LINEAR MAPPINGS AMONG THE FUNCTION
CLASSES ON RIEMANN SURFACES

By Mitsuru Ozawa

Introduction

Let W be an open Riemann surface and G a non-compact subregion of W, whose
relative boundary oG consists of at most a countably infinite number of analytic
components which do not cluster at any compact part of W. Let R be a collection
of compact or non-compact subregions of G all boundary components of which con-
sists of a finite number of analytic curves and cluster at only the ideal boundary
of W. We assume further that any point on the relative boundary is freely ac-
cessible from both sides of curves.

Let {W,} be a sequence of compact domains satisfying the following conditions :
(1) WiC Wasy,

(2) 0W, consists of a finite number of components each of which consists of a
finite number of analytic curves, and

(3) for any compact subset K there exists such a number #,(K) that K is con-
tained in W, for any n=n(K).

We say this sequence {W,} an exhaustion of W, however our notion of exhaustion
presented here is different from that usually availed. Indeed there may exist a
finite number of islands any member of which does not separate any ideal boundary
element and a stronger condition W,C Wy, than the one claimed in (1) is not
postulated here.

We shall make use of the following notations :

H: a class of harmonic functions, which is equal to zero on the relative
boundary if it exists. P: a class of positive functions. B: a class of bounded
functions. A(X): some function class A defined in X.

We shall introduce several linear mappings among several families of functions
some of which are well known.

For each uePH(G) the upper envelope of the set of members of PH(R) which
are dominated by # in R is itself a member of PH(R). We define a mapping T of
PH(G) into PH(R) by requiring that for each ue PH(G) Tu shall be the above upper
envelope. In another direction, we define for each Ue PH(R), its standard subharmonic
extension U* by U*=U in R, =0 in G—R. Let Qg denote the subset of PH(R)
consisting of those U for which U* admits a harmonic majorant on G. We define
the map S from Qp into PH(G) by requiring that SU shall be the least harmonic
majorant of U* on G. It is immediate that both 7 and S are positively linear.
Then we see that S is univalent and TSU=U for any UeQgz. If vePH(G) is
dominated by some member of S(Qr), then veS(Qz). Now we can define a mapping
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ST from PH(G) into itself.

Refering to the exhaustion {W,} we shall redefine the above mappings S, T and
ST. Let G, and R, be G~ W, and R~ W,, respectively. For each ue PH(G) we
shall define a positive harmonic function #, in R, such that #,=0 on dR ~ W, and
=1 on R-0W,. Then u, is decreasing with increasing » and 0=Zu,<u in Rn,
therefore u, converges to either a non-zero function or zero function. We can say
that this mapping #—limu, coincides with the earlier 7 and Tu<u. For each
UePH(R) we shall define a positive harmonic function U, in G, such that U,=0
on 0G~Wu+3dWu~(G—R) and U,=U on R~9W, Then U, is increasing with
increasing # and U, converges to either a function which is not constant co or to
a constant co. We can say that the mapping U—lim U, coincides with S, if lim
Un=xoo, and SU=VU in R and that the image set T(PH(G)) excluded {0} coincides
with @r—{0} and any non-zero element of PH(R) having an image element in
PH(G) coincides with @Qz— {0}. Therefore the mapping ST: PH(G)—PH(G) can
be redefined as follows: For any ue PH(G) we construct a positive harmonic func-
tion V, in G, such that V,=0 on 6G ~ Wu+0W,~(G—R) and V,=Tu on d W, ~R.
Then V., converges to either a non-zero function or constant zero. We can say
that lim V,=STu>0 in G if lim V,=0 and this is the case if and only if 7Tu=0.
Evidently we have STu=u. For the above facts we recommend [2], [3] and [5].

In connection with the above facts our problems occured. For any we PH(G)
or PHB(G) we construct a positive harmonic function X, in G, such that X,=0
on 0G~Wn+90Wp~(G—R) and X,=u on 0 W,~R. Does there exist the limit lim
X.? Does any limit such as lim X, or lim X,, coincide with ST%? It may be ex-
pected that somewhat interesting versions with respect to the relative situation of
R in G can be revealed when the problems are negatively solved. We shall discuss
the problems in reference to the classes PHB(G) and PH(G) and partly solve them
negatively. In Chapter I we shall concern with the linear mappings among the
function classes PH. Several notions of niceness of R in G and equivalency of two
subsets in G are introduced and their global notions are also introduced. Somewhat
troublesome algebraic calculations in order to obtain the relations among various
operators are not avoidable for our purposes. In this Chapter the two-sideness
condition which will be defined in a later part plays a role. In the last part of this
Chapter we shall introduce a notion of tangential path or non-tangential path and
we shall prove modification theorems which seem perhaps intuitively evident.
However so far as we concern there is no such formulation in any existing biblio-
graphy. And these modification theorems and their generalizations play an important
role in the next Chapter II. In Chapter II we shall extend our definitions of
operators to be more available and we shall offer several geometric or potential-
theoretic interpretations of the extended operators. In Chapter III we shall chiefly
concern with the class PHB. Here we shall discuss the relations between two
classes PH and PHB. In the last part we shall offer several unsolved problems,
which seem somewhat important.
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Chapter I. Linear mappings in PH(G)

§1. Preliminary considerations on Martin theory. For PH(G) the major theory
due to Martin plays a decisive role. So we shall also refer to the theory [4].

Let W be an arbitrary Riemann surface of hyperbolic type. Let g(p, q¢) be the
Green function of W with pole g. We say #e PH(W) minimal in Martin’s sense
if any element ve PH(W) satisfying an inequality 0<v=<wu reduces to a proportional
element ku(k>0) of u. Let K(p, q) be the Martin function defined by

9(p, @)
9(bo, @)

where p, is a fixed point in W. If lim K(p, ¢n) exists for a non-compact sequence
N—00

K(p, 9= (@#p0)

{gn}, then we say that {g,} determines an ideal boundary point. If {g.} and {g.’}
determine the same limit function, then we say that two sequences determine the
same ideal boundary point. The set 4 of these ideal boundary points is called the
Martin boundary of W. For W™~4 Martin’s metric can be introduced by an integral

da 49=\ o Koo, 00— K(p(5) 49 |5

or any other equivalent forms, where k. is a circumference with the centre ¢, and
with the radius 7 in terms of a fixed uniformizing parameter. By this metric W™~4
is a compact Hausdorff space, 4 is closed subset and W is an open dense subset of
W™~4. And the topology induced by the metric is equivalent to the ordinary surface
topology in W. Any minimal function in PH(W) coincides with a function K(p, ¢),
ged. If this is the case for a ged, then ¢ is called a minimal point in Martin’s
sense. The set 4, of all Martin’s minimal points is a closed subset in 4. Then for
any ue PH(W) there is a suitable positive Borel measure ¢ on 4 for which # can
be represented by an integral

u<p>=SAK<p, 9) do(q).

If (4—4,)=0, then ¢ is called canonical. Any # in PH(W) can be uniquely repre-
sented by an integral with a uniquely determined canonical measure g,

“(1’)=841 K(p, q) doug).

We are able to make free use of a nice description of the Martin theory by
Konstantinescu-Cornea [1]. Let G and R be the ones defined in the introduction.
We shall consider only the identity conformal mapping R into G and the class
PH(G). Thus all the situation discussed in [1] are fulfiled by their theorem 6 (p. 10
in [1]). For PH(G) any Martin’s boundary point g of G defined by some compact
point-sequence considering as the one in W, that is, any one lying on some point
on the relative boundary JG plays no essential role, so we can omit these boundary
points from the Martin boundary of G. The remaining set is denoted by 4 or 4¢,
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if necessary, and the corresponding Martin’s minimal part of 4 is denoted by 4,
or 4%. Then we have the canonical representation theorem :

“@):SA K(p, ) doulg)

for any #e€ PH(G), where o, is a uniquely determined Radon measure on 4,. Further
4, and 4 are closed in 4 and in the original Martin boundary of G, respectively.

Two linear mappings 7 and S between PH(G) and PH(R) are defined as already
described in the Introduction. Let 4(R), 4,(R) indicate the sets

AR)={qed, TEK(p, q)#0}, 4,(R)=4(R)~4,.

If u(p)ePH(G) is represented by a canonical integral

SA K(p, @) doulg),

then by theorem 15" in [1] there holds the representation

Snguw):S K(p, @) dou(q).
41(R)

1C
Any point ¢ in 4, is accessible along some non-compact curve in G. This was
shown in [1], p. 28. Then any point ¢ in 4,(R) is accessible by a non-compact
curve in R which determines the point ¢g. To that end, it is noted that the map
T¢ preserves the minimality if T¢ has sense. By the definition of 4,(R), T&K(p, q)+
0, that is, T¢ has sense for K(p, q). Therefore TEK(p, q) is also a Martin minimal
function in PH(R). By this fact some Martin minimal point ¢’ in 4% is uniquely
determined and hence ¢’ is accessible by a curve yq, in R. Then S§TEK(p, q)=
K(p, q) by a fact that the minimality is also preserved by the map S§ if it has sense.
Therefore 7, determines a minimal point in 48(R)=4,(R) which must coincide with
the ¢g. That is, ¢ is accessible by 7q.. Such a curve is called the defining tail of g.
In order to enter into the discussion of the algebraic properties of 2 and p, we
shall give some representation in [1], where 2 and p are defined in the next section.
If u,, u,e PH(G) and

u¢=gdf K(p, @) douf@), i=1, 2
and #,<u,, then there exists a measurable function ¢ on 4¢, 0=<6#<1, for which
7=\ 80) doue0
for any Borel set A in 4,%. If
u()=\ o Kb, 0 04) doto),

where 6; is a non-negative o-integrable Borel function, then
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0,=0,:[0],

that is, 6, = 0, holds almost everywhere on 4¢ with respect to s-measure. This is
the lemma a in [1].

Through this chapter we assume that any open set or subregion D in W or in
G has its relative boundary with the following two-sidedness condition in W or in
G: Let p be any proper boundary point and N(p) be some suitable neighborhood
of p. Then there are only two components one of which belongs to the set D and
another of which does not belong to the set D. This definition of two-sidedness
can be extended to a more general set.

§2. Linear mappings and their representations. In this section we shall define
several linear mappings and discuss their representations.

For each ue PH(G) we construct a positive harmonic function #, in G, such
that #n=u on 0W,~R and u,=0 on G Wn+0W, ~(G—R). Then u,<u in G.
Let #u and 2u be

inf lim u, and sup lim ux,
n n
respectively, where inf and sup are taken over all exhaustions ({ W,}) of W, then
we have
STupu<iu=<u

by #n=Tu in Rn.
For each ue PH(G) we construct a positive harmonic function u(n, m) in Gp,n

=Gmn—(Rn—Ry») such that u(n, m)=u on d Wy ~R~+0R ~(Wn— Wy)+0G~Wn,=0 on

W ~(G—R). Then u = u(n, m) = u(n, m—1) in G, m-; and hence lim  u(n, m)

m—co

=u(n) exists. And further u(n) decreases with increasing » and hence tends to a
harmonic function in G. Putting this limit function 2,#, then 2,#e€PH(G) and
Au=uin G.

Let u® ™ be a positive harmonic function in G® ™= Gy —(G—R) ~(Wn— Wa) with
boundary value % on d W ~R + 0G W, and 0 on 0 W, ~(G—R) + 0R ~(Wp— W,).
Evidently we have u»™ = ym ™! and w»*™ = u™™, which imply the existence of
a function

lim lim w»™,
which belongs to the class PH(G). Then we put this limit function g,u. Evidently
we have that u,u < Au < u and 4; and p, are positively linear.

Next we shall put p*u=STu and *u = u — p*;%zu, where we indicate the
linear mappings 4, 1 between PH(G) into itself with reference to R by 2§, ug,
respectively, and so on.

Let u# be canonically represented by an integral

“"’)ZSM K(p, @) doua).
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Let 4% be a set of minimal points belonging to 4¢ which can be defined by some
non-compact point-sequence lying in R. This is an F, set. Then we put

B =\, Kb, 0) douta), = —Tgpu.
1R

Let » be a mi_nimal point in 4¢. Let N.(#) be an e-neighborhood of 7 in Martin’s
metric and N, = N.(#)~G. Then T§. Ka(p, ») >0 for a minimal function Kg(p. 7).
See [1], p. 28.

TuaeorREM 1. For any ue PH(G) there holds a system of inequalities
Buz=Gu=Gu=AGu
=pfu=mfu= p*fuz=pfu.
Proof. By the maximum principle we have u(n, m) = #, in G, whence follows
#(1) = tn in G, This shows A,# = lim u, in G for an exhaustion {W,} of W. On

the other hand 4,u# is independent of the exhaustion, that is, two different exhaus-
tions determine the same A,z for any given u€ PH(G). Therefore we have

Au=sup lim up, =2u.
For any ¢ >0 and for any compact set K, there exist two numbers N and N, for
which
[w(n, m) —u(n)| <e/2,  |u(n) — Au| <ef2
hold in K for any » > N and m > N,(m >#n) And hence
|u(n, m) — Au| <e

for any m >n> N, in K. From the original exhaustion {W,} we shall construct
a new exhaustion. Let p be the sum #n+m, then two inequalities #» < #’ and
m < m' imply an inequality p <p’. Putting W= Wu~(W —R)~W,, {W',} is
an exhaustion of W. For a sequence ¢/2'~! we can determine a sequence of pairs
of integers (m,, m;) such that n, < n,,, m, < m,,, from the above consideration.
And hence we can construct a sequence of integers {p;} by {#, + m;} and a cor-
responding exhaustion {W’,;}. For this exhaustion {W’,;} we can construct Up,

and lim up,;. Then we can say

Au = lim u,,

J—o
in G by the definition of 2u and u,, = u(n;, m;). On the other hand
[up, — Q| < e/271
in K, whence follows that

Au < lim (uy, + ¢/271) = Au
Joo

in K. Since K is an arbitrary compact set in G, we have
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Au=2iu

in G. Therefore we see that A, = Au in G for any ue PH(G).
Similarly we can prove the following fact:

= pu

for any ue PH(G).
Further by the definitions of linear mappings 4, 4;, and g, #, we can easily prove
that

M= AGu=u— m G zu=u—pé_zu

remain valid for any ue PH(G).
Further we have # = T§u in R and hence u, = (T §u) in G~ W,, which implies
lim #, = S§ T§u for any exhaustion {W,}. Therefore we have pgu = inf lim u,

({"=}) n
=S¢ T¢u=p*§u. The following fact is a simple consequence of the above fact :

PGu=u— G gu=u—pé zu=7Agu.

Next we shall prove 4§(R)24¢ — 4,%_z. Let » be a point in 4¢ — 4, §_z, then
d(r, G—R) > 0 in Martin’s metric in G~4¢. Indeed, if it is not so, then there is a
point-sequence {g»} in G—R and hence in G—R which tends to the ». This sequence
defines the point 7 in 4¢. This implies that re4, §_z which is untenable. Thus
any point 7 in 4¢ —4,%_; has a positive distance from G—F and hence G—R.
Therefore we can construct a neighborhood N(#) of 7 satisfying d(p, »)<d(r, G—R)
=d(r, G—R) for any peN(»). N@) = N@r)~GCcR is thus obtained. Then Tys,
Ka(p, v) >0 and hence TEKa(p, ) = Tyb, Ke(p, ) > 0. This shows that red5(R).
By this result or by a similar method we have 4,§24¢ — 4¢(G—R). Therefore we
have

*G gy —
HR SAG

1

Kokt @) de@ =\ o o Kilpy ) doulo

~up -\, , s, do

1,G
= u(p) — AG-gu(p) = fifu.

Further we have #*$u =u — 0*¢_;u < u — gé_pu = §u.

RemARrk 1. In the inequality p*§u = gfu there is an example excluding the
equality. In the following Fig. 1 ¢ has a defining tail in RcG. Therefore
1*SKa(p, q) = Ke(p, ¢) > 0. However ¢ also belongs to 4,%_; and hence ¢ does not
belong to 4¢ — 4,%_z. This implies that a§Ka(p, @) =0. This also implies g5
Ko(p, @) = G-z Ko(p, @) = 0.

REMARK 2. In the inequality p*¢u = gGu there are some examples for which
the equality occurs for any #e PH(G). See Fig. 2 and 3.
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1¥Gu = pfu >0 wrGu = pGu =0
Fig. 1 Fig. 2 Fig. 3

Remark 3. It should be remember that R is freely accessible from both sides,
that is, R satisfies the two-sidedness condition. This condition is essential for the
inequality p*§ = g In fact, if it is not so, then we cannot conclude that

R =
N@#) = N ~Gc R

even if d(p, ) < d(p, G—R) for any peN(»), since d(p, G—R)z d(p, G—R) =0 in

some example which is easy to construct. If d(p, G—R) > 0, then the situation is

the same as in Theorem 1 and this implies N(») € R and hence N(») S R.
REMARK 4. Let 24« be an operator defined by

S8y =S —_Ku(p, q) doulq)

48 —4f6—p

for
u =S Lo Kb, 0) do@),

where ZF_(E—:E_) is the closure in Martin’s topology. Evidently we have 2*¢u =19 u.
On the other hand 49(G—R)S4,%_z and the later one is closed in 4¢ and hence

49(G—R‘)g4_g_ﬁ. This implies 45—49(G—R)24¢—4,%_z Therefore we have
Gu = ggu.

