is called^ ideal intersection measure of R±

and R2 in G. It is the restriction of the first ideal intersection operator I^R^ R2 G)
to ωG. By (10) we see that

Thus this is also a generalized harmonic measure.
For any open sets R! and R2 in G we have

Λ«ιW + λg^u ^ ̂ g l U Λ lw and

Rιs~\R^Φ implies
it does not imply λgj4+λgtu =
Fig. 22 shows.

2u= μgί+Rίu, however

I+ΛΪM in general as

Fig. 22

THEOREM 54. //" R1 and R2 are relatively dis-
joint for an extremally B-nice subregion G, then Rl

and R2 are perfectly disjoint.

Proof. Since G is extremally £-nice, λ^ = μ^
holds and hence (8) is applicable. For any u^PHB(W)

+ λ™u = S% λg, T

For any 5-nice subregion Gl in W we can again apply (5) similarly and we have
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the desired result.

THEOREM 55. If the ideal intersection measure I(R^ R2 G)ωG of two disjoint
open subsets R1 and R2 in G is equal to zero, then Rλ and R2 are relatively disjoint
in G.

Proof. If u^v in G and «, vsPHB(G), then I(R19 R2\ G)u^I(Rly R2; G)v.
Now we can put u ̂  MωG and apply I(Rlt R2 ,' G)ωG = 0, then we have the relative
disjointness of Rλ and R2 in G.

THEOREM 56. The ideal intersection measure I(Rlf R2 G)ωG is monotone in-
creasing with an increasing sequence of subregions.

Proof. If dc G2, then

I(Rly R2 G2)ωG2 = λ& λ&ωot ^ Sg? *£ TG

G\ SG

G\ λ& TG

G\ωG2

R2

THEOREM 57. Let Rl and R2 be two open subsets in G. Then there holds an
inequality

μR, U + μg U ̂  μg^Rt U + μg^R3 U

for any u$PHB(G). Further this implies an inequality

J&~*. u + ;glΛΛi u^λ&u + λ&u.

THEOREM 58. If Rl and R2 are B-nice in G, then Rι^R2 and R^R2 are B-
nice in G. Especially the extremal B-niceness of R± and R2 implies that of R1^^R2

and R^R2. Further if G is extremally B-nice and if Rl and R2 are B-nice in G,
then RIΓ^R2 and R^R2 are also extremally B-nice

THEOREM 59. If G is an extremally B-nice subregion and if ^R^Rί(ύG = 0 or
== 0, then for any GlnR1/^R2 ^l^Rt(oGl = 0 or βR\^RίωG^ = ^ and for any

*%\^ιtu = 0 or μg^u = 0.

If in theorem 57 the equality signs hold in two inequalities, then we say that
R1 and R2 are situated B-regularly in G. This is the case if R1 and R2 are B-nice in
G and μ^u + μ%2u = μ^Rίu + μn^RtU. Indeed by theorem 58 all the members Rlt

RZ> R\^RZ ^nd R1^^R2 are B-nice in G and if R is B-nice in G, then G— R is also
B-nice in G, that is, λg = μg implies Λg_£ = ^g_^. however we can strengthen this
fact as in the following theorem.

THEOREM 60. If R1 and R2 are extremally B-nice, then R± and R2 are regu-
larly situated in any GiDR^R2 or if Rl and R2 are B-nice in G, then Rλ and R2

are regularly situated in G. Further there holds
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= βR^R*U + VR^RtU = μ&

for any usPHB(G).

THEOREM 61. If G is an extremally B-nice subregion and if Rl and R2 are
regularly situated in G, then Rl and R2 are regularly situated in any subregion Gl

of W.

Proof. We have Xg=v% by the 5-nicenss of G in W. Thus we can apply (8)
and (5). Therefore we have

rw 1/t — (ΎW i rw ΎW rw \1/fLRίR^ — \ARι ~ϊ~ ΛR3

 ΛRι^R* Λ i β J ^

and

LR^U

Again by (5) we have

T <?ι η. __ y W T W
^Λι,Λ«** ~ J Gi *Rι,R

and

Let M(Rly R2; G)u be (IR

G

>Rί-LR

G

Rί)u for any uePHB(G). Then M(Rlt Rz; G)u
€PHB(G). If G is a #-nice subregion in Glt then

M(Rlt R2; GJωa^SZ* M(R19 R^ G) TfrωGl^M(Rly R2', G)ωG.

