FOURIER SERIES X: ROGOSINSKI'S LEMMA

By SHin-icHI IzuMl AND MASAKO SATO

1. W.W. Rogosinski has proved the following theorem [1]:
THEOREM 1. If f(t) is continuous at t = £, then
(1) G on () + saloma + 7/m)} > F(E), (12— )

Jor any sequence (x,) tending to E, where s,(t) is the n th partial sum of the
Fourier series of f(t).

This theorem has many applications.
We shall prove the following

THEOREM 2. If
T
(2) [ At w) = F(x = w)du = o), (t=0)
uniformly in x in a neighbourhood of a point E, then

5 n(5a) + 50t + 7/m)}

= %;Siz;,:;f(xn + t) (-1.— - —*t_‘——lﬂ'/‘n‘) sin nt dt
(3)
+ nﬂS:/n(f(xn + ) + f(xa — t))c(nt) sinnt dt + o(1)
= —21?Sz;1f (#n + ) Ru(t)dt + 0(1),

where® R,(t) =0 and

- 1
) =2 ¥ @ =D ¥ k¥ Pk F D7)

If f(¢) is continuous at ¢ = &, then, supposing that f(&) = 0, the right side
of (3) tends to zero. Thus (1) holds.

From Theorem 2, we get a sort of converse theorem of Theorem 1; that is,
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THEOREM 3. If f(t) is bounded and (2) holds in a neighbourhood of a point

&, and further if (1) holds for any sequence (xy), tending to &, them f(t) is
essentially continuous® at t = E.

On the other hand, it is known [2], [3] that if a function f(x), satisfying
a certain uniformity condition®, is continuous at x = &, then the Fourier
series of f(x) converges uniformly at x = £. Conversely, uniform conver-
gence of the Fourier series of f(x) at x = £ does not imply the continuity
of f(x) at x = &. For, values of f(x) in a null set do not effect its Fourier
series. Then there arises the problem to find conditions for f(x) under which
the uniform convergence of its Fourier series at a point implies the essential
continuity of f(x) at that point. As an answer to this problem we get the
following theorem which is a corollary of Theorem 3.

THEOREM 4. If f(x) is bounded in a neighbourhood of x = & and (2) holds
uniformly there, and further if the Fourier sevies of f(x) converges uniformly
at x = &, then f(x) is essentially continuous at x = &.

On the other hand, considering the case where x, = 7z/z in (3), we obtain
the following

THEOREM 5. Suppose that

(4) f@t) =ad(t— &) +g(),
where ¢ (t) is a periodic function with period 2m such that
o) = (r —1)/2, (0<t<2m),
and where
i = lim inf =0

) n'tnlgsup g(t) =0, 1rtnTén g(t) ,

im inf = — 1i <

hrr:lxgx g(t)y = — an, xrtnTEsup g(t) <anm,

T

(6) (1908 +w du=o(t),

then the Gibbs phenomenon of the Fourier series of f(t) appears at t = E.
The Gibbs set contains the interval [a(H + 1)z/4, — a(H + 1)z /4] where
__2 (*sint . _
H=-2 L 2at =117 > 1.
In this theorem, it is not supposed that the point { = & is the simple dis-
continuiity point of f(#). Theorem 5 of this case owes to W.W. Rogosinski

2) f(?) is essentially continuous at a point &, if there are no sets E such that for

any 8 >0, EN(§ — 3, £+ ) is not of zero measure and f(¢) does not tend to f(§) as ¢
tends to £ belonging to E.

3) For example, S: Fx+d —f(x=128))dt = o(u/log %) as #—0, uniformly in x.
Cf. [3].
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[4].®
We can generalize Theorem 5 in the following form.

THEOREM 6. In Theorem 5, if we veplace the condition (6) by the following
condition:

g:y(f + u)du = o(.t)),

SZ(y(x +u) —g(x—u))du =o(t])

uniformly for all x in a neighbourhood of &, then the Gibbs phenomenon of
f(t) appears at t = &, and the Gibbs set contains the interval [a(H + 1)z /4,
—a(H + 1)z /4].

Further we prove the following theorem,

THEOREM 7. Suppose that
f@) =adt— &)+ g(@t) + ht),
where J(t) is a periodic function with period 27 such that
o) = (x —1)/2, (0 <t<27),

(7) {19+ 8 1tat <o
and h(t) is of bounded variation and is continuous' at &, then the Gibbs set
of f(t) contains the intervalla(=x/2)H, — a(x/2)H].