Let # be canonically represented
up) =\ Kb 0) dola),
1
then

Hu=\, K0 do),  gu={ oo K0 dnio),

o Kb @) doa), =\ 5, o Kb ) doulo).

S af G-

However these are also represented by the canonical integrals
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4

Hu=\ o Ko 0 dog @, Pou=\ Kp.0) do g @

g, D-

R

wgu=\ o Kb do o @, fu=\ Kb 0 do_
1 S 47 I3
Therefore by the above fact

00 =\ 0@ dna, o, = 040) dria),

’-Tp.*gu (A) = SAI%(KI) dl)'u(q). g ,Tgu (A) = SA04(q) dUu(q)

for any Borel set A, where 6,, 6,, 0; and 6, are measurable on 4¢ and satisly the
following conditions

) 1 on 4,8 . 1 on 4f — 46(G — R)
1::{ 0 on 46— A%, 2—{ 0 on 45(G—R).

L | 1o A® , | Loon A4,
3_{ 0 on 49— 49(R), 1o on 4.6,.

If u<v and u, ve PH(G), then two canonical measures o4, o, satisfy an equation
o) =\ 0@ dante), 0=0=1,
A

and hence g4(A) < d,(A) for any Borel set A.

In the sequel we shall use the words “for any 2” and “ for any ¢” in the sense
of “for 7, 2*” and “for z, u*”.

If u=<v and u, ve PH(G), then 1u < Av and pu = pv for any 2 and for any p.
Further we have for any # and v in PH(G) A(u~v) = Au Av and A(u>~v)=2u> v,
wu v)=pu pv and p(u>v)=pu~pv for any 1 and for any g For these it
should be noted the lemma b in [1]. Further, if R, D R, in G, then there hold
28 u=2%u g u=pduand ¥ u= ¢ u, ¢ u= p*¢u for any uePH(G). To
that end, by the representation of these operators it is sufficient to prove the fol-
lowing relations :

4§ 24§, and AF(R,) 2 4{(R,)

for any R,DR,. By the definition of 4,§,, ge€4,§, implies the existence of the defining
point-sequence {g»} in R, by which ¢ in 4¢ is defined. This sequence also belongs
to R, and defines the same ¢q. If gedf(R,), then TE Ka(p, q) >0. However T,
is equal to T8 T¢, which implies T Ka(p, q) >0. This shows that qedf(R,).
G—R,cG—R, implies 46—4,8_524¢—4,6_5, and 4¢—A48(G—R,) 2 45 — 45(G—R,)
which are equivalent to ¢, # = %, u and 1*¢, u = 2*§,u for any we PH(G), respectively.

If u, converges to u monotonically in PH(G), then 1% un, A*§ tn, p*Gu, and 8 u,
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converge to 1§ u, 2*Gu, p*¢u and §u monotonically, respectively. Indeed this can
be proved in the following manner: Let u#, and # be represented by the canonical

integrals

| oK. 0 don@) and | Kip @) doute),
respectively, and #»=u, then ¢,,(A)=0.(A) for any Borel set A or more precisely
5 )=\ 0s@) oo
for some measurable function 6,, 0 =6, =<1. Thus we have
un(9) =\ o Kb, 0) 0:(a) doula)

Further, if u, tends to « increasingly, then 6.(¢q) is monotone increasing with » and
tends to 1 almost everywhere in 4¢. Then

Tu(p) =\, Kb, @) do )

=, Kb, 0 0:0) dou@)

tends to

{, K 0) douta) = Tguth)
1R

For any other cases similar proof can be carried out.

Let # be a minimal in PH(G) and if g§u >0, then u=i§u=2*¢u=p*Gu=/pgu.
In fact u is equal to & Kc(p, q), gedf. pGu = cu = ck Ks(p, q), since pg§u > 0 implies
the equality. On the other hand

!k if geA

u(p)=g Ko(p, ) dou(®), oud)=1
¢ L0 if g¢A.

4
This implies

cu=fu=\ o, o Keb,r) dout)

and hence gedf—4,% . Thus g§u =k Ke(p, q) = u.

If #*¢u >0 for a minimal # in PH(G), then u = 2%u = 2*§Gu = p*Gu. If *Gu
>0 for a minimal u, then u =i%u=*¢u. If 2%u >0 for a minimal u, then «
= 18 u. Further these facts imply that the minimality is preserved by any operators
if the resulting function is positive in G.

Let # be singular in PH(G), that is, 0 =v=wu for any ve THB(G) implies
v=0. Then 2§u, *§u, p*$u and 7z§u are also singular if they are positive. This
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is evident by the singularity of # and by theorem 1.

§3. The P-niceness and their relations. In this section we shall define several
sorts of P-niceness of R in G by making use of the operators and discuss their
relations.

If 2*§u = p*§u for any ue PH(G) remains true, then we say R a P-nice subset
in G. If this holds for any G with some relative boundary 0G, then R is called
extremally P-nice. 1f 2§ u = j%u remains true for any ue PH(G), then R is called
most P-nice in G. If this is the case for any G with some relative boundary 4G,
then we say that R is extremally most P-nice.

The following figure shows that our original plan of investigation should be
carefully done by its pathological nature.

Fig. 4

In any simply-connected domain G any accessible boundary element in the
sense of Carathéodory corresponds to a Martin minimal point and inversely any
Martin minimal point corresponds to some accessible boundary point. Thus any
defining sequence of boundary element in the sense of Carathéodory defines a Martin
minimal point. The proof of this fact is easy to perform by the Riemann mapping
theorem and the invariance of Martin’s whole theory under any univalent onto
conformal mapping. In our above example, in G, ¢ is a point of 4§* which is
different from ¢° which is also a point of 4¢:. However ¢ coincides with ¢" as a
point of 4¢* which consists of only one point ¢’. Therefore the set R defines a
Martin minimal point ¢’ =¢ in G,. These considerations show that #*§ Ke,(p, q)
=0 and *§ Kex(p, @) = Kax(p, q). However p*¢ Key(p, q) = k 1*§ Kay(p, ¢')=0 and
*G Koi(p, q) = k Kay(p, ¢'). TFurther we have 4,§ =¢' and 45(R) =¢ = 4,8z,
which shows that 1% u = 2*¢: u = p*G u > 0 for u = Kg(p, ¢’) and 6 u =0. Thus
R, is not most P-nice but P-nice in G,. Evidently R, is not P-nice in G,.

Next figure 5 shows that the notion of most P-nice in G is also a relative
notion. Indeed in this figure 4, % is a closed segment g7 and 4, %:_; coincides with
two closed segments sq¢” and 7£. Thus 4% —4, §:_; is an open segment ¢’#. Therefore
R is not most P-nice in G,. However R is most P-nice in G,.
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I

Fig 5 Fig. 6

Let G be the punctured unit disc {|z] < 1} — 0 and G—R is an infinite number
of disc {|z—1/n|<1/10"}, n=2,3,..., then 4f¢ consists of only one point {0}
and 4¢(R) also consists of only one point {0} by the irregularity of the origin in R.
46(G—R) is empty and hence 4¢ — 48(G—R) consists of only one point {0}. Thus
R is P-nice in G. However both 4, ¢ and 4,§_; consists of only one point {0} and
hence 4¢ — 4¢,_; is empty. This shows that R is not most P-nice in G. This
example shows further that the extremal P-niceness of R does not imply the ex-
tremal most P-niceness of R. In Fig. 6 the irregularity condition for 0 in R is
essential. If it is not the case, then 4F(R) reduces to an empty set. Further in
this case R satisfies the conditions 1§ # = 2*¢u = u = k log 1/| z| and 7§ u=p*%u=0.
For these phenomena we recommend our earlier paper [6].

We shall here introduce several other P-niceness. We make use of the following

terminologies :
R is exterior P-nice in G if 2§u = *$u for any uecPH(G),
R is interior P-nice in G if p*§u = pGu for any ue PH(G) and
R is ordinary P-nice in G if it is exterior and interior P-nice in G.

Evidently if R is most P-nice in G, then it is ordinary P-nice in G. If any element
ve PH(R) satisfies S§vePH(G), then T§: PH(G)—PH(R) is an onto positively linear
map and vice versa. If this is the case, then R is called onto P-nice in G. All of
these notions are not absolute.

Let R be most P-nice in G, then we have

4,% =47 — 49(G—R) = 46(R) = 4f — 4, ¢z,
Al,g—ﬁ = AIG(G'_E) .

Let » be a Martin minimal point in 4¢ whose one defining point-sequence {gn}
belongs to R, that is, €4, ¢, then de(, ¢») the Martin distance from g, to » tends
to zero when n—oo. 4,4 = 4¢(R) implies T§ Ka(p, v) > 0. Thus Kr(p, #’') is deter-
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mines as a minimal function, that is, a minimal point #’ €4® is determined. If the
7 is also defined by a sequence {g.} €G—R, then red, §_; = 45(G—R). This implies
that T¢_; Ko(p, v) > 0. Since 48(R)~49(G—R)=¢, TS Ka(p, »» >0 and T¢_; Ks
(p, ) >0 lead to a contradiction. Thus there is no point sequence in G—FR by
which 7 is defined. Therefore there is a small neighborhood N(#) of » for which
N@#) =N ~G entirely belongs to R. Let » and s be two different points in 4, §,
then #/ and ¢’ are different in 4¢. Indeed T §Ku(p, n=Kr(p, ') and TEKa(p, s)
=Kgr(p,s’) are minimal and #'=s" implies Ko(p, \=SE TE Ka(p, ¥)=SE Kr(p, v')
=S¢ Kr(p, s )=SE TE Ka(p, s)=Ka(p, s), whence follows »=s in 4¢. This is a con-
tradiction. Let ¢ be any point in N(7)~4¢, then du(q, ¥)<de(@N(r), ) and ds(q, 6N
() >d>0. Let N«(qg) be a point set in G satisfying an inequality de(q, p) < ¢ < 0.
Then N:(q)c N(r)cR. Thus

0< TGy Ka(D, @) = Thuar TS Ke(p, @)
implies
TEKa(p, q) >0,

whence follows gedf(R). This f_e}ct shows that any connected component of 4¢
belongs to either 49(R) or 4¢(G—R).

THEOREM 2. If R is most P-nice in G, then any connected component of A¢
belongs to either 49(R)= 4,5 or A(G—R)=4,5_5. 4.% is imbedded in 4% by T§,
that is, there i1s a umwalent corvespondence wnduced by T which carries 4, into
4%, If R is onto P-nice in G, then A% is wmbedded in 4A¢ by S§ and its image is
equal to A%(R) and vice versa.

Proof. 1t is sufficient to prove the last part. Let »” be any point in 4F, then
by the onto P-niceness assumption of R in G there exists a minimal function K.(p, #)
such that T§ Ka(p, r)=Kgr(p, »') and hence Kq(p, ¥)=SE Kr(p, '), where Kgr(p, r’)
is a minimal function in R corresponding to the #’. Thus re4¢(R). By the mini-
mality preserving property of T'¢, this correspondence #' — 7 is univalent. Any
point 7 in 4F(R) corresponds to a point #’ in 48 Therefore the map induced by
S¢ carries 4F univalently onto 4%(R). Inverse statement is evident.

By T§, 45(R) can be imbedded into 4£ Thus there is a univalent corres-
pondence T§: 4F(R)— 4R If » corresponds to #»/, red¢(R), »'€df by T§. Let
N.(r) and N;(#") be two neighborhoods of # in G~4¢ and of #' in R™~4% defined by
du(p, r)<eand dr(p, ¥')<0 in the respective Martin metrices. Let N:(r) and N;(#')
be N:(r) ~G and N;(7")~R, respectively. We prove the following relation: Nu(7)
~Ns(r") #+ ¢ for any ¢ and . If it is not so, then there are some ¢ and some 4 for
which Ne(»)~N;#') = ¢. On the other hand

T$Ka(p, r) = Kr(p, ¥')

for two minimals K.(p, #) and Kr(p, #’). Thus we have
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0< T Kelp @)

and

0 < THrn Krlp, 7)) = THyon TEKs(, ) = T§ry Ke(p, 7).

Since N(r) ~Ns(#")=¢ and Ke(p, 7) is minimal in PH(G), the above two inequalities
are untenable. Thus N:(#) ~Ni(#')#¢ for any e and for any 6. This implies that we
can select the same defining tail of » and # in R.

In the next place we shall show that the following two implications

onto P-niceness 2z P-niceness

are false in general.

Qo

Fig. 7

Fig. 8

Fig. 9

In Fig. 7 we have 4f ={r, s], 4¢(R)
=6, 4%(G — R) = [r, p)(q, sl and 4§ —45(G
—R)=[p, q]. This shows that R is not P-
nice in G. However 4E=4F=¢ implies the
onto P-niceness of R in G.

In Fig. 8 4f=[q, p,]~[ s 7], 45 (R)=[q.
b0~ 1., #1. This implies the P-niceness of
R in G and further the exterior P-niceness
of R in G. However 4F = [q, p.1~(ps)
~ e, 7] implies 4E 22 46(R), that is, R is not
onto P-nice in G. (The shaded part is a
component of the exterior of G.)

Even if R is a domain, the onto-P-
niceness of R in G does not imply the P-
niceness of R in G. In Fig. 9 4% =[p, ql,
A5(R) = (p)~(q), 4¢ — 49(G—R)=[p, q] and
hence R is not P-nice in G. However
AR=(p)(q) (CdR=[p, q]) implies the onto
P-niceness of R in G.

THEOREM 3. Let R be most P-nice in
G ond A48=4C, then R is onto P-nice in G.

Th order to prove this theorem we shall
prepare the following two facts:

(i). If R is onto P-nice in G, and G,
is onto P-nice in G, then R is onto P-
nice in G,. If R is onto P-nice in G, and
RcG,cG,, then R is onto P-nice in G,.

(ii). If the proper part of dR in G lies
in a compact part of W, then R is onto
P-nice and simultaneously most P-nice in
G.
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Proof of (i). The first part is evident. Let # be any element of PH(R), then
there exists an element v such that 7§'v =« and S§u =v. Let w be an element
of PH(G,) satisfying w=T§wv, then T¢w=T¢ T&v=T$%v=u. This implies the
desired result.

Proof .of (ii). By the assumption the proper part of dR divides G into two
parts. We can assume with no loss of generality that the proper part of dR con-
sists of analytic curves. Then we can construct a continuous superharmonic
function S in G satisfying the condition # =< S in R. In this process the bounded-
ness of (du/on) ds on the proper part of 6R in G is essential and the non-vanishing
property of the harmonic measure w(p, 3R, G—F) is also essential. Then S§u =S
in G. Therefore we have S§ue PH(G). This implies that 7§ S%« = » and hence
R is onto P-nice in G. The proper part of dR lies in a compact part of W, there-
fore 49(R) = 4,8, 49(G—R) = 4,%_; and hence

A9(G—R)+ A§(RYS 4§ S 4, G+ 4,9 ¢
= 49(R) + 49(G—R).
This implies that R is most P-nice in G.

Proof of theorem 3. By theorem 2, there is no point in 4f=4¢ being accessible
by two point-sequences one of which belongs to R and another of which belongs
to G—R. Therefore any point of 4% is not accessible by a point-sequence belonging
to a proper part of dR. Thus a proper part of 0R in G lies in a compact part in
W. By (ii) R is onto P-nice in G.

In the first part of (i) we can neither exclude the onto P-niceness of G, in G,
nor replace it by the P-niceness of G, in G,.

THEOREM 4. Let W belong to the class Og and G be a subregion of W. If R
1S a subregion of G whose boundary OR clusters irregularly at the ideal boundary
of W, then R is onto P-nice and P-nice and exterior P-nice in G.

Proof. Let r be any point of 4F, then there exists a defining point-sequence
{r.} of » in R. Then

gr(D, 1) = ga( P, 1), 173330 gr(p, 1) >0

imply the irregularity of a minimal point 7 on 4¢ which is defined by {r,}. Thus
7 corresponds to 7 by S§. This is equivalent to a fact that R is onto P-nice in G.
Let 7 be any point of 4, then there is a defining sequence {r,} of 7 in R. Then
any convergent subsequence {7,} of {r,} defines a point » in 4% and further
gr(p, v) = lin}l gr(p, rv,) > 0 and gr(p, r,) = ge(p. r,). This implies that r is an

irregular minimal point of 4§ and T$g4(p, ) = kgr(p, ) > 0. Thus # is also a
minimal point of 4% and 7e€4f(R). This implies the desired two P-niceness of R
in G.
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§4. Algebraic calculations. In this section we shall discuss the algebraic pro-
perties of 2, A*, u* and /.