If M(R19 R2', G)ωG = 0, then M(Rlt R2; G)u = 0 for any u$PHB(G) and vice versa.
If G is extremally £-nice and if M(Rlf R2', G)ωG = 0, then M(Rlt R2', G1)ωGl = 0 for
any subregion Gλ of W.

THEOREM 62. If Rλ and R2 are two open sets in G and R^aR^ then

λgu ^ λ&^u + λG

Rlu and μgu ̂  μ^Slu + μG

Rlu

for any usPHB(G).

Let Rλ and R2 be two open subsets in G. If Λ^— ̂  = λ^_^-R-u=^ for any
uePHB(G), then we say Ri and R2 truely B-equivalent in G. Evidently if ^^--—(Ocί

ι an(j RZ are truely ^-equivalent in G and vice versa.

THEOREM 63. // Rl and R2 are truely B-equivalent in G, then Rλ and Rz are
B-equivalent in G and are regularly situated in G.

Proof. By theorem 62 and by the assumption λ^g^—u = 0 we have
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for any uzPHB(G\ which implies
In a way we have
calculation

Thus we have

by theorem 57.
Similarly we have λ^u = λg^Rlu.

And further we have by a simple

0 =

for any usPHB(G). This shows that

for any uεPHB(G). Thus our proof is now complete.
Inverse statement of theorem 63 does not

remain true in general, which is shown by
the following figure. Indeed, 7?x and R2 are
J3-equivalent in G, however they are not
truely B equivalent in G.

THEOREM 64. If R1 and R2 are B-nice
and B-equivalent in G, then R± and R2 are
truely B-equivalent in G. If R± is B-nice in
G and if R1 and R2 are truely B-equivalent
in G, then R2 is B-nice in G.

Proof. To that end, we prove the fol-
lowing fact:

If A and B are disjoint open sets in G and μ^u—μ^u for any uePHB(G), then
μG

AU = 0.
If AsSOπB or BsSOHB, then μG

Au = S% TG

Au = 0 or μ%u = Sg TG

Bu = 0. If both
A and B do not belong to SO SB, we put u = μ^ωG. Then μ^μ^ωa = μ^aΦ^ and
0^//i Λί2ω«^^?_j/<2ft)Gί=0. This is a contradiction.

The remaining part of the proof is quite similar to theorem 21. Thus we omit
the remaining part of the proof.

THEOREM 65. If G is extremally B-nice and two open sets R1 and R2 are truely
B-equivalent in G, then these sets are truely B-equivalent in any

Fig. 23

By the proof of theorem 63 we can say that ^I-^R^M»U ~
^g.w=^g1-Λ>w and μRlu=μ%l^Miu, μG

ϊau=uG

ίl~R3u. Therefore we can say that R2 almost
contains R1 in G if λ^—gu = 0. This is equivalent to ^I-ΛI^Λ".^ == 0.

If R2 almost contains R! in G, then 7?α and R2 are regularly situated in G. If
then evidently ^2 almost contains R1 in any G^>R2. If ^2 almost contains
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Rl in an extremally B-nice subregion G, then R2 almost contains R! in any G

Let TΊ, 7-2 be two non-compact simple curves in G tending to the ideal boundary
of G and being oscillatory in G, that is, OMG(γl}>^ and OMG(r2)>0. We can define
two sides of a non-compact simple curve in G with respect to the defining para-
meter of the curve and the local parameter of the surface. Let R! and R2 be any

two subregions of G such that dR^γly dR2^>γ2 and R! and R2 be situated simult-
aneously on the same side of γl and γ2 respectively. If for any such R1 and R2

inf (&-SZK *G + ̂ .-ĝ  ω0) = 0 ,
Λl, Rz

then we say that γl and γ2 are near each other in G. If this is the case for any
TΊ 117*2, then we say that γλ and γ2 are absolutely near each other.

THEOREM 66. Let γ l f γ2 be two non-compact simple curves in G tending to the
ideal boundary of G and being oscillatory in G. Further we assume that two curves
are disjoint and are near each other in G. Then we cannot select two subregions
R! and R2 lying the same side of γl aud γ2 respectively and satisfying the disjoin-
tness Rϊ^R2 = φ and staisfying an inequality for any ε

Proof. If this is not the case, then we have

ΛΛI &G < ε and λ%t ωG< ε.