More generally, (7) may be replaced by

S:/n gt — yt(t + 7/n) | dt = o(1).

(8) [ g(&+wdu=00),

THEOREM 8%. Suppose that
ft) =agpt—E) +2(@)
where g(t) is odd about t = &, that is
gl —t)=—g(&E+1)

for small t and

(9) (g +wldu=00 t>0),

(10) [[1g(&+uw du=oqt) (t<0),
then the Gibbs set of f(t) contains the interval [a(z/2)H, — a(7w/2)H].

We conclude this paper proving the following

4) This paper has not been available for us, but this result is stated in [5].
5) This is a special case of a theorem of O. Szasz [6 Theorem 10].
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THEOREM 9. (i) There is a function which presents Gibbs phenomenon at
a point t = & and has t = & as the second kind discontinuity. (ii) There is a
Sunction which does not present Gibbs phenomenon at t= ¥ and has t= §
as the second kind discontinuity.

The first part is almost evident, and in fact follows from Theorems 5 and
6. The second part is proved by constructing an example whose construction
is suggested by Theorems 5 — 7,

2. Proof of Theorem 2. We put @,(t) = f(x +¢) + f(x — ) and we can
suppose that £ = 0. Then we have

_ 1 (" sin »t
sn(@) = " 2u ()22 a1 1 (1)
n-1(E+D)7zIn H
= S T e S a4 0(1)
T =0 t

knln

=L S (T Palt o k/m)
=15 (—uef oA sinnt dt + o(1).

Accordingly we have

n-1 zIn
{(— 1)"5 " Pan(l + k/n) sin nt dt

Su (%) + Sp (%0 + 7/0) = %}] o t+Ex/m

k=0

+ ("Dksﬂm ¢wn+:/:_(tk:/ﬁ”/n) Sinntdt}—l-o(l)
1 not o[ f(xn+t+ kr/n) + fxa+t+ (R+D7/n)
=, 2 (=D So S(En 8+ k7 n)t—}-kft/n " sinnt dt
4 3[ ’g (_1)n5:’”f(xn"t“k”/”)t“‘_i_f]gr"/;t_ (k+1)7/n) sin st dt + o(1)
=T+ J+o(1).

We shall estimate I. Since J may be quite similariy estimated, we shall
omit it. We write
1 (%" flon+t) 1 (" f(%+t+7/n) .
N L n n).
SoI= ”S 7 sinntdt + - SO £t + 7 /n) sin nt dt
A e (" fEw Attt (Bt Da/n)
+- ;2.1( 1) S G+ be/m)t + (Bt Dr/n) sinnt dt + o(1)

0

= Ix+12+I3+0(1)-

We can here suppose that # is an odd integer and we put, for the sake of
simplicity, N = (# —1)/2. Then

1 nl (" flan+t+ (B+1Dm/n) .
L=y 8t s Ty SRl

6) For the method of proof, see [3].
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~ L St 2/
nis)e | (t+ 2k —1)7z/n)t + 2k /n)

_ flmtt+ @kt Da/n) ) o
(t + 2km/n)t + 2k + 1)7/n) }Sln nt dt

ﬁs " f(%n+ ¢+ 2kn/n) — f(%0 + ¢+ 2k 4+ 1)7/n)

1 sin nt dt
n & (t + 2k — V) m/n)t + 2kn/n) nn
1_ ro(win fxn + ¢+ 2k + 1)7/n) .
n ESO GF @k =) /n)t + 2k /nYE + 2k + )jm) Sontdl
= — Iy — I,
say. Now, by repeated use of the second mean value theorem,

N 2 &
I, = % 5 (217%%250[ Fn+ £+ 2k /n) — f(sn+ £ + (2k+1)7/nlsin nt dt

2 k(2k —1) S [f(%n + t + 2kn/n) — f(%a + t + (2k + 1)7/n)]dt

where 0 < ¢ < 1< ¥ <#/n and 0 < g, =1. Since, by the condition (2),
(11) S:[f(xn +t 4 2k /n) — f(%n + ¢t + (2 + 1)w/n)1dt = 0(1/n)

uniformly in %k and n, we get I;; = o(1).”~
On the other hand we have, by Abel’s lemma,