(1) 2Gu+ S zu=wuand ¥§u+ p*¢ ru=u.

(2) p*f ¥ = ¥ 25 = G T = 1 10 = 76 1o = ¥, 18 2% = 3 2 G

Q. RQ

=Gy = *Gu, 2GGu=25u, 7%asu= aGi%u = g% Gu = pd*Su = p*¢ aGu
= 2§ i, 2R/«‘R”*‘Pk“~
Proof. p*Gu*Gu=SETESETGu=SETGu=p*§u. The following inequa-

lities p*¢u < 2*§u < 2§ u < u imply two systems of inequalities

G u = G G u < G G u = ¥4 A% u = p*Su
and

Gu = p*G prGu = G Gu = 2§ p*Gu = p*Gu.
These imply the desired results. Further we have

PGIGu = Y u—p*G_gu) = PGu—*G p*§_zu
=Gu—p G gut (P Gog G ru=PGu.

We have the following two inequalities

HGu=*G¢u =2 2Gu=*¢u

and
G g = G J¥G g < 76 %G 4 < J¥G y
B

ey =
by the inequalities A*§u < 28u =< u. We have the following representation

=\, Kb 0 drio) = K. do @
]- on Al)g’
= K0 00 dnta), 0.0=]
af L0 on 46—4,8.

Therefore we have

1= Kb ) 0.0 doy @
= o K2, 9 0.@) 0@) do@)

By the above identity we can say that

GG = plu—pg G qu=pfu—2§_ ju+ 218 523 fu=gfu.
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The inequalities 7§u = p*§u = *§u = 2§ u = u imply the desired fact by operating
2% and by substituting » by g§u.

(3) If R ~R,=¢, then p*§ p*¢ u = if i§, u=0. Further we have p*§_; u*Qu

A
(4) g M Gu=2

*
Q?Q
)

N
|
1

=PFu—pr Gu=1¢ ru—p*¢ zuand A§_; 2qu=21§25_zu
=26 u—p§u=21%_ru—pué_zu for any ue PH(G).

— aq a —
Proof. PG M Gu = VGu — GG u = P Gu — p*fu

~ o sy K0 4o~ o K(p, @) dote)

4G (R)

K(p: q) d"u(l]) ’

- S 28— 48q —R)— 48(R)

26 7 2Gu=28u— gi%u=28u— gGu
K00 a0\ o, K0 dnio).
(5) G g lfu = A G pu =2 u — p*Gu

for any ue PH(G).

Proof. G g Afu=2fu—p*GaGu =G u—p*Gu

:S AI’G '—Af'(G'—E) K(p) l]) d”u(q) .

G—R
(6) PGz WG—p*u = QG—*Du, 2§ ;(*G—ppDu = P §—iu
for any ue PH(G).
(7) Let G, and G, (DG,) be two subregions of W containing R, then for each
ue PH(G,) satisfying S§: ue PH(G,), we have
TG u*: S = w*u and TG G SGuz v u.

And for each ve PH(G,) satisfying T@v > 0 in G,, we have
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P v = S§ u*§ Tv and Mo = SG*§ Tho.
Proof. T *§ S§i= T S§ T§ T4 S§
= T4 S§S§ T =S¢ T = 1§
GG TG=SESE TG Th=S§ T% =15

By the definition of S§: we have S§u#=u in G, and hence 2*§ S$u = 2*¢'u in
G,. This implies that T 2*¢ S¢u = 2*¢ u in G,. For any vePH(G,) we have
v=T&v in G, and hence 2*§v=1*¢ T§v in G, Therefore we have *¢ v
= 8§ 2*¢ TG v in G,.

Here it should be noted that the map T°§: PH(G,)— PH(G,) is not onto in
general and the map S§:: PH(G, — PH(G,) is not defined for any element of
PH(G,). This is an important different point between the case PH and the case
PHB, which will be treated in Chapter III.

(8) M§Eu=Gu, p*§ X Gu=p§ p*Gu=p*Fu and G us1*G p G u=1Gu
for any ue PH(G,). If G, is P-nice in G,, then 2*$ 1*&: u = i*§ u.

Proof. uwz G u=*Gu imply ¢ u= G DG uz= ¥ G u=2%u. p*§u
= prEu =G u = u imply pRGu=p G G u = p* e u = p*F B u = ¥ u and
pr@ oy = p*@ ¥y < 2@ prGu =< ¥ u. If G, is P-nice in G, then p*&u =21 u
@ u. Hence %G u = A*G %Gy < 2*§ p*Gru =< 1*G u.

I\

(9) 2928 u=218u, g2 18 u= i i u= g% u and z§u=1% 2§ u < 21§'u for any

uePH(G,). If G, is most P-nice in G,, then 2§ 7§ u = 1% u.

Proof. We can similarly prove this as in (8).
10) 2% 2G u=2G u, w*§ 3G u=*G u, 7§ PGu=pF p*Gu=pfu, g§usp*§ pfiu
= G, PG u=A8 G u=2§u, g% u=rg i@ u=<r¢u and ¢ u=1§ p*%u=1%u
for any u#ePH(G,). If G, is most P-nice in G,, then p*§ i u = p*@ u, G A% G gy
=28 p*@u = 2% u and PG 28 u = ¥ u.

Proof. A u=2%G 2*G u=2%¢ 29: UsG u. G u=p G PG u=prE A u=priu.
pfu=pf pGiu = pf e = pf PEuspF G u=pf e pfu=pf pGusp*F pgu
= gt PG =2 PGuSIG PG u=IE u. GF uSpE GG usIg GG s Gy
S u. *Gu=218Gu=2%p*Gu=<1%*&u <% u.

If G, is most P-nice in G,, then g% = ,u_*g; = 2*5;_ = 2% and hence p*g'ﬁg:zf =p*@ A%y
=p*Gu, A3 p*Gu=2F pGu=2§ PGu=2% 1Gu=2Fu and g g u=7r¢ Au=2%u.
(11) For any uec PH(G,) 2*§: 2*Gu=2*¢ u, A*% p*Gu = p*§ p*&u = p*@u and i*Gu
= p*@ Gy = pr@y. If G, is P-nice in G,, then p*§: 2*$u=21*¢u and 1*&:_gz *¢u

=0.
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Proof R*G’nu 2*01 I*G’:u = ]*g: 2*%':“ = z*g:u' /«t*g’u=#*g’ /"*g’u = /—l*gi #*g,u
S G Gu < p¥Gu.  prGusprG eu < p*E ey = *¢u. If G, is P-nice in G,
then 2*&=p*¢ and hence p*§ B¥Gu = ¥ FGu = F§u. 0= *Gu—p*d 1*Gu
= AXG s WKy,

(12) 28 2u=2i8u, 2% pGu=pd pSu=pdu and G u>is G u=pdu for any u e PH
(Gy). If G, is most P-nice in G,, then #§: 8 u=2%u and 2:_s A8u=0.
Proof. It is quite similarly proved as in (11).
(13) 29 u*@ u = p*Gu, 28 A¥Gu = *Gu, ¥ f%u = p*& iGu = §Gu, DGy < J%Gs 7y
<% u, p*Gu <G u <218 u and F§u = GG p*§u < g8 ¢ u < #*@y for any
uePH(G,). If G, is most P-nice in G,, then & ¥*@u =A% *Gu = *Gu, 5§ 1 %u
=29 p*@u = p*@u and % A§u = prG 25 u = %G 2% u = 18 19U = 1%u.

Proof. *§u=1*g 2*G’u<l"’ Pu=<*Gu. pGu=pd ng u<ﬂ*a, #a.u<,z*a, A% u
= #G’u #*g’u ]* *G’u<,{G’ {I*G’M <#*G2u Z*G:u l*G: 1*G:u<2*01 Xa’uél""u #*g,u
= prE HPu=p*E XG'“<Z*G’ Wpu=1%u, ffu=pG pdu=pis: WFU= 0 B Gu=1Gu.

(14) If G, is P-nice in G,, then
Gu=SG2*¢ TGu and *§v= Tg 1*¢ SGv
for any #e PH(G,) and for any ve PH(G,) satisfying Sg: v < oo.
Proof. By (7) we have for any ue PH(G,)
= SG g Thiu

On the other hand by (8) and (11) we have

P = I T G = G i = S§: TG 1 S Thiu
= SG’ S G,u - S T g,_R SG: Tg u
= Gn u — SG: Gn-‘R SG: Ta, U,

since T§ Sg Tg:u = T‘g’ju if Tg:u > 0. Further since ¢*§_zx = p*@_sx for any
xe PH(G,), we have

G
SGE TG G s SETGu=SG TG g S5 TG u
=SE p*G i TG u

by (7). Thus we have an inequality

Fu=SEThu—SGwE-r Thu=SGE ¢ Téu,
which leads to the desired result if 7§« >0, ue PH(G,). If Téu =0, then
P u = S§ TG 1% S§ Thu=0=SE 2% Tgu

If S§:v < oo, vePH(G,), then we put = S%wv. Then we have T§u = T§ S¢v
=v>0. By the first part we have
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%G Sy = S§ 1*¢yp .

This is the desired result.
(15) Let G, and G, (DG,) be two subregions of W containing R, then for each
ue PH(G,) satisfying S§: uePH(G,), there hold

TG g Su=pguand TG SGuz=2Fu.
For each vePH(G,), there hold
f%v =S¢ % Tgv and 1% 0= SE 1§ Thv.

If G, is P-nice in G, and 1§ = 2*§:, then the above two inequalities reduce to the
equalities respectively under the same assumption.
Proof. 1t is sufficient to prove the parts claiming the equalities.

Ao = 2828 G0 = PG G G = prG 2§ p*Gio
=SGET&SE TG =SGTGSGHTGv—SGTE p&-S& T v
=SGETqGv—SETE G-z SE TG
=S TGv—SGETGrG-sSETEv=SE TGy — SG p&-r T &v
=SGg TGv=1%v.

That is, 1§*v = S§ 2% T§ v holds for any ve PH(G,). By the assumption S§ u < oo,
we can transform this identity into the identity

TG4 SGu=1§u
for any wePH(G,) with S§ u < oo, putting » = T§v. Because for this we have
Su=SG Tév=v<oo.
Next we shall prove the first equality.
TG usSGu=TgSGu—T&G-zSGu
=T§SGu—T§G-zSGu.
by 2%:_zx=1%_zx for any xe PH(G,). Since SSu<oco implies T§ SGu=u, we can
say that

TG SGu— TG Ti-s Siiu = u—Mipu— i u,

which shows that 7% 2% S¢u < a§ u for any ue PH(G,) with S§ u < co. Since the

inverse inequality is evidently true, we have the desired equality. The remaining
identity is a simple transform of this identity.

§5. Applications. We shall now apply the above algebraic calculations to
investigate the relative situation of R in G.

THEOREM 5. If R is interior P-nice in G, and if G,CG,, then R is interior
P-nice in G,. If R is interior P-nice in G, and G, is onto P-nice in G,, then R is
interior P-nice in G,.
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Proof. By the assumption p§u = p*$ u holds for any ue PH(G,). By (7) and
(15) we have

pgv=S8qng Tév, wrEv = S§ g Téw
for any ve PH(G,) satisfying T§v > 0. Then for such a v we have
‘anv — ﬂ*G”U .

If T¢v=0, then u*$0v=S§T§v=S§T§ T&v=0, which shows that p*§v
= pu$v =0. Therefore in any cases we have the desired result: g§v = p*§v for
any ve PH(G,). By the assumption of the later half z§u = p*§'u and S§u < co for
any ue PH(G,). By (7) and (15) we have

pgtu=TEpg SGu=T&uw*E SGu=*Gu
for any ue PH(G,). This is the desired result.

As is shown by the following figure, the in-
verse of the first part does not remain true if
no assumption is imposed on G,. In a neigh-
borhood of p a component of dR coincides with
0G, and another component enters into p touch-
ing very strongly to 4¢ and lying in G,. Then
we have

4f=[p, ql, 4,¢-z = b, q), 4(R) = (p)

and 46 — 4,8 _z=¢. This shows that g@K (7, p) Fig. 10
=0 and p*§K(r, p) = K(r, p). Thus R is not in-
terior P-nice in G,, however R is interior P-nice in G,.

THEOREM 6. Let R be exterior P-nice in G, and G, be most P-nice in G,, then
R is exterior P-nice in G,. Let R be exterior P-nice in G, and G, be P-nice and
onto P-nice in G,, then R is exterior P-nice in G,.

Proof. Let u be any element of PH(G,), then
Gu=SEig TGu=SG*¢ TGu=2y
if T¢u>0. If T§u=0, then
8w =138 2% u = A§ p*Giu = 28 SG TS u = 0,

which implies that 1§« = A*§ u= 0.
By the onto P-niceness of G, in G, there holds S&u < oo for any ue PH(G,),
thus we see

Mou = TG Shu = TG Sgiu= 1 u
for any ue€PH(G,). Therefore we have 1§'u = A*¢'u for any ue PH(G,).

Tureorem 7. If R is P-mce mn G, and G, be P-nice in G,, then R is P-nice in
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G,. If R is P-nice in G, and G, 1s onto P-nice in G, and G,DR, then R is P-
nice in G,.

Proof. Let u be any element in PH(G,) satisfying 7§ u > 0. Then we have
Gy = SEAFQTEu = SGu*§ Téu = u*§u.
If T% u =0, then there holds
Gy = GG = P*FprGiu = PGSETEu = 0.
Further we have
w¥Gu = S§¢TGu = SGTGTGu = 0.

This implies the first part of the desired fact. In this part we cannot replace the
P-niceness of G, in G, by the onto P-niceness of G, in G,. This is shown by an
example which is easy to construct.

By (7) we have

(Gu = TEu*eSGu and ¥Gu < TEAGSGu

for any # € PH(G,), since S§u < o by the onto P-niceness of G, in G,. Since R
is P-nice in G,, we have p*§ = 1*§. Thus we have the desired fact:

wEGu = 2*Gu.

Tueorem 8. If R is most P-nice in G, and G, is onto P-nice in G,, G,DOR,
then R is most P-nice in G,. If R is most P-nice in G, and G, is most P-nice in
G,, then R is most P-nice in G,.

Proof. By the assumption we have
Ffu = TGp%SGu = TEA§SGu = 2§ u

if S¢u < co. On the other hand we have S%u < co for any u € PH(G)) if G, is
onto P-nice in G,. Thus we have the desired fact z§u = 1§'u.
By (15) we have

A5u = S g Tu = S§ 1§ TGu = 1 u
for any ue PH(G,), T§u > 0. If T§wu =0, then
A8u = 288 u =28 p*Gu = 0
and

A = pGu = 0.

This implies the desired fact.
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The later half of the above theorem can be extended in the following manner :
If R is most P-nice in G, and G, is exterior P-nice and P-nice in G,, then R is
most P-nice in G,.

If two open sets R, and R, with two-sidedness condition satisfy the conditions
28, = 28, and g§, = g, then we say R, and R, are Ist P-equivalent in G. If R,
and R, satisfy the condition A§, = 2*¢, and p*§, = *¢,, then R, and R, are said to
be 2nd P-equivalent in G. If R, and R, are 1st and 2nd P-equivalent in G simult-
aneously, then they are said to be most P-equivalent in G. If §, = 2§, and A*§,
= 2*¢, then they are said to be exterior P-equivalent in G and if w*§, = p*¢, and ji§,
= i, then they are said to be interior P-equivalent in G. These are also relative
notions.

THEOREM 9. If R, and R, are interior P-equivalent in G, and G, D G,, then
they are also interior P-equivalent in G,. If R, and R, are interior P-equivalent
in G, and G, is onto P-nice in G,, then they are interior P-equivalent in G,.

Proof. For any u € PH(G,) with TG¢u < 0 we have
wfiu = SR TGu = S G Téu = w*Gu
and
i = SGERTu = SRR TG = pfu.

This shows the first desired result for 7w« > 0. If TSu = 0, then p*§u = p*g:
p¥@u =0 and p*Gu = p¥Gu*@u = 0. This implies ggu = pdu = 0 for T§u = 0.

By the onto P-niceness of G, in G, any u € PH(G,) satisfies S§u < co. Then we
have
au = TEpg:SGu = TEpGSGu = pfu
and
G = TEu*§Su = TErGSHu = p*u
for any u € PH(G,).

TraEOREM 10. If R, and R, are exterior P-equivalent in G, and G, is exterior
P-nice and P-nice in G,, then R, and R, are exterior P-equivalent in G,. If R, and
R, are exterior P-equivalent in G, and G, is exterior P-nice and P-nice and further
onto P-nice in G,, then R, and R, are exterior P-equivalent in G,.