This is now rejected by the oscillatory properties of γl and γ2.
If 7*1 and r2 are near each other in an extremally .Z?-nice subregion G, then γl

and γ2 are absolutely near each other. If 7^ and γ2 are near each other in G, then
we have for any u$PHB(G)

Chapter IV. Determination of the coordinate.

We shall here introduce a method which determines the coordinates of Martin
minimal points of Δf in reference to a point or a set of Jp. To that end we shall
introduce several notions showing that a point rsΔξ lies over a point q^Δ? or
spreads over a set

DEFINITION 1. Let r be a point in Jf and let q be a point in Jf. Let Nι(q) be
a level domain defined by an inequality K&(p, q}>l and Mk(r) a level domain
defined by an inequality KR(p, r) > k. If for any given l(< supGKG(p, q)) there is
a positive number k0 for which Mk(r) c Nι(q) for any k^k0(k^ supΛ jfiT/z( A r)),
then we say that r lies over q.

Is there a point r€ Jf which does not lie over any point qs Jf, if G$OHP ?
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The answer is positive. Let G be the unit disc
and R be a set Nι(l) plus a set S lying in a set

{ \ z \ < 1}— Nι(l) and being tangential to \z\ = 1 at
only one point 1 from only one direction. There are
two points r and rf in Jf = ΔR. Let r be a point Tf 1,
that is, a point of Jf corresponding to 1 by Tg. Then
the remaining point rf does not lie over the point 1
by definition. However rf is attached to 1 in the fol-
lowing sense.

DEFINITION 2. Let r and q be the same as in defini-
Fig. 24

tion 1. Let Ue(q) be an ε-neighborhood of a point

defined by an inequality dβ(q, P)< e, pzG^Δ0 and U*(q)=Ue(q)^G, where
dβ(q, p) is the Martin distance in G. If for any given ε there is a positive number
&o for which Mk(r)c.Uε(q) for any k^ kQ, then we say that r is attached to q. If
further any level domain Mk(r) for & ̂  &0 lies outside of some level domain Nι(q),
then we say that r is attached tangentially to q.

It is not necessary that any point in ΔR being attached to q coincides with
some point being attached tangentially to q.

Is there a point r$ΔR which is not attached to any point ^eJ?, if G$oHp?
Even if the problem is changed as above, the answer is still positive. In his

recent lectures at Hiroshima M. Brelot gave the following example; see also [0].
Let G be a square defined by 0 < x < 1, 0 < y < 1. The line x=l is considered as
the ideal boundary of W : x < 1. Let R be a subregion of G with an infinite
number of slits as shown in the figure. If two holes are sufficiently narrow, then

lim KR(pι Zn) = lim KR(p, z'n)

remains true for any pzR. This shows that there is only one point r in ΔR. Let
KR(p, r) be the corresponding Martin minimal function. Then the level domain
Nk(r) is a domain as shown in the Fig. 26 for any k. Therefore for any qsΔ? Mk(r)

Fig. 25 Fig. 26



246 MITSURU OZAWA

does not hold. This implies that r is attached to no point in J?. However

r spreads over the closed segment q2qι in the following sense.

DEFINITION 3. Let r be a point in Jf . Let £ be a set in J? for which

Mk(r) c U

holds for any given ε with any k ̂  kQ(ε). If £V is the smallest closed set with the
above property, then we say that r spreads over Er.

If reJf corresponds to q$Δ? by Γg, then r lies over q.

Proof. By the assumption

TG

RKG(p, q)=K*(p, r)^KG(p, q)

in R. Let Λ^(<?) be any level domain, then KR(p, r) ̂  I in R — Nι(q). Thus the
level domain Mι(r) belongs to Nι(q). This is equivalent to the desired fact.

We have the following implications:

r corresponds to q by Tg. ^> r lies over q. ̂  r is attached to q. <=$> r spreads over q.

LEMMA I. If there is a positive number m such that Nm(q)c.R, then for any
k there is an /0 for which Mk(r)^Nι(q) for any /^ /0.

Proof. By the definition of Nm(q\

rgm(ς) Kβ(P, q) = Ko(p, q)-m>Q.