2 b (" Flin 4+t + 2k + V/n) )
A S T @k =) /n)E + 2kn/n)it + 2k + /) S0uEAL

2

= S S(%n + ¢ + 37/n) sin nt dt

Iaz =

L4 1
) [k2=1_(t + 2k —V)z/n)¢t + 2kz/n)(t + 2k + 1)7/n) ]
- iz—fé S:m[f(x,. +t+ @2k +V)a/n) — f(%n +t + 2k — 1)/n)]dt
) [ﬁ . sinmt ,7_]
=k (¢4 (27 — D7/n)t + 2jz/n)(t + (27 + 1)7z/n)
= Ia:u - Iazz-
Then we have

9,7
v (27 —1)27(27 + 1)

. Sgk[f(xn +t+ Ck+ V7z/n) — flan +t + 2k — 1)7/n)1dt,

1322 -

where 0 < £ < mx < /n, 0 < 8, =1 and hence

w2 a o) = o )=o),

Iazz =
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On the other hand

2 (=i» .
I = 750 S(xn + t + 37/n) sin nt dt

g 2
=1 (nt+ 2k — 1)7)(nt + 2kw)(nt + 2k + 1)7)

= 2n7r5: "+ £ + 3m/n)c(nt) sinnt dt

In

—_ 2n7z‘§ S(xn + t + 37/n) sin nt dt

0
S| 1
a1 (nt + 2k — D)w)(nt + 2k7)(nt + 2k + 1)7)
where the sum in the last term on the right is O(1/#°) and then the last
term is

O(—;—S:m‘f(xn + ¢t + 3z /n)| sin nt dt)

7 In '
=O(So t f(xn + ¢+ 37/n) dt) =o(1).
And then
Ty = 2sz: " Fon + £ + 37/m)c(nt) sinnt dt + o(1)

T In
0

= anrS S(xn + t)c(nt) sinntdt + o(1).

Summing up the above estimations, we get

I=1 + 12—1321+0(1)

T |18 i
= Pl (2B — 2 (at) sinnt)at

1 1

= _;_S:I"f(xn +t+ n/n)(it - —tm) sinnt dt + o(1).

Similarly we get

n-1 T In o R _
J= ’71[,0—2—1‘1) (= 1)"80, S(xn =1 = km/n) ;l__{g;"/n t = (k=D7/1) G psar
= -}z_S: "0 — L+ 7/n) tt+ Z/M) sin nt dt + %s: mf(xn - t)(% - T—Fl#/‘n> sin nt dt

1 n=1 zin Fn — t — k) .
o O e s Dy S+ 0D,

If we denote the last term by J;, then

_ 2z X (Tin Flxn — t — 2k7/n) .
L= = ) e A e @ 1)y SRt o)
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T |n

- _ _2_5 f(%n — t — 27 /n) sin nt dt

1

C B T F CE= DAt + 2kt + 2k + Dy T O

— ZnﬂS: mf(xn —t — 27 /n)c(nt) sinnt dt + o(1)

= — ZMﬂS: mf(xn — t)c(nt) sin nt dt + o(1).
Thus we have

5 (5n(a) + saltn + /m)) = 5 (I + J) + 0(1)

_ 1 27 B 1 1 .
- ??S,,,n S + t)(T — 5= ”/h--) sin nt dt
]_ 7 In 1 1 .
"2 So Flant 1) (T T i—m/m 2n7f20(nt)) sin nt dt
1 11 '
+ 5 j_ﬂ/nf(x,.+ t)( 7 — 2nmc( nt))smmdt

1 27 In
= o) fl+ R+ 0(1).
This is the required.

3. Proof of Theorem 3. We can suppose that £ =0 and f(&) = 0. If the
theorem does not hold, then there is a set E of positive outer measure such
that for any 8 > 0, the set EN (— &, 8) is of positive outer measure and f(¢) .
does not tend to f(0) as ¢ tends to zero along E.

We can suppose that E is measurable. For, there is an m, for any #, such
that

en = m*En >0
where
E,=EN({(—1/n —1/m)U (1/m, 1/n)) = EN Lnn.

By Lusin’s theorem, f(f) is continuous in I,.,, except a imeasurable set E,
with measure less than e,/2. Hence

m*(E, — E;) > en/2.
For any x in E, — E, we put
En(x) = (& 1f(x) = F(8) | <1/n) N Ln,n,
F= N (E.(x) NcEy).