TuaeoreM 11. If R, and R, are second P-equivalent in G, and G, 1s P-nice in
G,, then they are second P-equwalent in G,. If R, and R, are second P-equivalent
in G, and G, is onto P-nice and P-nice in G, and G,DR,~R,, then R, and R, are
second P-equivalent in G,. If R, and R, are first P-equivalent in G, and G, is
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exterior P-nice ov more strongly most P-nice in G,, then they arve first P-equivalent
n G,. If R, and R, are first P-equivalent in G, and G, is onto P-nice, exterior P-
nice in G,, then they are first P-equivalent in G,. If R, and R, are most P-equivalent
in G, and G, is exterior P-nice and P-nice in G,, then they are most P-equivalent
in G,. If R, and R, are most P-equivalent in G, and G, is onto P-nice, exterior
P-nice and P-nice in G,, then they are most P-equivalent in G,.

Proof of theorem 10. By the P-niceness of G, in G, we can apply (15) and
we have G = SEAGTGu = SGAGTGu = Au and *Gu = SGEA*GTGu=SE*G TG u
= 1@y for any ue PH(G,) with T§u > 0. If TGu=0, then A& u=i%15u= ng/z*c"m
=0 = G u*Gy = %A% u = I%u. This implies *Gu = 0 = *&u. Thus we have the
desired fact. The remaining half is quite similarly proved.

Proof of theorem 11 is quite similar as in theorem 9 and 10.

THEOREM 12. Let R, and R, be two open sets in G with two-sidedness condition,
then

WG optt + (XG0t = G u 4 p¥Gu
and

G urtt + G gy = G u + G u
for any u € PH(G).

Proof. We construct a positive harmonic function #,(X) in W, ~X so that u,(X)
=u on X~0W,, =0 on X~ W, Then we have un(R,“~R,) + ttn(R,~R,) = un(R,
“~R,) on oR;~R,~ Wy + OR, ~R;~W», =2u on oW, ~R,~R, and ux(R,) + un(R,)
= u(R,) on 0R, ~ R, ~Wn, = un(R,;) on 0R, ~Ry~Wn, =2u on oW, ~R,~R,, and
further un(R,~R,) = un(R,) on 0R,~ R, ~W» and wun(R,~R,) = un(R,) on R, ~R,
~Wau. These imply an inequality

un(R~Ry) + (R ~Ry) = un(R)) + tn(R,)
on R, ~R,~ W, Let n tend to oo, then there holds
TglURzu + TIGi'anau ; Tgxu + TIGhu

in R, ~R,. By the standard subharmonic extension of the respective members in
the above inequality we have the same inequality which holds in the whole G. In
fact the left hand side member is equal to 0 on G — R, —R, and T%.zu on (R,
——Rl,\ (R, — R, ~R,) and the right hand side member is equal to 0 on G
—R>R, and T§u on R, — R, ~R,, Téu on R,—R,~R,. Thus we have the desired
inequality. We now construct two least harmonic majorants of both sides and
then we have

S¢umT ot + SeorThnru = SETEu 4 SE.TG.u
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in G. This is the first desired result.
Since (G—R,)~(G—R,) = G—R~R, and (G—R,)~(G—R,)c G— R, ~R,, we have

AGomtt + HGapt = 2u — p*E mom u— o mmmn
= 2u — PG fon-o¥ — P¥ G rov-iolt
= 2u — p*G_ g — p*G_mu = A*Gu + *Gu.
This is the second desired result.

Let # be a minimal function in PH(G) for which p*§u = p*¢,u = u, then p*§,,p.u
= u. This implies that 7¢,z% > 0 and 4% R,)~4(R,) = 4°(R, ~R,).
Further we have

/“*glquu = #*lgnu + /’L*gzu
for any u € PH(G) if R, ~R, = ¢. In fact we have
TGru=Tgu+ Tqu

for any u € PH(G) if R_V\R2 = ¢. This implies the desired fact.
If (G — R)~(G — R,) = ¢, then we have

A*G oratt + 2*G gt = *Gu + A*Gu
for any u € PH(G).
Tueorem 13. For any ue PH(G)
Bontt + Wnp = 2Gu + G,
and
ASortt + BSnrtt = gSu + Ag.u.
Proof. In general we can say that 4§, 46, = 4% p, and 485 dE5, DA 5 o p.
Therefore we have

AIGEIURzu + ngnRzu =

Ko, 0dos@ +\ | Kolp, a¥nu(o)

q
41 R1UR: 4 Ri0Rs

)

S v s Ky, ¢)dou(q) +S Ke(p, q)dou(q)
4 4

)

lIA

"Ry ALRa 1,210 41, R

i

Kty 0dos@+( - Kolp, 0do(@

a
41,k 41,k

= Gu + 2%.u,

if we put

up) =\ Kolp, @do(a).
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By the integral representation of z§ it is the matter of the set of Martin minimal
points which do not belong to 4,§-3. If p belongs to (4, — 4,4 5.)~(4,¢

4,,8_z), then d(p, G— R,) >0 and d(p, G — R,) > 0. Thus there is a suitable
neighborhood N(p) of p such that N(p) c R, and N(p) c R,. This implies that
N(p)c R, ~R, and hence d(p, G — R, ~R,) > 0. Further we see 0<d(p, G —R,~R,)
< d(p, G—R,~R,). Therefore p belongs to 4,5 — na wom and 4,6 — A8 _mom,
simultaneously If 1) belongs to (4f — 484 )~ (4¢ — 4,,4_z,) but does not belong to
(4,6 — 486 ) ~(4,6 — 4,,%_5,), then either d(p,G — R,) or d(p, G —R,) is positive.
Thus we see d(p, G — R,~R,) > 0. This shows that p belongs to 4¢ — 4,9 oz
Let # be canonically represented as in the above, then

Koy, do@) +| | Kalh, 0douta)

A =4, G- Rs

A+ = |

G_y 6 _
47 = 4,G-Rs

< (S +S )Ka@, Ddou(q)
AG Al E; —RiURa AF_ Al,g—m—;

= pngRzu + ﬂg:ﬂlﬂ!u°

THEOREM 14. Let R, and R, be two open sets in G and satisfy two conditions
w¥Gu >0 and p*Gu > 0 for a same minimal function u € PH(G), then p*$,.gu>0
and R, ~R, + ¢. If R, and R, are disjoint, then for any u € PH(G)

Au*gIURnM = /‘L*glu + Au*lai u

If R, and R, are two open sets in G satisfying two conditions gGu >0 and pg,u>0
for a same minimal function u € PH(G), then pG.npu >0 and R, ~R,+ ¢. If R,
and R, are disjoint, then for any u € PH(G)

ﬂglUR:u = ﬁgnu + /-—‘Ighu'

Proof. Let u be a minimal in PH(G) for which pg*§u > 0 and #*§u > 0, then
p*éu = p*Gu =u and p*§, ,pu=u Thus there holds p*znp# =u. This shows
that R, ~R, + ¢. These facts were already stated in [1]. If R;~R, = ¢, then

TIGEH-Rzu = Tglu + ngu
by the definition of 7 mapping and hence there holds
SIGB1+R1 Tgl‘FRau = SIGBA I'Glxu + SGzTgau,

which is the desired result.

Let » be a minimal in PH(G) for which ag§u« >0 and gfu >0, then ifu
= jgfu =u and jpg.ru =u. Thus there holds #f..ru =u. The corresponding
Martin’s minimal point belongs to a common set of R, and R,, that is, R, ~R,#¢.

This implies
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Ala _ AEG—E.UAEG—M = (Af - Alyg~§1)f\(dla - Al’g-kz)
= A1G - Ab g—RlnRa = A1G - Al’ (GG—E-)U(G—Ez)-

We now assume that R, ~R,= ¢. Let # be any minimal function in PH(G), then
we can say either g,z = u or g§ugu =0. If the first is the case, then ggu=u
and gu =0 or af,u=0 and gfu=wu. If the second case occurs, then afu
= pfu = 0. This implies that a minimal point ¢ belonging to 4, — 4,,% _zom
belongs to either 4,¢ — 4,8z, or 4, — 4,8 5, and (4,¢ — 4,8 z)~(dig — 4,%-z)=¢
if R, ~R,=¢. Therefore putting

up) =\ | Koo, 0dou

we have

Eomit =S  Ke(p, )dou(@)

G_ g G e
A=A, G-FuEn

Kop, o)+ - Kol 0douta)

S 46~ 1,8 & ~ 41,6~ Ra
=@ u + .
TueoREM 15. If R, and R, are two open sets in G and R,CR,, then
ARG u =A*%G_5, u + G u, p*Gu = p*G_g w4+ p*Gu,
G < W w2, R Z plop w+ ffu
for any u € PH(G).
Proof. This is easily concluded by theorem 12 and 13.

THEOREM 16. If R, and R,—R, are (most) P-nice in G, then R, is also so in
G. If R, and R,—R, are exterior P-nice and P-nice in G, then R, is also so in G.

Proof. If R, and R,—R, are P-nice in G, then A*§, = p*§, A*G,_z = p*%_z.
Thus we have

PG < WG g+ PG = (G gu + wru = p*g

which implies 2*§,u = 2*&,u for any « € PH(G).
The remaining parts can be proved quite similarly.

Let R, and R, be two disjoint open sets in G. We define two ideal intersection
operators as follows:

L(R,, Ry; G) = #*§, + #*§, — *§,,p, and (R, Ry G) = 4+ 28, — A pe
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We shall now prove the following lemmas.
LemMA 1. Let R, and R, be two open sets in G, then p*Gp*§, = p*§u*g,
=p*¢ or, and pg.p%, = g%.p%, = fS.nr.
Proof. p*§, = ¢*G.ng, is evident. Thus we have
PR = G or = ¥ Finpe
On the other hand by theorem 12 we have
PR Gor + PG Fnr 2 GG+ G,
whence follows that
w¥E + 1 G = G+ G
that is,
¥ Ginr Z 1G5 Gee

Another part of the first identity can be proved similarly. For - operator we can
proceed quite similarly using theorem 13 instead of theorem 12.

_LeMMA 2. PG, = PG, = 24, + G, — Pp and 181G, = 1§% = 2§,
+ xg: - nguRz‘
Proof. By lemma 1 we can say that

AGAG = (I — G rd) — 176 k)

— *G *G _ %G _ %G
=1 — p*§ g — & + PGtk

[ S S T *G _

=1 — p*¢ g — ¢ p + G rone-iw

— _ q . 6 —— — %G ®G _ kG
=1 — p*¢_ 5 — P i + 1 mom = G + A — PGk

The remaining ones are quite similarly proved as in the above.
By lemma 2 we have the following representations
IR, Ry; G) = #*§2%§, = #*G1*G, I,(R,, Ry; G) = 1§28, = 18.24..

TueoreM 17. If G, is P-nice in G, and contains two disjoint open sets R, and
R,, then the vanishing of I, (R,, Ry, G,) implies that of [,(R,, Ry; G,). Lf G, is onto
P-nice in G,, then the vanishing of I, (R,, Rs; G,) implies that of (R, Ry G,). If
G, is most P-nice in G,, then the vanishing of I,(R,, R, G,) implies that of I,(R,,
R,; G,). If G, is onto P-nice in G,, then the vanishing of I(R,, R,; G,) implies

that of I(R,, R, G).

Proof. If T%u+0, then we have L(R, R, G)=S%I(R,R,;G)TE%. 1If
T%u = 0, then we have I;(R,, R,; Go)u = *¥&a*Gy = *§2*Gu*G:y = 0. By the onto
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P-niceness of G, in G,, SGu < co for any u € PH(G,) and further I,(R, R.; G,
< TéL(R,, Ry; G,)S%: holds. For the remaining two results a similar method is
available.

If R,~R,=¢ and R, and R, are P-nice in G, then I,(R, R,; G) = 0 and if R,
and R, are most P-nice in G, then (R, R,;G) =0. If R, ~R,= ¢ and I,(R,, R,; G)
=0 and R,“R, is exterior P-nice and P-nice (resp. exterior P-nice, P-nice and
interior P-nice) in G, then R, and R, are exterior P-nice and P-nice (resp. most
P-nice) in G.

Tuereom 18. If R, and R, are both P-nice in G, then R~R, and R,~R,
are also both P-nice in G. If R, and R, are both most P-nice in G, then R,~R,
and R,~R, are also so. If R, and R, are exterior (interior) P-nice and P-nice in
G, then R,™~R, and R,~R, are also so.

If R, and R, are two open sets in G which satisfy
G+ *Gu = gt + g
and
G+ G = p*Foortt + 15 Fapat

for any # € PH(G), then we say that R, and R, are situated P-regularly in G. If
R, and R, are P-nice in G, then they are situated P-regularly in G. In the above
definition of P-regular situation of R, and R, in G we replace *operators by —operators.
Then we say that R, and R, are most P-regularly situated in G. If R, and R,
are most P-nice in G, then they are situated most P-regularly in G.

Tueorem 19. If R, and R, are situated P-regularly in G, which is P-nice in
G,, then R, aud R, are situated P-regularly in G,. If R, and R, are situated P-
regularly in G, and G, is onto P-nice and P-nice in G,, then R, and R, are situated
P-regularly in G,. If R, and R, are situated most P-regularly in G, and is most
P-nice in G,, then they are situated wmost P-regularly in G,. If R, and R, are
situated most P-regularly in G, and G, is onto P-nice and P-nice in G,, then they
are situated most P-regularly in G,.

Let R, and R, be two opan sets in G. If 1*§ _prmu = A*¢ _rmrmu = 0 for any
u € PH(G), then we say R, and R, truely P-equivalent in G. If A% _zmmmu
= 28, _zwmu = 0 for any u € PH(G), then we say R, and R, most truely P-equivalent
in G,.

TueoreM 20. If R, and R, are truely P-equivalent in G, then R, and R, are
second P-equivalent in G and they are P-regularly situated in G. If R, and R, are
most truely P-equivalent in G, then they ave most P-equivalent in G and further they
are situated P-regularly and most P-regularly in G,.

Proof. By the assumption p*§ _gzmm# = 0 we have
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B optt = G _mrmit + PGt = G u = G, pu
for any « € PH(G), which leads us to a fact A*¢u = 2*¢, pu. Similarly we have
*¢ u = %G, .y and hence A*¢u = *¢ pu. By a simple calculation

= PG s = PG p- TR

= P _mamt = P p-G ronG-Foth
which imply that

PG = P g = PG pong-ko = P*G-gou@-rnlk
and hence

prGu = G = ¥ pu = (¥ Gap

for any # € PH(G). This is the first d_esired result. The proof of the remaining
part is quite similar and then we use A§u = A*Gu.

TureoreM 21. If R, and R, are P-nice and second (or interior) P-equivalent in
G, then they are truely P-equivalent in G. If R, is P-nice in G and if R, and R,
are truely P-equivalent in G, then R, is P-nice in G.

Proof. If A and B are disjoint open sets in G and p*§u = p*Gu for any
u € PH(G), then p*§u = 0. Indeed, if u*§u + 0 for some u € PH(G), then we have
p¥Gu*Gu = p*Gu + 0 but p*¢u*§u = p*§.pu = 0. This is untenable.

By the P-niceness of R, and R, in G and hence that of G—F, and R, ~R, in
G, we can prove the P-niceness of R,—R,~R, in G. Thus we have by a simple
calculation

PG _mrml = G _mrmit.
Similarly we have an inversely directed inequality and hence we have an equality
VA mmmu = (G, -mmu.

On the other hand (R,—R, ~R,)~(R,—R,~R,) = ¢, therefore we can apply a fact
stated firstly. Then we have the vanishing of each quantity. By the P-niceness
of R,—R,~R, and R,—R,~R, in G, we can say

G mrEu = PG mmmu =0
for any # € PH(G). The remaining part is evident.

THEOREM 22. If R, and R, are most P-nice and first (or interior) P-equivalent
in G, then they ave most truely P-equivalent (and hence most P-equivalent) in G.

Proof. If A and B are disjoint open sets in G and g§u = g§u for any
ue PH(G), then pGu =0. Indeed, if iu + 0 for some u ¢ PH(G), then we have
28pSu = pGu+0, pGuSu = p§.su =0, which is untenable. By this fact we can
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proceed quite similarly as in the preceding theorem.

THEOREM 23. If R, and R, ave truely P-equivalent in G, and G, is P-nice in
G,, then R, and R, are also truely P-equivalent in G, If R, and R, are truely
P-equivalent in G, and G, is onto P-nice and P-nice in G,, then R, and R, are
also truely P-equivalent in G,. If R, and R, are most truely P-equivalent in G,
and G, is most P-nice in G,, then R, and R, are also most truely P-equivalent in
G,. If R, and R, arve most truely P-equivalent in G, and G, is exterior P-nice and
P-nice and onto P-nice in G,, then R, and R, are most truely P-equivalent in G,.

§6. Definition of paths We shall define and discuss two sorts of paths.

Let ¢ be a minimal point in 4¢ and let y be a curve which determines the gq.
Let D be a domain in G for which y is a part of aD. If T$Ky(p,q) =0 for any
D, then we say y a non-tangential path to q. If there is a domain D for which
TSK4(p, 9) > 0, then we say r a tangential path to q.

If ¢ is an isolated minimal point in 4¢ or 4¢, then to construct a tangential
path to ¢ is a very important problem, that is, in this case it is not yet solved to
guarantee the existence of the path.