Therefore TgKG(p> q) > 0, since S%m(q}(KG(p, q) - m) ̂  KG(p, q). This shows that

T%KG(pt q) = KR(p, r) is a Martin minimal function in R, that is, there is a
minimal point rzΔ^ which corresponds to q by T%. Since Nm(q)<^R, there exists
a positive number M such that

sup KG(p, q) = M^m<oo.
dR

Since T^k^KR(pf r)=KR(p,r)-k by the definition,

, q)

, q)~u(p)-k,

where u(p) is defined by TgKG(p, q) = KG(p, q)— u(p) in R. This function u(p) is
also defined by the following limiting process

lim un(p) ,
n-^oo

where un(p) is a positive harmonic function in Wn^R with the boundary value 0
on dWn^R and Kβ(p, q) on 3R^Wn. un(P) increases with n and is bounded by M.
Thus u(p) ^ M in R. Therefore we have K0(p, q) ̂  KR(p. r) -f M in R and hence
KG(p,q)^k+M on dMk(r). Next we choose /„ as ^+M, then Nk+M(q)^Mic(r) and
hence Nι(q)aMk(r) for any /^ /0.



LINEAR MAPPINGS ON RIEMANN SURFACES 247

LEMMA 2. If r^Δ? lies over qzΔ® and rzΔ? corresponds to q by Tg, then rλ

coincides with r, unless there is a part of dR in any Nι(q) for I ̂  /0 .

Proof. By Lemma 1 for any k there is an /0 for which Mk(r)^Nι(q) for any
1^10. On the other hand we can choose k' for which Mk»(r^cιNι(q) for any
k'' ^ k'. If r! ̂  r, we can choose M*/^) such that Mk»(rJ^Mk(r) = φ for any
given k. This is untenable, since Mk"(r^aMk(r). Therefore rλ = r.

LEMMA 3. If r^df, r2eJf //# 0t>£r a point #€Jf, £/z£^ ^ =r2, unless there is a
part of dR in any Nι(q) for / ̂  /0

Proof. If there is no part of dR in some Nι(q) for / ̂  /0 , then there is a point
r of Jf which corresponds to q by Tj|. Then by Lemma 2 we have rl = r = r2

THEOREM 67. //" <zny ^0m/ r€ Jf always lies over some point q(f}zΔ¥ and if R
is most P-nice in G, then R is onto P-nice in G.

Proof. Let r be an arbitrary point of Λf, then r lies over a point <?(r)e Jf. By
theorem 2 q(r) is not accessible by two point-sequences one of which belongs to R
and another of which belongs to G—R. Hence q(r) is accessible by only a point-
sequence belonging to R. By this fact there is no part of dR in some neighborhood
U<(q(r)), that is, Uε(q(r))dR. Then we can say that Nι(q(r))dUε(q(r))c:R for a
suitable /. This implies that

is positive. Thus we have

Let rr be a corresponding minimal point in Λf by T|ί. Then by Lemma 3 r
coincides with this rf '. This shows that SgKR(p, r) = KG(p, q(r)). This is the
desired result.

THEOREM 68. If there is a point r of Jf which spreads over a set Er(c:Λ?)
containing at least two points, then R is neither onto nor most P-nice in G.

Proof. By theorem 2 we can say that Jf is imbedded in Δ? by Γg if R is onto
P-nice in G. Let q(r) be a point of Δ? such that r corresponds to q(r) by T|.
Then for any ε there is a set Mk(r) such that Mk(r)c.U*(q(r)). On the other hand
Mk(r) oscillates on the whole Er. Thus the diameter of Mk(r) is not less than that
of Er which is also not less than the diameter or distance of two preassigned
points in Er being positive by the assumption. This is absurd, since the diameter
of Mk(r) is less than that of U&(q(rJ) which is smaller than 2 ε and ε is any positive
number. If R is most P-nice in G, then by theorem 2 any point of Er is not
accessible by any point-sequence in G—R, since it is accessible by some point-
sequence in R. Then two different points rλ and r2 in Λ? are determined by two
preassigned points q1 and q2 in Er in such a manner that r, corresponds to qt by
Tg(ί=l, 2). On the other hand if two points of Jf are two clustering points of
any level curve Li denned by a minimal function KR(p, r), then two points coincide
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with r and hence with each other. This shows that rλ = r = r2, which is absurd.