XeEn—E,

Each E,(x) is open in cE, and hence F is also and then is measurable and
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is of measure > ¢,/2, since F D E, — E,. Thus we may suppose that E is
measurable.
Further we can suppose that

f(x) >&>0 for all x inE,

Let x be a density point of E. Then, for any 7 (1 > 7 > 0) there is a
such that

meas (EN (x— ', x+7")/ (& + L") >

for any &' < &, &7 <¢.
Let 27/n < & and x, = x, and let

G =EN (%o — 27 /0, %o+ 27/n).

We consider the integral in (3) and write

I= S“ F (% + £) Ro(£) sin nt dt = SG + Sw = B+,

enln

where the kernel R,(f) sinxnf is non-negative. Then we get
LzZ2enGlzsen, |LIZM-nE =4z(l— )M,

M being the bound of | f(¢) . If we take 7 > M/(M + 1/x), then we have,
by (3),

Lsama) + salmn i/} > LI+ 0)

(12) =2 (L-1L)+o)= %

(n — M1 —m)+0)
=>é&n/m 4+ o0(1) > EM/(wM + 1) + o(1).

Since x = x, may be taken as near as we please to 0, (12) contradicts (1).
Thus the theorem is proved.

4. Proof of Theorem 4. If the Fourier series of f(x) converges uniformly
at x = £, then s,(x,) converges to f(&) for all (x,), tending to £. Hence (1)
holds, and then the assumption of Theorem 2 is satisfied. Thus f(f) is es-
sentially continuous at ¢ = &.

5. Proof of Theorem 5. We can suppose that £ = 0. Then

&) =¢@) +g(@),
and, by the condition (6),

G(t) = S” g(u) du = o(t).

Now
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1
’2'(376(7[/”:.]‘.) + Sn(Z”/n,f))

= 5 a(@/1,9) + 5027/, §)) + 3 sa(2/0, 9) + 5027/, 9)).

As is well known,

sal/m ) = |2 g = 1.851 -,

0

sa2a/n ¢) > | S0 gr = 1,418,
and hence

S sal/m, §) + su(2n/n, $)) > 1637 -+ > 157 o = /2.
Since there is an x, (z/n < x, < 27/n) such that

5 (5 (/n, ) + $027/1,)) = 5(50,f)

by the Darboux theorem, if we prove that

(13) sa(/n, g) + su(2/n, g) =0,
then ¢ = 1.637--- belongs to the Gibbs set, and hence the Gibbs phenomenon
appears.

We have

su(7/n, g) + su(2/n, )

= 2" g St o) gy g LT gl = 27m) 4y 1 o)

T

1 .
,;9 (t—27t/n — t_”/n)smntdt-(—o(l)

)

4

- %S” gsinmt g4 o)
0

x (t —m/n)t — 27 /n)
= S + () o) = T+ T+ 01).

We write

J

Il

1 7 In 37 i2n 27 In 37 In 7:
S0 L L 1)
n wln 37/2n 2ln 3zln

L+ L+ L+t T

where

iz a5t = 2 M@ 1t = o)

"t—2n/n T =«

and similarly J, + J; + J: = 0(1). By integration by parts,
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F=| HCAGRRpY. (& Ve(¥ )+ 2T GO 4y - o).

n Jszin t* 3z n n Jsain

Since I may be estimated similarly (13) is proved ; thus the theorem is proved,
except the last sentence.

6. Proof of Theorem 6. From the proof of Theorem 5, we can see that
it is sufficient to prove that

1 sin nt
75_,,5’“) G —n/m)i — 2m/m) ¥ = o(1),

where
Sty(u)du=o(1), and S:(y(x-f—u) —gx—u))du = o0()
uniformly in x. We write
1" sin nf 1 /(° ks
75 g(®) (t — z/n)t — 27 /n) df = 7(5 ,z + So> =I+]