If g € 4¢ is not isolated in 4¢, then there is an infinite number of minimal
points in any e-neighborhood N, of ¢, where N, is a point set on which de(p, ¢)<e,
pedi. Let R(r,p) be a domain bounded by y and by a defining tail of p € N..
We can use this R(y, p) as a testing domain D in the definition of tangential path
to q.

If there is a testing domain D in the right hand side of y for which

T§Ka(, q) > 0,

then we say r a left tangential path to q. Similarly we define a right tangential
path to g. It may occur that 7 is simultaneously a left and right tangential
path to ¢, then we cannot choose two disjoint testing domains D, and D, one of
which lies in the right hand side of 7 and another of which lies in the left hand
side of y and for which

T§.Ke(p,q) >0 and T§.Kq(p,q) > 0.

Indeed, if it is possible, then D, ~D, = ¢. Therefore if y is simultaneously left and
right tangential to ¢, then any testing domain D for which

T3K«(p, ) > 0
lies in both sides of the curve 7.

Let {D(#)} be a sequence of non-compact domains for which
u(t) = Thu > 0 and THGu(t) = u(s)

for a minimal » € PH(G) and lim (diameter of D(f)) =0, then we say {D(#)} a
t—oo
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defining sequence of a minimal point of G. And this sequence defines only one
point in 4¢ which corresponds to the function «.

Let D(#) be a domain defined by «# > ¢ if # is a singular minimal and « > M
(1—1/#) if # is a bounded minimal and sups; ¥ = M. Then {D()} is a defining
sequence of a minimal point of G, since THE (u—t)=u—s and TBE (u—M(A—1/1)
= u M(1—1/s) in the respective cases.

TuroreM 24. If y is a tangential path to q in the above sense, then there is a
defining sequence {D(t)} of q for which D)~y = ¢ for any t > t, and vice versa.

Proof. Let R be a domain for which Kn(p, q) = T¢Ks(p,q) > 0. Let D(f) be
a domain defined by Kpn(p, q) > ¢ if K,(p,q) is singular minimal or K,(p,q) > M
1—-1/¢) if Kp(p, g) is bounded minimal and suppKn(p, ) = M. Then we have

To8,Ke(p, q) = TBty T§Ks(p, @) = T3y Kn(D, )
{Kp(p, q) — t, if K¢ is singular,
Kn(p, q)— M1 -1/, if Kg is bounded and M=suprKon(p, 9)<0.

Thus {D()} is a defining sequence of q. Further D(¢)~7 = ¢. since Kpn(p, ¢)=0 on
7. This is the desired conclusion.

Inversely if there exists a defining sequence {D(¥)} of ¢ for which y~D{#) = ¢
for any ¢ >t, then there is a domain R for which R~y =¢ and R~y =17 and GD
R>D() for t > t,. Then

0 < TG, Ka(p, @ = 154, TEKa(D, 9),
which shows that T§Ks(p, q) > 0. This is the desired result.

THEOREM 25. If R is a domain such that 4, =4q and OR ave two non-
tangential paths ending at q, them any non-compact curve lying in R is also a non-
tangential path to q.

Proof. 1If there is a non-compact curve y lying in R and being tangential to
g, then there is an R, for which T&Kea(p, q) > 0. Then R, contains a part of dR
and does not contain another part of dR. Thus R, = R,™~R is a domain for which
T¢ Ka(p, q) > 0. This shows that a part of dR is not a non-tangential path to g,
which is untenable.

THEOREM 26. Let q be any point in AE, then any level lines of the corvesponding
minimal ending at q is a tangential path to q.

Proof. Let u, be the corresponding minimal to ¢ and #, = « be the level lines
ending at ¢q. Then the domain D = {uy > 5 > a} is a member of a definding
sequence of the g, since T§u, = u; — p and Dy {ug = a} = ¢.

TurOREM 27. Any non-tangential path y in G ending at a minimal point q
intersects with all the level curves of the corresponding minimal function Ke(p,q).
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Further this implies im Ku(p, q) = supe Ko(p, ).

Proof. 1If not so, then there is a positive member § such that the domain D,
satisfying K(p,q) > 0 and the curve y have no common point. Then T§Kea(p, q)
= Ko(p, q) — 0 > 0. This shows that y is a tangential path to q.

In this theorem we say that y intersects with all the level curves if it
intersects with all the level curves {Kq(p, q) = a} for supes Ke(p, q) > a > a,.

By the same reasoning we can say that any non-tangential path 7 to ¢ inter-
sects with all the level curves of T§Ks(p, q) if it is positive and

nan' T$Ka(p, q) = sup T$Ka(D, @)-

If for a suitable continuous function e(#) with lim e(f) = 0 two curves y; = 7,(f)

t—o0
and 7, = 7,(f) satisfy dg(r.(f), 7.()) < <(¥), then we say that two curves are &(f)-near.
This depends on the parameter #, however it is a matter of sufficiently large /=¢,.

THEOREM 28. If 7 is a tangential path to qed$, then there is a curve y' which
is e(t)-near to v and defines q and is also tangential to q.

Proof. By the assumption there is a domain D for which Kp(p, )= TEKe(p, q)
>0 and whose boundary 0D contains y as a part. Then any level curve
={Kp(p, q) = a} does not intersect with 7. Further /, lies in D and is a tangential
path to g. Then between /, and 7 there is a curve y’ having desired properties.

TueorREM 29. If a defining tail y of qedf intersects with all levels I, of any
TeK(D, q) with height a(> a,), then v is a non-tangential path to q.

THEOREM 30. If 1 is a non-tangential path to qedf, then any curve lying ¢
(t)-neighborhood of v with sufficiently small «(t) is also a non-tangential path to q.

Proof. 1If in any sufficiently small ¢(#)-neighborhood of y there is a tangential
path 7’ to g, then 7 is also tangential to ¢ by the above theorem.

A method choosing a suitable &(f)-neighborhood is determined in the following
section.

§7. Modification theorems.

THEOREM 31. Let R be an open set in G with two-sidedness condition. Then
there are two open sets R' and R" with two-sidedness condition satisfying the follow-
g conditions :

(i) R'DRDOR’” and 0R' ~0R = ¢, 0R" ~0R = ¢ with the exception of any boundary
point belonging to 0R ~0G if it exists,
(ii) Al)g = Alylg‘ = Al’}%”, Alyg—ﬁ = Alyg—ﬁ’ = Alvg—ﬁ”) zmd

(iil) 4f(R) = 4f(R') = 4f(R"), 48(G — R) = 4 (G — R") = 48(G — R").
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In order to prove this theorem it should be noted the following trivial facts:

If D is different from R only in a compact part, then the conclusions of our
theorem are evidently true with the exception of the condition (i).

If a sequence of open sets D tends to R and each member D is different from

R in a fixed compact part, then any member of PH(D) tends to a member of
PH(R).

Proof of theorem 31. It is sufficient to prove our theorem for any normalized
family in each connected component of R. Such a family is denoted by Q(R).
Let R, be an open set contained in R and defined by the following conditions:
The boundary dR; consists of three parts. The first one coincides with dR and

lies in W — W,. The second one is a collection

oW, oW, of curves every of which joins two points on

OW and lies in R~ W, and lies in a small neigh-
borhood of 9R. The last one is a collection of
two curves which are two parts joining the

points dW,~dR and the end points of the second
one along dW,. In this case we can construct
2 (W, ~R,) so near to R~ W, that

sup max u(p) = e.
uecQR) pe a(Wlf\El)

Then we have

0=u(p) — TRu(p) = ¢

in R,. Next we construct an open subset R, of
ow, oWs R, by a similar process which is done in
(Wy— W) ~R,. In this process we can construct
R, so near to R, that

Fig. 11

oW,

0 = TBu(p) — TETEu(p §—§~

in R,. We continue this construction process ad

& infinitum, then we have at the n th step

0 < Th,-au(p) — TH " Thnoitt(D) S s

By the method of construction of {R.}, Ra
decreases monotonically and hence tends to some
Fig. 12 set X, & ¢. Further we can say that

Up) ¢ 3 5 = Th (D) = 1(D)

in X, c R.. TE,u(p) then decreases monotonically and hence there exists a limit
function
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lim 7%, u(p),

n—oo

which is also harmonic in X, being positive or not. Since R. D X,, there holds an
inequality

lim TEu(p) = TRu(p)

in X,. On the other hand it is evident that 7%, # =u in R, and especially on
OWn~Ry = 0W,~X.. Further T, u = 0 on R, ~Wy = 0X.~ W, Therefore there
holds an inequality #, = T%,u in R~ W, where u, is a positive harmonic function
in Ry~ W, defined by the boundary condition #,=# on Wy ~Rn=0Wn~X,=0 on
0R, W, = 0X,~Wy. This shows that in X,

Bu = lim TE,u,
n~-»co

since T%u = lim u, there. Thus we have

n—oo

u—2e=limTE,u=TEu=u

in X,, whence follows that 7T%u e PH(X,) for any u e PH(R). If V belongs to
PH(G) for which T§V > 0, then by the above fact TS V=TE&TEV>0. If T¢.V>0
for a VePH(G), then 0< T$,V=TZ%TEV implies T§V > 0. This shows that 4f(X.)
= 4%(R).

Next we shall construct another set Y, contained in R in the following manner.
Let R' be an open set having the same structure as R, for which we impose the
following conditions: for any v € Q(R)

sup max SZZETS_qv(p) <.
TG _Fv>0 DpEIR~W1

Then we have for any v
0=S¢8Tg wo— TG zv=c¢

in G—R. Next we construct an open set R? having the same structure as R, for
which we have

0 = S-EiSG-B TG .y — SS-ETG Rvé%
in G_— R. We continue this process ad infinitum, then R» decreases and hence
G — R» increases monotonically and tends to a set Y,.. Further

3
1

—R —pY
SEE o =11 SEE.To o

increases monotonically and satisfies

n—l1

0=<SG=E"T¢ v — TS Rv<sZ 2 < 2
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in G—R. Thus there exists a limit function

lim S¢-£" T4 _zv

n—00

for any v with T¢_zv > 0 and there holds

0< TG z0<1limSEE"TS zv < Té_ 0 + 2.

n—rc0

Evidently we have

S8-ETG_ zv = lim S8 TS _zv

n—o0

in G— R. On the other hand there holds
SGETG v 2 T v
on W, ~(G — R) and hence
SEE TG 40 2 tn

in Wu~(G — R"), where u, is a positive harmonic function in W, ~(G — R®) defined
by the boundary condi_tion: tn =TG50 on OWn~(G—R),=0 on any other
boundary of W, (G — R*). Since u, tends to a function

Sg:gg G _wv
in G — Y., we have

lim Sg:fg" T¢ v = Sg:ﬁ‘Tg_,@v

n—oo

in G— 7Y, for any v with T§_z > 0. Therefore there holds

T¢ zv+2e=1mSGE Tg zv=S85CT¢ qw=T¢ zv>0
n—s»c0

in G—R. Thus we can say that
A8(G—R) = 48(G - 7).

In R—X.-Y. we can write a collection of curves dR” such that X;~Y.cR’CR
and dR” ~0R = ¢ and R” satisfies the two-sidedness condition. For this open set
R” we have

A5(R") = 4%(R) and 4%(G—R") = 48(G—R).

We further modify the above R” as follows: For any point p on dR there exists
a d(n)-neighborhood N(p), that is, the set satisfying de(p, q) < d(n), where i(n)
satisfies

o(n) = dg((Wn— W) ~G, 49)/n.

Let Z; be a set {N(p)}, pedR. In (R—X.~Y.)~Z; we can write a collection of
curves 9R” as before. By its construction we have further for this R”



LINEAR MAPPINGS ON RIEMANN SURFACES 225
4G =4.% and 4§z =4G ;.

Similarly we can construct an open set R/(DR) with the two-sidedness condition
satisfying the desired facts.

In a way we can prove the following another modification theorem.

THEOREM 32. Let R be an open set in G with two-sidedness condition. Then
there is an open set R’ in G with two-sidedness condition satisfying the following
conditions :

(i) R'DR and 0R' ~0R=¢ with the exception of any boundary point belonging
to OR -0G if it exists, and

(i) 4F=4FR).

_Proof. Let R, be an open set containing R for which R, ~(W— W) =R (W
—W,). We impose the following condition to R;:

sup sup SEu(p) <.
UEY(R) pPEIR~W1

The method of construction of R, is quite similar as in the former theorem. Then
we have

0=SBu—u=-

in R for any ue@Q(R). Similaljy we construct an open set R,(DR)) such that
R, W,=R, W, and R, (W—W,)=R, ~(W—W;) and

0=S&SEu—SEu=< 57

for any ueQ(R) in R,. We continue this process ad infinitum, then {R,} is an
increasing sequence and hence X.=lim R, exists. Further we have

n—00

n—1
0=SE"u—u=sed,
1/=02v

in R and SE"x increases monotonically in R. Thus lim SE"« exists and satisfies
n—>00

an inequality

SEu=1im SE" u

in R for any #€Q(R). On the other hand we have
SE" u = u,

in Rn~ Whn, where u, is a positive harmonic function in Rs~W, with boundary
value #n =% on 0 W ~Ra=0Wy,~X:=0 on dRy~Wn=0Xe~Wy. This implies that

SEu <1im SE*u

n—rco
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in R, since im  #, = SEu. Therefore we have u < S¥u =1lim SE"u < u + 2¢

n—00 n—oo

in R for any ueQ(R). This shows that 4F can be imbedded into 4% by S¥. We
can construct a collection of curves lying in X.—R. Then an open set R’ bounded
by this collection of curves is the desired one. Since we have SE AFc4F, SE 4%
=4F(R), which is the desired result.

Chapter II. Extensions and other linear mappings in PH(G).

In this chapter we shall extend our linear mappings in PH(G) in order to be
able to apply them to a more general set R in G and further we shall define several
other linear mappings in PH(G) making use of our earlier mappings in order to
reveal several other features of the given sets. In this chapter, save when the
contrary is explicitely mentioned, we do not assume that any given sets satisfy the
two-sidedness condition. We have already explained that in our general case we
cannot say an inequality ¢*¢ = z§. Therefore many situations become very com-
plicated and troublesome. Thus we start from a new view-point and redefine several
operators in such a manner that they have various geometric or potential-theoretic

meanings.

§1. Linear mappings in a general sets. Let G be a subdomain of W satisfying
the two-sidedness condition. Let R be a subset of G whose connected components
cluster at the ideal boundary of G. Let U be any open set with two-sidedness

condition containing R and V be any open set with two-sidedness condition contained
in R. Then we define outer operators and inner operators in the following manner :

A = mfo A*G = 1rl1,f *G M*§ = inf p*§, MG = inf i§
1 U

and
4% = sup 2§, A.f = sup 2, Mif = sup pi*§, M§ = sup if.

Evidently we have their existence and the inequalities
A§ = A%¢ = M*¢ = M§
Vil Vil Vil VI
Ai = 4G = My = M.

THEOREM 33 If R satisfies the two-sidedness condition and is open in G, then
there hold A XG A¥G = A*G = 2%, M*E = M*G = p*§, M Mg =iu§.

Proof. Any open set U with two-sidedness condition containing R is a member
of open sets with two-sidedness condition containing R. Thus we have
A% =inf 2§ = inf 2§ = A§.
UDR USR
Further R is an open set with two-sidedness condition containing R. Therefore
there holds 4§ = A§. By the modification theorem we can construct an open set U



LINEAR MAPPINGS ON RIEMANN SURFACES 227

with two-sidedness condition containing R for which 4,¢ = 4,8 =4,§ and 4,§_ 5
=4,§_r=4,% 5. This implies that 1§=1§ and 19-5=14-z. and hence 4¢ = 1§ and
M¢ = p§. Thus we have the desired result:

In our case we have T¢u=T§u and hence u*§u= p*¢u for any ue PH(G).

Then we can construct an open set U with two-sidedness condition containing R
for which 48(R) = 4¢(U) and 45(G—R) = 44G—U). This implies that H¥G = p*s
and p*¢_p = u*¢_; and hence

M*G = p*¢ = p*g = M*§ and A*¢ < 2*§ = *§ < A%,
Thus we have the desired results:
M*S = p*g = M*, A¥G = JRG = [*g,

TueOREM 34. If R satisfies the two-sidedness condition, then there hold A8
=AG= MG=MG= M*G=MGE=M{=Mg.

Proof. Ig R satisfies the two-sidedness condition, then the closure R and the
open kernel R of R satisfy the same condition. And we have

A= Ag= A= A1§=17.

On the other hand there holds ¢
16 = A

A3

= A§ by the preceding theorem. Therefore

f=48=13.

I

The remaining equalities are quite similarly established and hence the inequalities
reduce to the trivial ones.
By this theorem it is reasonable to define the following notion: If 4§ = A$,
A*G=A,8, M*¢=M,§ and M¢§ = M§, then we say that R is almost two-sided in G.
We shall here formulate two more general modification theorems.