LEMMA 4. If re Jf is attached to qsΔξ and U*(q)c.R for some e, then r cor-
responds to q by TίjL

Proof. If re ΔR lies over #eJ?, then the assertion is already established by
Lemma 2. If r does not lie over q but is attached to q, then we can choose a
level domain Mk(r) such that Mk(r)c:Us(q). If a part γs of any level line KR(p, r)
= s, s ̂  s0 is not tangential to q, then this part γs intersects any level curves Li :
KG(p, q) = I for / ̂  /0. On the other hand by Lemma 1 we can choose a leve'
domain Nm(q) in such a manner that Nm(q)dMk(r(q)) for any k, where r(q) is a
point of Λ? corresponding to q by Tg. This shows that any level curves Ln :
KR(P, r(q)) = n intersect γs for any n ̂  n0 and for any s ̂  50. On the other hand
if r Φ r(q), then we can choose that any level domain Mn(r(q)\ n i^ nQ and Ms(r)t

s i^ s0 are disjoint. This is untenable. Thus we have the desired result : r — r(q).

THEOREM 69. If any point rzΔ? is always attached to some point q£ Λf, and if
R is most P-nice in G, then R is onto P-nice in G.

Proof. A quite similar method is available as in theorem 67. In this case we
use Lemma 4 instead of Lemma 3.

Theorem 69 is a precision of theorem 67.
Next we shall prove a precision of Lemma 2.

THEOREM 70. // /eJf is attached to #ez/f but is not attached tangentially to
q and reJf corresponds to geJ?, then rf coincides with r.

Proof. Since / is not attached tangentially to q and is attached to q, there is
a level curve Lk : KR(p, /) = k, k ̂  k0 intersecting any level curves Λ : KG(p, q)—l
for / ̂  /0. Thus Lk is a non-tangential path to q, if we choose a suitable component
of L^ On the other hand any level line γι : KR(p, r) = I is a tangential path to q,
and hence any γι intersects Lk for any / ̂  lλ ^ /0 and for any & ̂  A?0. Therefore rr

must coincide with r.

Refering to the denning tail of a minimal point we can also define a sort of
coordinates of reJf over

DEFINITION 4. If any defining tail γ of qς Jp on which /£"<?(/>, ^) tends to its
^), then we say that γ is a principal defining tail.

DEFINITION 5. If any defining tail of re Jf is a defining tail of #e Jf, then we
say that r is attached to q by the defining tail.

DEFINITION 6. If r is attached to q by the defining tail and any principal
defining tail of reJf is a principal defining tail of <?ez/?, then we say that r lies
over q by the defining tail.

DEFINITION 7. If there exists a principal defining tail γ of rez/f satisfying
da(q, γ) = Q for any point q of Ec.Δξ, then we say that r spreads over E by the
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defining tail γ. Let Er be the largest set among E with the above property, then
we say that r spreads over Er by the defining tail.

We can prove the following theorems :

THEOREM 71. If reJf is attached to qzάξ by the defining tail, then r is
attached to q.

THEOREM 72. If rzΔ? lies over q€ Jp, then r lies over q by the defining tail
and vice versa.

THEOREM 73. If rzΔ? spreads over EdΔξ, then r spreads over E by the de-
fining tail and vice versa.

Proof of theorem 71. If any ^-neighborhood U^r) of r satisfies Uη(r)ctUε(q),
then there is a defining tail γ or r satisfying lim sup dG(p, q) > ε. However by

per

the assumption γ is also a defining tail of q in G, so lim dG(p, q) exists and is
#€?

equal to zero. This is absurd. Thus we can choose such an ^-neighborhood U^(r)
of r that f/,(r)cί7β(#). Then we can choose a positive number k0 such that Mk(r)
cC/,(r) for any k^k0, which implies the desired result: Mk(r)aUε(q), that is, r
is attached to q.

Proof of theorem 72. Let Nι(q) be any level domain and γ be any principal
defining tail of r, then γ is a defining tail of q. Since by the assumption there is
a positive number k0 such that Mk(r)dNι(q) for any k ̂  kϋ and γ(t)cMk(r) for any
ί^ ί0> we can say that γ(t)c.Nι(q) for any t^ tQ. This holds for any /. Therefore
γ is also a principal defining tail of q.

Inversely let Nι(q) be any level domain lying inside of U*(q). Let Mu(r) be any
level domain of r. If k is sufficiently near to sup# KR(p, r\ then any principal
defining tail is contained in Mk(r). If any k Mk(r) is not contained in Nι(q\ then
there is a principal tail γ of r which is not contained in Nι(q). Then liminf KG(p, q)

per
^ / < sups KG(p, q). This contradicts our assumption, that is, γ is also a principal
defining tail of q. Therefore there is a level domain Mk(r) contained in Nι(q),
which is the desired result.