THEOREM 35. Let R be a subset in G such that R=RinG. Then thereis an
open set R’ with two-sidedness condition in G which satisfies the following conditions :

(1) R'DOR and R’ ~0R=¢ excepting the points on 0G~9IR,
@ 48 =45=4% 485 =08 =25, and
(3) 4E(R') = 4§(R) = 4¢(R), 44(G—R’) = 49(G—R) = 4§(G—R).

THEOREM 36. Let R be a subset in G such that R=X, X=R in G. Then there
is an open set R" with two-sidedness condition in G which satisfies the following
conditions :
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(1) R’CR and 0R" ~0R = ¢ excepting the points on 3G ~0R,
@ 4§ =45=4% 4G =45 =043, and
@) 46(R") = F(R) = 4F(R), 4(G—R")=4F(G—R)=4G—F).

In order to do the proof of these it should be here remarked that a fact R=p
in G is equivalent to a fact that there is no inner slit boundary of R, that is, the
part of dR which does not contain any accumulation point of the set (G—R)° and
afact R=X, X=Rin G is equivalent to a fact that there is no outer slit part of
OR, that is, the part of 0R which contains no accumulation point of the set R.
Thus we can proceed to the proof in a quite similar manner as in the earlier

modification theorem.
In the sequel we always denote Xr and Yr as the open kernel of the closure

of R and the closure of the open kernel of R, respectively. Now we define the
first open kernel operators as follows:

A8 = /1_,?, 4*102:/1*;;’ M*§ = M*G M§= g.
Further we define the second open kernel operators as follows:
A= MG, A#G= 47, MG = M*G,, M= M,
Then we have evidently the following inequalities :
Ag= 4= Mg = W5

Vi Vi Vi Vil
AG > A*G > M*G > MG
Vi Vil VIl Vil

A5 = 46 = MG = M.

THEOREM 37. If Xr= R, then the first open kernel operators and the second
open kemel operators and the znner operators coincide with each others, respectively,
that is, A% = A% = /% A*g G, M*§ = M,§ = M,§, Mg =M$ =M§.

Proof. As is already remarked, the condition Xp = R is equivalent to a fact
that there is no inner slit boundary of R. Further R is an open set with no outer
slit boundary. Therefore any open set contained in R is always contained in the

closure of R in this case. Then we have

Now we can apply the modification theorem 35 to R and Xz and then we have the
following fact: there is an open set U SR with two-sidedness condition in G for
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which 4,§=4,%, 4.%-6=4.%-vn A"'(U) A8(R), 49(G— 17) 45(G—Yyg) and oU

aR ¢ excepting the points on OG,\GR Since Xz = dR, we can say that Rc X r
cU. Thus we have AIU— 4.8, =4.% 48U) = A8(X ) = A9(R), 48(G— U) = 48(G
—Yr) =49G—Xg), 4,85 =4, 8-y, = 4,%-5, Therefore we have

YR
AG= 19 =7§ =19, /%G = A%¢_ < i*§ = A%G,
=

*
=0 ’T"’

Proof. As is already remarked, the condition R = Xz is equivalent to a fact
that there is no outer slit boundary part. Thus Xz and hence R are sets with no
outer and inner slit boundary part. Therefore any open set with two-sidedness
condition containing R contains XD R>DXz. Thus we have

16 16 16 16 Q@ *a *@G *G
AEEAXREAREAXR A* >A >A >AXR7

*G *G *G *G q q /G
M*S = M*S, = M*G = M*$,, MS= MS, = M§= MS,.

On the other hand 6Xp=0R=0Xr=0R. By the modification theorem we can
construct an open set UDXg for which 0U~0Xzr=¢ in G and 4,§=4,%, 4.5 ;
= 4,8 _zp A9(U) = 48(Xz), 49(G—U) = 49(G — Xz). Further U satisfies the two-
sidedness condition. Thus we have the first half of the desired equalities. Further
Y coincides with R. Then any open set containing YR([%) and satisfying two-
sidedness condition in G contains R(Xz). We can construct such an open set U
with two-sidedness condition in G that U contains Yz and K and oU~0R=¢ and
4,86 =4,8p 4,8 5=248 yr A9U)=48(Yr), 44(G—U) = 49(G—Yg). This implies
U2 R = Xz>R>Xzr and hence we have the second half of the equalities. The last
equalities are also obtained by the modification theorem similarly.

THEOREM 39. Let R be a general set in G, then
A=Az Af=ff= M=

Proof. Let g be a point of 4,¢, then there exists a point-sequence {g.} such

that g.€R, du(gn, ) —0 (n—o0). For each n there exists a point ¢g.'€R for which
de(gn’, gn) < &n and e, —0 (m—co). Then by the triangular inequality

ds(gn’, @) < degn’, gn) + do(gn, 9) — 0 (n— 00).
This shows that ged, §c4, ¢ for any UD R with two-sidedness condition. Therefore
we have
N4G24%.

USR
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This implies the following inequality :

- .- -
G=inf1§ = 13.
U3R

It is evident that 4§ = ¢. On the other hand we can construct an open set U

with two-sidedness condition containing R such that 4,¢=4,§ and 0U~0R = ¢ in
G. This implies that 2 = 2§ = A§. This shows that 1§= 1¢. In a way we have

G
n Al,g = 41,1? .
USR

The set R—R consists of a set of outer slits of R and a part of dR. Since any
component of outer slits has no inner point, any open set U contained in R has not
its component in that component of outer slits. Therefore any open set V containing
R contains any open set U contained in R. This implies that

48 =A% = 48

Further we can conclude by the modification theorem applied to R that A§=A4¢. In
a way we have
U‘Al,g = Alg ’

where U runs through all the open set contained in R.
THEOREM 40. M*§ = M*§ = M*S = M*§ = My§ = My§.

Proof. The set R—Xr, Xz = R, consists of a number of outer slits lying in G.
Let 7 be the part of outer slits of F. For Xz we can apply the modification
theorem and we can say that there exists a suitable open set U with two-sidedness
condition containing X for which 4§(Xz) = 4§(U) and 0Xr~0U =¢ in G. Let 1y
be a part of r not lying in U. For any u#e PH(G) we construct a positive harmonic
function #, in Wy ~(U + yv) with boundary value # on oW, ~(U -+ y) and 0 on
oU ~Wu + vu~Wan. There is no such function if 7y exists. So we conventionally
say #. positive harmonic. Then w, tends to a positive function T'§.,,u or zero
function which is harmonic in X and vanishes identically on 7y. This limit func-
tion coincides with 7§« in Xz. This implies that 7 (or 7o) has no effect for any
T mappings. Thus we have 48(R)= 4(Xz) = 45(Xr)=4¢(U). Therefore we can
say that

p4G = MG = M*%, = %%,
Similarly we can say that there exists an open set U’ with two-sidedness condition
containing R for which 4¢(U’) = 48(R) and U’—U has no effect for any 7" mapping.
This is done by a slightly modified method of proof of the modification theorem.
Then we have
1§ = = M*g = p*§.

Any open set containing R contains any open set contained in R. Thus we have
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M*¢ = M,§. Any open set contained in R is contained in R. Thus we have M,§
= M,§. Since RDR, we have My§ = My Thus we have M,§=M,§. The
remaining inequality is evidently valid by the definition. In a way we have

N 48(U) = 4§(R) = 4{(Xr) and U 4§(U) = 4{(R).
USR UcR

By the above analysis we have

N dF—A49G —U)) =48 — U 459G — U)=4¢ — U 48(V) = 4¢ — 45((G — R)°),
U>R USR VcG-R

N (4¢ — 48(G — U)) = 4¢ — U 4EV) =4 — 45(G ~ R)°) = 4¢ — 48(G — R).

USR

On the other hand we halve (G—R)° =Reeve=Roe=G—R, where ¢ and b are symbols
showing G—R=R¢ and R=R’. Therefore we have 4¢(G—R)=45(G—R)°). This
shows that

A =T— M*(Ga—m' =1— MG p= /1*,%' .
Further we see that R c R implies R* C Rv¢*, Further R® D R implies R
CRvevevec RevedeC Rbe, since R°°=R°CR. Therefore we can say that Rtc= Rbeveoe

that is, G — R = (G—PR) = X4z This shows that
A8 —4HG—R)=4F—4¢(xg_5) .

=4f — U L6V)=n (4f — 4G - U)),
VeXqg-f

-R UcXp

whence follows that J*g:A*ng/I*g. Since there hold

M= A*=inf 2*G =T —supp*§_g=1—sup p*§
Uk Usk veG—p#

=I——M*g_,3=1—M*%_—R,

Ay§=sup 7§ =1I—inf p*§g=1—inf ("G py
UCR UcR UcR

= [—inf 1*¢=I—M*9_p,
Vo(G—R)° ©

and
we have

Evidently we have

Similarly we have the following theorem.
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THEOREM 42. MgzMgzMg;Mg;Mg=Mg.
The above four theorems clarity the situations of the former preparatory

theorems.

§2. The geometric, topological and potential-theoretic meanings. By two
theorems 37 and 38 it is reasonable to define that R is almost equal to Xr in G or
R is almost equal to Xz in G according as all the open kernel operators coincide
with the inner operators or with the outer operators, respectively. Then we have
the following fact: If R is almost equal to X in G and simultaneously R is almost
equal to Xz in G, then R is almost two-sided in G.

All the operators introduced above have their own geometric, topological or

potential-theoretic meanings.

TuroreM 43. If Xz = ¢, that is, R has no inner point, then all the inner
operators vanish identically and further M*§=0. If R= @, that is, R has no inner
point, then all the inner operators vanish identically.

Proof. The assertions for all inner operators are evident by their definitions.
Since T¢ =0, we can say that 7¢ =0 for a suitable open set with two-sidedness
condition containing R by the modification theorem. This implies that 0= nxg
= M*¢=0.

THEOREM 44. If R is dispersive in G, that is, any connected component of R is
compact, then My&=0. If R is dispersive in G, then M*§=0. If Xg is dispersive
in G, then M,%=0.

Proof. 1f Ris glispersive in G, then any open set U with two-sidedness condi-
tion contained in R is also dispersive in G. Then 7§ =0 and hence p*§=0. If
R is dispersive in G, then there is an open set U with two-sidedness condition
containing R which is also dispersive in G. Then 7§ =0 and hence x*§= 0.
Similarly we have the last assertion.

THEOREM 45. If R clusters irvegularly at A8, then A*¥¢=0. If R clusters ir-
regularly at 4¢, then 44§ =0. [{ R wregularly clusters at 4%, then 4,4 =0. If Xg
irregularly clusters at A4S, then A*§ = 0.

Proof. By the irregularity of F we have T§_zu, >0 for some gedf and the
corresponding minimal #,. Then by the modification theorem we have T¢_; u,>0
for some open set U with two-sidedness condition containing R. This implies that
¢*4_5ug = ug and hence #*§u, =0. By the definition of 4*¢ we have 4*¢ = (.

If R can cluster only at 4¢ — 4¢, then we say R a non-effective set in G.

TurorEM 46. If R(Xz or B) is non-effective in G, then 1A% or 4%) vanishes
identically and vice versa.

Further these results can be localized around a neighborhood of a single point
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gedf. Let N: be a set defined by the condition da(p, q) <<¢, peG. If we replace
R by N.~R we arrive at the similar localized results.

We can introduce several other notions concerning the geometric or potential-
theoretic situations and further many other P-niceness of R in G and many other
P-equivalency of R, and R, in G. We shall postpone the discussions and applica-
tions of almost all their parts.

Let 7 be a curve tending to the ideal boundary of G. Let A¢ and A*¢ be two
operators defined by

respectively, where R is an arbitrary open set containing y and satisfying the two-
sidedness condition and the infimum is taken over all such domains. _

If y is a tangential path to a minimal point gedf, then A*¢=and A¢ =+ 0.
This is shown by the modification theorem and the definition of tangential path.

THEOREM 47. If A*¢ =0 and A€ + 0, then r is tangential to any point in 4,8.

Proof. By the modification theorem we can construct an open set U with two-
sidedness condition for which 4%(U) = 49(y) = ¢, 486G — U) = 484G —y), 4,§ = 4, %
and 4,% 5= 4,8_,. Then by the assumption 4*¢ =0 we can say that 48(G—U)
=48(G —7)=4f¢. If q belongs to 4,%, then TG ;Ke(p,q) >0. Thus 7 is tan-
gential to ¢.

It should be here noted that 7 is tangential to two minimal points simultaneously
and hence it is not a tangential path, that is, y does not determine a minimal point.

THEOREM 48. There is no curve being tangential and approaching to any
neighboring minimal point around a minimal point q if such a minimal point
always exists in any neighborhood of q.

Proof. If r is tangential to a minimal point ¢ and to any minimal point p,
P+ q, lying in N.(q): {gedf, de(p. q) < ¢}, then 7 oscillates between p and q. Thus
7 intersects almost all level curves Kg(7, s) corresponding to a minimal points lying
between p and ¢q. This shows that y is not tangential to s, which is a contradiction.

Chapter III. Linear mappings in PHB(G).

In this chapter we shall apply our results in Chapter I to the class PHB(G)
and then we shall obtain several sharpened results. In a general case 7§ mapping
is an into positively linear mapping from PH(G) to PH(R), however its restriction
to the class PHB(G) is an onto mapping from PHB(G) to PHB(R). Thus S map-
ping is an into univalent mapping from PHB(R) to PHB(G). This difference brings
us some essential effects to our results. Further in PHB(G) there is a sort of
canonical functions such as the harmonic measure.
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Evidently we have

8 u(p) = *Gu(p) =S Ku(p, @) dou(a)

4G — 48—F)
and

1S u(p) = p*Gu(p) =8 Ke(p, @) dou(q)

for any ue PHB(G), when u(p) is represented canonically by
up) =\ , Ko, @ doutq).

We shall make use of these notations A and u instead of A* and #* through this
chapter and we do not discuss the - mappings in this chapter, though there are many
problems to be treated. Through this chapter we make use of a notation wg as
the usally availed standard harmonic measure in G. This may be the constant 1,
if GGOEB.

§1. B-niceness and B-equivalency. We can classify the relative situation of R
in G in reference to the harmonic measure wg as in the following figures.

48 (B)

U

R
Fig. 13 w=210o=po>0 Fig. 14 w=20>po>0
( »
: € C
Fig. 15 w>io=po> v Fig. 16 w>i0>p0> 0

Fig. 17 0>20>po=0 Fig. 18 w>lo=po=10
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If 28u = p8u for any ue PHB(G), then we say R a B-nice subset in G. If this
holds for any GOR, then we say R an extremally B-nice subset.

If 28, u = 2%, u and p& u = pg,u for any ue PHB(G) and for given two subsets
R, and R, of G, then we say that R, and R, are B-equivalent in G. If this
equivalency holds for any GO R,“~R,, then we say that R, and R, are perfectly

B-equivalent. We denote this R, 2 R,. These notions of equivalency of two subsets
R, and R, are different from the following fact: PHB(R,) is equivalent to PHB(R,)
as linear spaces.

We should mention here two examples by figures. The first one shows that R
is a B-nice subset in G but it is not extremally B-nice. The second one shows
that R, and R, are B-equivalent in G but they are not perfectly B-equivalent.

G, G,

Fig. 19 Fig. 20

A8u = p§ u for any ue PHB(G,) but there is a member # of PHB(G,) for which
A% u > p§ u, for example the harmonic measure wg,.

AGu=28u piu=pgu for any uePHB(G,) but there is an element # in
PHB(G,) such that 2§ u > A% u, p% u= pu, for example the harmonic measure
waz.

If R is P-nice in G, then R is B-nice in G. However the inverse is not true
in general. This is shown by Fig. 14. Further we can see by an example which
is easy to construct that R, and R, are not P-equivalent in G even if they are B-
equivalent in G.

§2. Algebraic calculations. In this section we shall list several algebraic pro-
perties of two mappings 4 and s.

(1) 2u+ pG-zu=u, AGu p¢ zu=GHM min (A§u, p§_zu) =0 for any ue PHB(G).
(2) TG 528u="Tg zufu=0 for any ue PHB(G).
(3) pfr8u=28p8u=pguriu=pfu and A A8u = G u for each ue PHB(G).

(4) pé-rpfu=pg s iGu=2G pf zu =Gz pfu=pf ¢ ru=0 and A§_z u=2§ 23 zu
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=8u — pGu=29_ru — pg_su for each ue PHB(G).
(5) Let G, and G,DG, be two subregions of W containing R, then for each
ue PHB(G,) we have
TG pgSGu=pfuand TEIF SGu=13u.
And for each ve PHB(G,) we have

v =S pg Tgv and 2§v = S A% Tév.

Proof. TG gy S§ = T4:S§ TF T4 S%
= T§SESE T = S§ T = -
S5 T = S5 SF T T = SF T = 1.

By the definition of S§: we have S # =u in G, and hence 2§ S§u = 2§'u in G,.
This implies that 7§24 S§u = A§'» in G,. On the other hand we can say the
following relations by the first equality and by the monotoneity of u«

1 — 1 —_ G: QG2 — G2 ,,G2 _ QG2
u=u—pG su=T§SGu— TG pg SGu
= T&SGu—T&p& 5 Shu=TE§ 25 SGu

for any ue PHB(G). Thus we have the equality.
For any ve PHB(G,) we have v = T§ v in G, and hence v = 2§ T% v in G,.
Therefore we have A§'v = S% 2§ T§: v in G,.

Evidently this (5) corresponds to (7) in Chap. I, §4. In that formulation the
second relation is an inequality in general, however in this (5) the second relation
is an equality. This difference occurs from a different point stated already at the
top of this chapter.

(6) G 2Gu=123u, pf 2Gu= pf piiu=pfu and pfu < p§u <2 u for any

ue PHB(G,). If G, is B-nice in G, or more strongly G, is extremally B-nice and
G,CG,, then

A3 pGu=1%u.

(7) Forany ue PHB(G,) A% 2§ u = 2§ u, AG: p§tu = G p§u = p§u and 2§u=p 3% u
= pgu. If G, is B-nice in G,, then A§'u = p§ 2§ u and 2% s A% u = 0.
(8) If G, is B-nice in G,, then for any ue PHB(G,)

ifu=SGig TGqu.

Proof. By (5) we have for any ue PHB(G,)

8u=S¢28 T¢u.

On the other hand by (6) and (7) we have

M= A: 25 26 = g1 1 pfin = S§ TG4 S Tiu
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= S T§:S§: T6iu — S§ TG 1§12 SG: Téiu
=SGTGu—SGTErE-SETGu.

Further since p@:_zx = pé_zx for any xe PHB(G,), we have

GTGug-rSETGu=SGETE &z SETEu

=S4 iz TGu
by (5). Thus we have an inequality
Afu=SETGu— SE -z TEu

= S§ 28 Tu.

237

Therefore we can say that the desired result A%wu = S% 2§ TS u holds for any

ue PHB(G,), if G, is B-nice in G,.

It should be here remarked that in the in-
equality A% u=S%21§ T%u in (5) there is an
example by which the equality sign must be
excluded if any other assumption such as in (8)
is not made of. In the following Fig. 21 we can
say that 48wy = uzz >0 and SEAG T&uy; =0,
where ug; is the harmonic measure w(z, pq, G,).
On the other hand 2§ z pg:, that is, G, is not B-
nice in G,.

(9) Let R, and R, be two open sets in G, then
1 15 = 1 15 = tGanm. -

(10) 4§, 2§, = 2§, 4%, = 4§, + 28, — .o -

§3. Applications.

Fig. 21

THreorReM 49. Let G be an extremally B-nice subregion. If R is B-nice in G,

then R 1s also extremally B-nice.

Proof. Let G, be any subregion of G and G, D R. By the assumption 1§ = p§

and by (5) we have

piu= TG piSGu=TEAGSGu=2Fuzpfu,

which shows that R is B-nice in G,. By (8) we have A§ = p& for any G’ D G by

the extremal B-niceness of G and
Gv=S8S¢8TG¢v
for any ve PHB(G’). Therefore

o=S§RTG o=,

which shows that R is also B-nice in G’. This and the first part of our proof
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imply that R is B-nice in any subregion of W containing R. Therefore R is ex-

tremally B-nice.
Any collection of ideal boundary components of W with compact relative

boundary is extremally B-nice. This is easy to prove.

TueoreMm 50. Let G be an extremally B-nice subregion and R, and R, be B-
equivalent in G, then R, and R, are B-equivalent in any B-nice subregion G, of W.

Proof. Since G is extremally B-nice, we have A¥ =¥, and hence we can
apply (5) and (8). Therefore by the assumption 2§, = 1§, and p§, = p§, we have

Wu=SEA8 THu=SE28 T u=%u
and
vt =S¢ pd. Tu = Sg pd. Tdu = pf,u.
Let G, be any B-nice subregion in W, then we can apply (5) and see that
Afiu=TE IZ Stu =TE A, St.u =G u
and
phiu = Tg vk Squ = TE g, Sgu=pgu.

Therefore R, and R, are B-equivalent in any B-nice subregion G, containing R,“R,,
whence follows the desired result.

Evidently R1~BR2 if 2§, w¢ = Af,w¢ =0 for any G and this is the case if A%, wy
=Fow =0, where ws and ow are the harmonic measures in G and in W,
respectively.

Now we shall define the breadth of oscillation of 0R in G by the function
zg_ﬁ Zg wg = l,% wa—ﬂg wg.

Let y be a curve tending to the ideal boundary of G or a collection of curves
or point-sets. Let R be any collection of domains being compact or non-compact
and containing y. The oscillation measure OMu(y) of y in G is defined by inf (1§
—pf)we.

We say that an element # in PHB(G) is a generalized harmonic measure if
# (wg—u) =0. Then two mappings 4 and g preserve the generalized harmonic
measure. Thus the breadth of oscillation of 9R in G (1§ — p)we = 21§ %_sw¢ is a
generalized harmonic measure.

THEOREM 51. If G,CG,, then OMs(r)=OMzey(y). If 1 be a collection of curves
tending to the ideal boundary of G, then OMg(y) = infg 2§ we.

Proof. Let R be an open set containing y for which

OMes(r) + ¢ > 2§ wa, — pfwe, = OMa,(7).
By (5) we have
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Afoe, — pfoe, = SGAGT Gwe — SG 1§ T §ios,
= SG(AG —piwe, = (A —pf)we, = OMe (7).
This implies
OMey(7) + e=OMe(7) .

Since ¢ is arbitrary, we have the first desired result.

In order to prove the second half of this theorem we need a modified modifica-
tion theorem stated in Chap. I, §7. By the modification theorem we can select R
so near to y that a relation

(4% — rR)os(p) =0

holds at any ideal boundary point which cannot be approached by any point-sequence
on 7. Sincey is a collection of curves, T§ws =0 for these R. Thus we can select
R so that p§we = 0. This implies that OMe(y) = infzAGwe.

If 7 is of zero oscillation measure OMe(y) in G, then we say r a non-oscillatory
set in G. If y is non-oscillatory in any G, then we say 7 an absolutely non-oscillatory
set.

THEOREM 52. If G is an extremally B-wice subregion and if y is non-oscillatory
in G, then y is absolutely non-oscillatory.

Proof. Since G is extremally B-nice, we have A} = p¥. Hence we can apply
(5) and (8). Then we can select an open set R containing y such that for any ¢>0

0= Moe— pfoe < ¢
holds in G. Since we have
Wow =SE 1§ T ow and pfow = STps T ow
and further T¥ww = ws, We can say that
0 = W ow — pEow =SE(Mwe — pfoe) = ¢

in W by the maximum principle. This implies that 7 is non-oscilatory in W. Let
G, be any subregion of W containing R, then

0= OMs(r) S OMw(p) = ¢

by theorem 51. Therefore y is absolutely non-oscillatory. Of course ww= 1 by the
definition of PHB(W) in the above proof.

THEOREM 53. A mnecessary and sufficient condition for a set R in G to be B
-nice in G is that OMs(R) =0 or equivalently (4§ — pS)we = 0.

Proof. We can construct a set & so near to R(R'DR) that (A% — pf)we = (A
— ufwg.  This is a simple consequence of the modification theorem. Since wg



240 MITSURU OZAWA
¢ PHB(G), the B-niceness of R in G implies (4§ — p€)we = 0. Thus we can say that
0 = OMo(R) = inf (. — pfir)oos = (4 — uf)os = 0.

This implies the necessity part of the theorem.

If u<v in G and u, ve PHB(G), then (1§ — u)u < (A — #%)v in G. In fact
this is a simple consequence of the positivity of A& — pg or A%_z;28. TFor any u
¢ PHB(G) there holds # < Mws for some positive number M. By the assumption
we have

0= (4§ — 1w = (3 — pH Mo
= M(§ — pfoe =0,

whence follows the niceness of R in G. Again we can construct a set R’ so near
that (1§ —p§)we=(§—pf)ws. Further we can assume that OMg(R)+e> (A —ug)ws
for any positive number ¢. By the assumption OMga(R) =0 we can say that (1§
— ufwg = 0, since ¢ is arbitrary. This is the desired sufficiency part of the theorem.

Let R, and R, be two open subsetsin G. If R, ~R,=¢ and 2,u+28,u=28,, r.ut
for any ue PHB(G), then we say R, and R, relatively disjoint in G. If this is the
case for any B-nice subregion G containing R, and R, then we say R, and R,
perfectly disjoint.

IR, R;; Qws=(AG,+2§,—A§,~r.)0c is called the ideal intersection measure of R,
and R, in G. It is the restriction of the first ideal intersection operator I,(R,, R,; G)
to wg. By (10) we see that

I(R,, R;; G)wg = 2, 4,06

Thus this is also a generalized harmonic measure.
For any open sets R; and R, in G we have

G0+ AGu = 28, pu and pfou + pgu = pf rtt.

R, R,=¢ implies puu-+p§u=pg  ru, however
it does not imply 2§u+A%u = A%,,ru in general as
Fig. 22 shows.

THEOREM 54. If R, and R, are relatively dis-
joint for an extremally B-nice subregion G, then R,
and R, are perfectly disjoint.

Proof. Since G is extremally B-nice, A} = pu¥
holds and hence (8) is applicable. For any ue PHB(W)

Fig. 22 Au+ AZu=SW 28 THu+S¥ 8, TVu

= SEQG+G)TEu = S§ Af.sp. TEU = A path -

For any B-nice subregion G, in W we can again apply (5) similarly and we have
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the desired result.

THEOREM 55. If the ideal intersection measurve I(R,, R, Gws of two disjoint
open subsets R, and R, in G is equal to zero, then R, and R, are relatively disjoint
in G.

Proof. If u<v in G and u, ve PHB(G), then I(R,, R,; Gu=<I(R,, R,; G.
Now we can put # < Mwe and apply I(R,, R,; G)we =0, then we have the relative
disjointness of R, and R, in G.

THEOREM 56. The ideal intersection measure I(R,, R,; G)wg is monotone in-
creasing with an increasing sequence of subregions.

Proof. If G,c G,, then
I(R,, Ry; Gywa, = 2% A0, = S& 4§ T §: S8 2§, T Giwe,
= S§: 1% Afiwe, = 28 AGiwe, = I(R,, R;; Gi)we, .

THEOREM 57. Let R, and R, be two open subsets in G. Then there holds an
inequality

ﬂgl u + ‘Ug, u é #IG%I"’Rau + f"gx,-\Ra u
Jor any ue PHB(G). Further this implies an inequality
Rgl"Rz u + ZIGZI,\Rau é xgxu + lla't’nu .

Tureorem 58. If R, and R, ave B-nice in G, then R,~R, and R,~R, are B-
nice in G. Especially the extremal B-niceness of R, and R, implies that of R,~R,
and R{~R,. Further if G is extremally B-nice and if R, and R, are B-nice in G,
then R,~R, and R,~R, are also extremally B-nice

THEOREM 59. If G is an extremally B-nice subregion and if %, p.wc=0 or
18 pwe =0, then for any G,DR,~R, 2§ pwe, =0 or u§ pwe, =0 and for any
ue PHB(G,) 2§ z.u=0 or u§, gru=0.

If in theorem 57 the equality signs hold in two inequalities, then we say that
R, and R, are situated B-regularly in G. This is the case if R, and R, are B-nice in
G and p8u+ pg,u = pg, pu -+ pS-pu. Indeed by theorem 58 all the members R,,
R,, R,~R, and R, ~R, are B-nice in G and if R is B-nice in G, then G—R is also
B-nice in G, that is, 1§ = p§ implies 2§_7 = #§_5. however we can strengthen this
fact as in the following theorem.

THEOREM 60. If R, and R, are extremally B-nice, then R, and R, are regu-
larly situated in any GDOR,~R, or if R, and R, are B-nice in G, then R, and R,
are regularly situated in G. Further there holds

ngu + 1}%2“ = Xgl"’Rzu + lglARau
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= /ungRnu + /lgl,\Rnu = Iugxu + ﬂg-u
for any ue PHB(G).

THEOREM 61. If G is an extremally B-nice subregion and if R, and R, are

regularly situated in G, then R, and R, are regularly situated in any subregion G,
of W.

Proof. We have A% =u% by the B-nicenss of G in W. Thus we can apply (8)
and (5). Therefore we have

IF ru= (AF, + AF, — Wop, — F. p)U
=S¥ I TEu=0
and
Lplpu= (uff + 1, — plor — tRU
=S¥ Lglr. TUu=0.
Again by (5) we have
Ipfpu=TE Ipl% Stu=0
and
Lpluut =T Y LV SEu=0.

Let M(R,, R,; G)u be (Igfp,—LgSz)u for any uc PHB(G). Then M(R, R,; G)u
e PHB(G). If G is a B-nice subregion in G,, then

MR, R;; G)ws,;=S§ M(R,, R,; G) T§we,=2M(R,, R;; G)wg.

If M(R, R,; G)wsg =0, then M(R,, R,; G)u =0 for any u€ PHB(G) and vice versa.
If G is extremally B-nice and if M(R,, R,; G)wsz =0, then M(R,, R,; G,)ws = 0 for
any subregion G, of W.

THEOREM 62. If R, and R, are two open sets in G and R,CR,, then
u = 2§, -pu+ Gu and pu = pf, gu+ pfu

Jor any ue PHB(G).

Let R, and R, be two open subsets in G. If 2§ —pu =25 _——u=0 for any

ue PHB(G), then we say R, and R, truely B-equivalent in G. Evidently if ¢ ——wq

Ri~Ri~R:1

=28 o =0, then R, and R, are truely B-equivalent in G and vice versa.

THEOREM 63. If R, and R, are truely B-equivalent in G, then R, and R, are
B-equivalent i G and are regularly situated in G.

Proof. By theorem 62 and by the assumption A% _.—7u =0 we have

2gl_mu + XIGZI,-\Rzu g ngu = XIa(’.x,ﬂlhu
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for any uwe PHB(G), which implies A&,u = 1§, p.u. Similarly we have A§,u = 18, z.u.
In a way we have A§u=2% zu by theorem 57. And further we have by a simple
calculation

=48 —y=1 _ —
0 Rx—Ranzu G~R:—(G—R)A~(G—R3) u
= A¢ =6 _

Ra—RxﬁRzu G—-R1—=(G—R)~(G—R»

Thus we have
A gt = G gt = 2§ -kl = AG-Ry~a-Rnl
for any ue PHB(G). This shows that
phu = pfa = pfopi = (1§, pt

for any ue PHB(G). Thus our proof is now complete.

Inverse statement of theorem 63 does not
remain true in general, which is shown by
the following figure. Indeed, R, and R, are
B-equivalent in G, however they are not
truely B-equivalent in G.

TureoreMm 64. If R, and R, are B-nice
and B-equivalent in G, then R, and R, are
truely B-equivalent in G. If R, is B-nice in
G and if R, and R, are truely B-equivalent
in G, then R, is B-nice in G.

Proof. To that end, we prove the fol- Fig. 23
lowing fact:

If A and B are disjoint open sets in G and u§u=upZu for any ue PHB(G), then
pGu=0.

If AeSOug or BeSOmsg, then u§u=S§TSu =0 or u§u =S¢ TG¢u =0. If both
A and B do not belong to SOgs, we put # = pu§ws. Then u§ u§we = u§we+0 and
0= u§ nGoe< 1§ 5 r§we=0. This is a contradiction.

The remaining part of the proof is quite similar to theorem 21. Thus we omit
the remaining part of the proof.

THEOREM 65. If G is extremally B-nice and two open sets R, and R, are truely
B-equivalent in G, then these sets are truely B-equivalent in any G,DR,“~R,.

By the proof of theorem 63 we can say that A8 _—m=u = 0 implies 2§u=2%, n.u,
A8 u=2§ pu and pfu=pf pu, pGu=ug pu. Therefore we can say that R, almost
contains R, in G if 2§ _—zu =0. This is equivalent to 2§ s—rws =0.

If R, almost contains R, in G, then R, and R, are regularly situated in G. If
R,CR,, then evidently R, almost contains R, in any GDR,. If R, almost contains
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R, in an extremally B-nice subregion G, then R, almost contains R, in any G
DR, ™R,

Let 74, 7. be two non-compact simple curves in G tending to the ideal boundary
of G and being oscillatory in G, that is, OMs(r,)>0 and OM(y,)>0. We can define
two sides of a non-compact simple curve in G with respect to the defining para-
meter of the curve and the local parameter of the surface. Let R, and R, be any
two subregions of G such that dR,Dy,, dR,D7, and R, and R, be situated simult-
aneously on the same side of 7, and r, respectively. If for any such R, and R,

inf (23, @6 + 24, mm 90) = 0,

R1, Rg
then we say that 7, and 7, are near each other in G. If this is the case for any
GDy.Uy,, then we say that y, and 7y, are absolutely near each other.