Proof of theorem 73. Let r spread over Er being closed in Δξ. Any level
domain Mι(r) is connected in R and hence in G. Let [εn] be a sequence of positive
number tending to zero as n tends to co. Let ln be a corresponding positive
number for which Mi(r)c U K(<?) for any /^/ n . We may choose ln such that

q€Er

In < lm if n < m. Then Mιn(r) ig Mιm(r). Let ^ be a curve lying in Mιn(r) and

connecting two points pn and /)n+ι, pn£dMιn(r\ pn+ιGdMιn+ι(r) and satisfying <fc( />, ^)
< εn for any (?€£,. and for some p€γn. We introduce a parameter f, w ^ / ^ ^ + 1
such that the trace of γ(f) coincides with γn and γ(n) = pn and γ(n + 1) = pn+ι.
Connecting these curves [ γ n ] , we have a curve γ(t), 1 ̂  t < oo. For this curve we

have dR(γ(t), r)-+Q for /— >oo, since γ(t),n^t belongs to Mιn(r). Thus ^(0 is a
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principal defining tail of r satisfying lim dG(γ(t\q) = Q for any qsEr. This im-
έ-*x

plies that ET over which r spreads by the defining tail includes Er. Next we shall
prove Eτ = Er. If r€Jf spreads over Eτ by the defining tail, then there is a
principal defining tail γ of r for which dG(γ, q) = 0 for any q$ET. By the triangular
inequality dQ(γ, q) ̂  dG(γ, qn) + dG(qn, q) we can say that Eτ is closed in J?. If
Eτ=έEr, then there is a point q in Eτ—Er for which Uβ(q)^Mι(r) = φ for some
ε > 0 and for any / satisfying / ̂  70. On the other hand there is a principal tail 7-
of r for which γ^U*(q)Φφ and γ^Mι(r)φφ for any ε>0 and for any /^/ 0 . ?-
oscillates between Ut(q) and Mi(r). Thus there is a point-sequence {/>«(/)} €^? on
which KR(pn(ΐ)> r)<l and {/>«(/)} defines the r. Therefore γ is not a principal
defining tail of r. This is a contradiction. Thus we have the desired fact: Eτ=Er.

Some unsolved problems. We shall here list our unsolved problems.
1) In connection with theorem 1 we ask for whether λ*% (resp. μ*%) coincides

with λg (resp. μg) in PH(G) or not.
2) Is there a point reJf which spreads over some closed set E containing

non-minimal point of ΔG ?
It is very plausible to conjecture that the problem is affirmatively answered.
3) Does the most P-niceness of R in G imply the onto P-niceness of R in G?
4) Is there a continuous non-compact curve γ for which A? = 0, if G$OsP?
5) To construct a tangential path to an isolated minimal point in ΔG, when G

is Heins' end of Heins' harmonic dimension one or G has more general nature such
as G$OHP—OG.

REFERENCES

[0] BRELOT, M., Sur le principe des singularites positives et topologie de R. S. Martin.
Ann. Univ. Grenoble 23 (1948), 113-138.

[ 1 ] CONSTANTINESCU, C., AND A. CORNEA, Uber das Verhalten der analytischen Abbil-
dungen Riemannscher Flachen auf dem idealen Rand von Martin. Nagoya
Math. Journ. 17 (1960), 1-84.

[ 2 ] HEINS, M., Riemann surfaces of infinite genus. Ann. of Math. 55 (1952), 296-317.
[ 3 ] HEINS, M., On the Lindelof principle. Ann. of Math. 61 (1955), 440-473.
[ 4 ] MARTIN, R. S., Minimal positive harmonic functions. Trans. Amer. Math. Soc.

49 (1941), 137-172.
[ 5 ] OZAWA, M., On a maximality of a class of positive harmonic functions. Kδdai

Math. Sem. Rep. 6 (1954), 65-70.
[6] OZAWA, M., On the growth of minimal positive harmonic functions in a plane

region. Kδdai Math. Sem. Rep, 13 (1961), 180-184.

DEPARTMENT OF MATHEMATICS,
TOKYO INSTITUTE OF TECHNOLOGY.