THEOREM 66. Let 1y, 7, be two non-compact simple curves in G tending to the
ideal boundary of G and being oscillatory in G. Further we assume that two curves
are disjoint and are near each other in G. Then we cannot select two subregions
R, and R, lying the same side of r, aud y, respectively and satisfying the disjoin-
tness R, ~R,= ¢ and staisfying an inequality for any

xgx—m e + xgs-m @g < €.
Proof. If this is not the case, then we have
Zgla)g <e and lg,wg <e.

This is now rejected by the oscillatory properties of v, and 7,.

If 7, and 7, are near each other in an extremally B-nice subregion G, then 7,
and 7, are absolutely near each other. If 7, and 7, are near each other in G, then
we have for any ue PHB(G)

inf(Ag,_z—prtt + 2§, _zmmu) =0.

Chapter IV. Determination of the coordinate.

We shall here introduce a method which determines the coordinates of Martin
minimal points of 4% in reference to a point or a set of 4¢. To that end we shall
introduce several notions showing that a point 7edR lies over a point gedf or
spreads over a set Ecd4f.

DerFINITION 1. Let 7 be a point in 42 and let ¢ be a point in 4¢. Let Ni(g) be
a level domain defined by an inequality Ke(p, q) >1 and Mi(r) a level domain
defined by an inequality Kz(p, ) > k. If for any given I(< supe Ko(p, q)) there is
a positive number k, for which Mu(») € Ni(q) for any k= k, (k= supr Kr(p, 1),
then we say that » lies over q.

Is there a point »e4% which does not lie over any point gedf, if G¢Orr?
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The answer is positive. Let G be the unit disc
and R be a set Ny(l) plus a set S lying in a set
{lz] <1}— Ny(1) and being tangential to |z|=1 at \
only one point 1 from only one direction. There are
two points 7 and 7’ in 48 = 4B Let » be a point T§1,
that is, a point of 4% corresponding to 1 by T¢. Then
the remaining point »’ does not lie over the point 1
by definition. However 7’ is attached to 1 in the fol-
lowing sense.

DerFINITION 2. Let 7 and ¢ be the same as in defini-
tion 1. Let UJq) be an e-neighborhood of a point
gedf defined by an inequality de(g, p) <e, peG~4¢ and U.g)=U.q)~G, where
ds(g, p) is the Martin distance in G. If for any given ¢ there is a positive number
k, for which My(r)cU.(q) for any k= k,, then we say that r is attached to ¢q. If
further any level domain My(») for k= &, lies outside of some level domain Ni(g),
then we say that r is attached tangentially to q.

It is not necessary that any point in 4% being attached to ¢ coincides with
some point being attached tangentially to q.

Is there a point 7€4® which is not attached to any point ge4¢, if Géonp?

Even if the problem is changed as above, the answer is still positive. In his
recent lectures at Hiroshima M. Brelot gave the following example; see also [0].
Let G be a square defined by 0 <x <1, 0<y <1 The line x=1 is considered as
the ideal boundary of W: x<1. Let R be a subregion of G with an infinite
number of slits as shown in the figure. If two holes are sufficiently narrow, then

lim Kr(p, 2n) = lim Kr(p, 2»)

Fig. 24

remains true for any peR. This shows that there is only one point » in 4% Let
Kzr(p, r) be the corresponding Martin minimal function. Then the level domain
Ni(#) is a domain as shown in the Fig. 26 for any k. Therefore for any ge4¢ Mi(r)

C N AP 9
a“ qx
2; ) 22, Z; % qs

Fig. 25 Fig. 26
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cUJq) does not hold. This implies that » is attached to no point in 4¢. However
r spreads over the closed segment ¢, ¢, in the following sense.

DErFINITION 3. Let » be a point in 4% Let E be a set in 4¢ for which

M) < U Udqg)
9€E

holds for any given ¢ with any k2 = ky(¢). If E, is the smallest closed set with the
above property, then we say that » spreads over E,.
If red® corresponds to gedf by T§, then » lies over gq.

Proof.' By the assumption
TIC; Ka(p’ fI)=KR(P, ")éKG(P, 4)

in R. Let Ni(q) be any level domain, then Kr(p,7) =/ in R — Ni(q). Thus the
level domain M;(r) belongs to Ni(g¢). This is equivalent to the desired fact.
We have the following implications:

r corresponds to ¢ by T§.=> 7 lies over ¢.= r is attached to ¢.=> r spreads over gq.

LemMma 1. If there is a positive number m such that Na.(g)cR, then for any
k there is an [, for which Mi(r)DNi(q) for any [ = [,.

Proof. By the definition of Nn(q),

T§,.c0» Ke(P, @) = Ko(p, q) — m > 0.

Therefore T§ Ke(p, ) > 0, since SE,«)(Ka(p, ) — m) = Ks(p, g). This shows that
TS Ka(p, q) = Kr(p, r) is a Martin minimal function in R, that is, there is a
minimal point r€4® which corresponds to ¢ by 7§. Since Nn(q)CR, there exists
a positive number M such that

sanga(P, D=M=m<oo.

Since T%.» Kr(p, n=Kzr(p, ) —k by the definition,
T/?{k('r) KG(P» q): T]%k(r) Tg KG(p: q)
=T 5oy (Ka(p, Q)—u(p))=Ks(p, @) —u(p)—k,

where u(p) is defined by 7§ Ke(p, ¢)=Ka(p, 9)—u(p) in R. This function u(p) is
also defined by the following limiting process

lim u.(p),
where u.(p) is a positive harmonic function in W, ~R with the boundary value 0
on 0Wu~R and Ke(p, q) on 0R~Wn. wun(p) increases with # and is bounded by M.
Thus u(p) = M in R. Therefore we have Ka(p, q) < Kr(p.7) + M in R and hence
Ko(p, )=k+M on dMy(r). Next we choose I, as k+M. then Ni,u(q)C Mi(r) and
hence Ni(g)c Mi(») for any [=1,.
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LemMA 2. If r€d® lies over qedf and vedf corrvesponds to q by T§, then v,
coincides with r, unless there is a part of OR in any Ni(q) for | =1,.

Proof. By Lemma 1 for any % there is an [, for which Mi(*)DNi(q) for any
l=1,. On the other hand we can choose k* for which Mx.(r)CNi(g) for any
k"=F. If r,#7, we can choose Mjy.(r,) such that Muy.(r)~Mw(») = ¢ for any
given k. This is untenable, since My.(r,)C Mi(r). Therefore », = 7.

LEMMA 3. If r,€4B, r,edR lie over a point qedf, then r, =r,, unless there is a
part of R in any Ni(q) for [ = [,.

Proof. If there is no part of dR in some Ni(g) for [ = [,, then there is a point
7 of 4% which corresponds to ¢ by 7§. Then by Lemma 2 we have r, = =7,

THEOREM 67. If any point redE always lies over some point q(r)edf and if R
is most P-nice in G, then R is onto P-nice in G.

Proof. Let r be an arbitrary point of 4%, then r lies over a point g(r)edf. By
theorem 2 ¢(r) is not accessible by two point-sequences one of which belongs to R
and another of which belongs to G—R. Hence ¢() is accessible by only a point-
sequence belonging to R. By this fact there is no part of dR in some neighborhood
U.q(7)), that is, U.q(»))cR. Then we can say that Niu(g(»)cU.(q())cR for a
suitable /. This implies that

Tgfz(qcr)) Ka(p, q)=TEawry TS Ka(p, g(r))
is positive. Thus we have
TG Ks(p, q)) > 0.

Let #” be a corresponding minimal point in 4% by 7§ Then by Lemma 3 »
coincides with this #/. This shows that S§ Kgr(p,7) = Ka(p, q()). This is the
desired result.

ThEOREM 68. If there is a point v of A% which spreads over a set E,(c 4€)
containing at least two points, then R is neither onto nor most P-nice in G.

Proof. By theorem 2 we can say that 4F is imbedded in 4¢ by T'§ if R is onto
P-nice in G. Let g(#) be a point of 4¢ such that » corresponds to ¢(») by T4§.
Then for any ¢ there is a set Mi(») such that M(r)c UJq(»)). On the other hand
M, (») oscillates on the whole E,. Thus the diameter of Mxi(») is not less than that
of E, which is also not less than the diameter or distance of two preassigned
points in E, being positive by the assumption. This is absurd, since the diameter
of Mi(r) is less than that of U.(¢q(r)) which is smaller than 2¢ and ¢ is any positive
number. If R is most P-nice in G, then by theorem 2 any point of E, is not
accessible by any point-sequence in G—R, since it is accessible by some point-
sequence in R. Then two different points », and 7, in 4F are determined by two
preassigned points ¢, and ¢, in E, in such a manner that 7 corresponds to g; by
T$(i=1,2). On the other hand if two points of 4F are two clustering points of
any level curve L; defined by a minimal function Kr(p, 7), then two points coincide
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with 7 and hence with each other. This shows that », = » = #,, which is absurd.

LemMA 4. If redE is attached to qedf and UJq)CR for some e, then r cor-
responds to q by T§.

Proof. If redf lies over gedf, then the assertion is already established by
Lemma 2. If » does not lie over g but is attached to g, then we can choose a
level domain M(») such that Mi(r)cU.(q). If a part 7, of any level line Kr(p, 7)
=35, s=s, is not tangential to ¢, then this part y, intersects any level curves L;:
Ky(p,q)=1 for =1, On the other hand by Lemma 1 we can choose a leve'
domain Nn(g) in such a manner that Nw(q)CMi(r(q)) for any k, where #(g) is a
point of 4F corresponding to ¢ by 7§ This shows that any level curves L,:
Kr(p, 7(q@)) = n intersect ys for any # = n, and for any s=s, On the other hand
if 7+ 7r(q), then we can choose that any level domain M,(#(q)), n = n, and M),
s = s, are disjoint. This is untenable. Thus we have the desired result: 7= #(g).

THEOREM 69. If any point redf is always attached to some point qe ¢, and if
R is most P-nice in G, then R is onto P-nice in G.

Proof. A quite similar method is available as in theorem 67. In this case we
use Lemma 4 instead of Lemma 3.

Theorem 69 is a precision of theorem 67.
Next we shall prove a precision of Lemma 2.

TueOREM 70. If v’ €4dE is attached to qedf but is not attached tangentially to
q and redE corresponds to qedf, then v’ coincides with r.

Proof. Since 7 is not attached tangentially to ¢ and is attached to ¢, there is
a level curve Lix: Kr(p, v') =k, k = k, intersecting any level curves [";: Kg(p, q)=I
for /=1, Thus L. is a non-tangential path to g, if we choose a suitable component
of Lr. On the other hand any level line y;.: Kzr(p, v) =1 is a tangential path to g,
and hence any 7; intersects Li for any / =/, =/, and for any k2 = k,. Therefore »
must coincide with 7.

Refering to the defining tail of a minimal point we can also define a sort of
coordinates of redf over gedf.

DerINITION 4. If any defining tail y of gedf on which Ku(p, q) tends to its
sups Ka(p, q), then we say that y is a principal defining tail.

DeriniTION 5. If any defining tail of »€4¥ is a defining tail of ge4¢, then we
say that » s attached to q by the defining tail.

DerINiTION 6. If # is attached to ¢ by the defining tail and any principal
defining tail of redf is a principal defining tail of ged¢, then we say that » lies
over q by the defining tail.

DeriNITION 7. If there exists a principal defining tail y of re4® satisfying
da(g, y) =0 for any point ¢ of Ec4f, then we say that » spreads over E by the
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defining tail y. Let E, be the largest set among E with the above property, then
we say that » spreads over E, by the defining tail.

We can prove the following theorems:

TueoreM 71. If red? is attached to qedf by the defining tail, then r s
attached to gq.

THEOREM 72. If red® lies over qedf, then r lies over q by the defining tail
and vice versa.

THEOREM 73. If redB spreads over ECAE, then v spreads over E by the de-
fining tail and vice versa.

Proof of theorem 71. 1f any x-neighborhood U,(r) of 7 satisfies U,(r)¢t U.qg),
then there is a defining tail y or » satisfying lim sup de(p, q) > . However by
pEY

the assumption y is also a defining tail of ¢ in G, so lim dg(p, q) exists and is
D€}

equal to zero. This is absurd. Thus we can choose such an 7-neighborhood U,(r)
of r that U, (r)cU.qg). Then we can choose a positive number %, such that My»)
c Uy») for any k = k,, which implies the desired result: Mi(»)cU.(g), that is, »
is attached to gq.

Proof of theorem 72. Let Ni(q) be any level domain and 7 be any principal
defining tail of 7, then y is a defining tail of ¢g. Since by the assumption there is
a positive number k, such that Mi(»)c Ni(q) for any k = k, and y({)c Mi(r) for any
t = t,, we can say that y({)cNi(q) for any ¢t =+¢,. This holds for any /. Therefore
7 is also a principal defining tail of g¢.

Inversely let Ni(q) be any level domain lying inside of U.(q). Let Mx(r) be any
level domain of ». If %k is sufficiently near to supxr Kr(p, 7), then any principal
defining tail is contained in Mi(r). If any k& Mu(») is not contained in N(g), then
there is a principal tail y of » which is not contained in N,(¢). Then lim infpe Kao(p, @)

7

=<1 <supg Ke(p, g). This contradicts our assumption, that is, y is also a principal
defining tail of ¢g. Therefore there is a level domain My(») contained in Ni(g),
which is the desired result.

Proof of theorem 73. Let » spread over E, being closed in 4¢. Any level
domain M;(») is connected in R and hence in G. Let {e,} be a sequence of positive
number tending to zero as n tends to oco. Let [, be a corresponding positive
number for which M,(r)c U . Udq) for any [ =1[,. We may choose /, such that

Q€ Ly

In<lm if n<m. Then M, (r)22M.,,(r). Let r» be a curve lying in M, () and
connecting two points px and pay1, pa€dMi,(#), Pus1€0Min1(r) and satisfying de(p, q)
< &, for any ge€E, and for some pey,. We introduce a parameter f, n=t=n-+1
such that the trace of y(f) coincides with y, and y(#) =p, and y(# + 1) = payi.
Connecting these curves {r.}, we have a curve y(¢), 1 =¢< oco. For this curve we

have dr(r(®), r) =0 for t—co, since y(f), » =¢ belongs to M, (r). Thus y(?) is a
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principal defining tail of » satisfying lim ds(y(¢), 9) =0 for any geFE,. This im-

t—oo

plies that Er over which » spreads by the defining tail includes E,. Next we shall
prove Er = E,. If red} spreads over Er by the defining tail, then there is a
principal defining tail y of » for which de(y, q) = 0 for any geEr. By the triangular
inequality de(r, ¢) = do(y, gn) + do(gn, @) We can say that Er is closed in 4¢. If
Er 2 E,, then there is a point ¢ in Er—E, for which Udg)~Mi(r)=¢ for some
¢> 0 and for any [/ satisfying [ =/,. On the other hand there is a principal tail y
of » for which y~Ulq)#¢ and y~M(»)#¢ for any ¢>0 and for any /=1, 7
oscillates between U.g) and M.(»). Thus there is a point-sequence {p.(/)}€R on
which Kz(pa(l), ) <1 and {pn(l)} defines the ». Therefore y is not a principal
defining tail of ». This is a contradiction. Thus we have the desired fact: Er=E,.

Some unsolved problems. We shall here list our unsolved problems.

1) In connection with theorem 1 we ask for whether 1*§ (resp. #*§) coincides
with 4§ (resp. #%) in PH(G) or not.

2) Is there a point »e4® which spreads over some closed set E containing
non-minimal point of 4%?

It is very plausible to conjecture that the problem is affirmatively answered.

3) Does the most P-niceness of R in G imply the onto P-niceness of R in G?

4) Is there a continuous non-compact curve y for which A ¢ =0, if G¢0gp?

5) To construct a tangential path to an isolated minimal point in 4¢, when G
is Heins’ end of Heins’ harmonic dimension one or G has more general nature such

as GeOrp—0O0g.

REFERENCES

[0] BRELOT, M., Sur le principe des singularités positives et topologie de R.S. Martin.
Ann. Univ. Grenoble 23 (1948), 113-138.

[1] CoNSTANTINESCU, C.,AND A. CORNEA, Uber das Verhalten der analytischen Abbil-
dungen Riemannscher Flichen auf dem idealen Rand von Martin. Nagoya
Math. Journ. 17 (1960), 1-84.

[2] HEINs, M., Riemann surfaces of infinite genus. Ann. of Math. 55 (1952), 296-317.

[3] HEINs, M., On the Lindelof principle. Ann. of Math. 61 (1955), 440-473.

[4] MARTIN, R. S., Minimal positive harmonic functions. Trans. Amer. Math. Soc.
49 (1941), 137-172.

[5] Ozawa, M., On a maximality of a class of positive harmonic functions. Kédai
Math. Sem. Rep. 6 (1954), 65-70.

[6] Ozawa, M., On the growth of minimal positive harmonic functions in a plane
region. Kodai Math. Sem. Rep, 13 (1961), 180-184.

DEPARTMENT OF MATHEMATICS,
TOKYO INSTITUTE OF TECHNOLOGY.