J= SSnlzn + ;1‘_53”/” + _1_\“,;/" =L+ .+

n Janlon nJ3

By the second mean value theorem

K y(t) _ 1 n
Ji= SE t—27/n -dt = — T Sgl.g(t>dt

where 0 < & <z/n <7 <3m/2n, £ < &’ < 7. Hence J, =o0(1). Similarly J;
=o0(1),

o lomer e 9 (¢ + kr/n)sin nt
Fo= o SV G G Dt (=
__1¢ ﬁ “'"[ g+ 2k + 1)z /m) _ g(t+ 2k + 2)7/n)
=T & So (t+ 2k /n)t + (2k — D) m/n) — (£ + (2k+ 1)z/n)(t +2k7f/n)]
. sinntdt
3 1 eovizfzin g(f + 2k + V)mw/n) — g(t + 2k + 2)/n) .
=— 2 So £ he /) ¥ 2k =) /n) Sin#t dt
2w =2 in gt + 2k + 2)z/n) .
- 2 So G+ k=T m/n)t + Ska/n)t + 2k + Dmjm) Sinntdl
= - ,31 - ]32:
where
) On _(nznlz 1 B
u= o 2kz/n)((2k — 1)7/n)

g+ @+ Dyw/m) — gt + @+ 2)m/m)lde

- ()ﬁ}172—) = o(1), (0< 0 <1, 0< Ex< np < 7/n),
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and J;; = o(1) by the estimation similar to that of I,, in the proof of Theorem
2. Thus J= o(1l). Similarly we get I =o0(1). Proof of the theorem is now
completed.

7. Proof of Theorem 8. Without loss of generality we can suppose that
£ =0. As usual, we denote by s,(x,f) the n th partial sum of the Fourier
series of f(f) at { =x. Then it is sufficient to prove that s,(7/#, g) tends
to zero as n— oo, that is

(14) 1= g ST g — o), o),
We write

I= Sﬂznm + S‘%m + S:ﬂ/n =Lt L+

_z —enln
Then, by the condition (9), we have
27 |n

I, gnf [g(8) dt =o(1)

—27/n

and, since ¢ (¢) is odd,

™ sinn(t — = /n) sinn(t + 7/n)_
Il + Is = S (t) [7}’nt - '71,/”,’*' T '*t’;l_ 7’[/n - ]dt

2nln

2n (™ sin nt
= IO = e ey

I

T T g (u)
— 27t52”ln cos nt dt§, W= ()T du

= 27t5: —: " cos nt dtS;,,/n —;ﬁq—x‘?}/wdu

=l cosnta ][ <t G
— 7[5;—/1;1” cos nt dt SZH m—uf%z—)wdu
— nS:_nm cos nt dt Sﬂ 77:%&;

:]1+]2+]s-

Now

-7 In T+ n | |
gzl a2 g

2nln t

_ 2 gl
N Jxln u

=o(l) + “—2“5:/,[ 223‘5: g dt=o(l)
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and

L+ fa!§»~2;r S:/ 9;{“ L du +o(1) =o0(1).

Thus we get (14), which is the required.

8. Proof of Theorem 7. It is sufficient to prove the case that g(¢) is even
at t =x. As in §7, we decompose [ into I, I, and I;, then [, = 0(1). But

— smn (t—m/n) sinn(t + 7z/n)
L+ 1, = Szﬂ g () [ —7/n + P+ in ]dt

=—z2| tg(t)

=2 521/n7t2 —(w/m)® S nt dt.

When the condition (7) is satisfied, then the theorem is evident. If the con-
dition (8) is satisfied, we have

ot /M) gt + w/n) .
11+I3——2S”/n t(t+27f/7l) sin nt dt
G+ a/m)gt+ w/n)
——‘S‘n/n t(t+27f/n) Slnntdt
T tg®)  (Eta/mgt+a/n) ]
- Szn/n [ (&t —7z/n) (¢ 7 /n) t(f + 27 /n) ] sin nt dt
i g (?) .
- Sz—n/nmz— sin nt dt
= ]1 + ]2 + ]3
Now
=2 S (0 —gltkm/m! gy o)

and J; + J; = o(1) as in the estimation in §7. Thus the theorem is proved.

9. Proof of Theorem 9. Let us define a sequence of integers (u:) and a
sequence of functions fi(x) by induction. Let x, = 2, and f,(x) be a trian-
gular function in (0, z) such that ’

f1(0) = fi(m/2 — /2% = fi(m/2 + /2%) = fi(7) =0,
f1(z/2) = 1.

If ny, -, m_; and f;(x), -, fe_1 (¥) are determined, then we define #; and fx(x)
as follows. Let # be an integer = # ; such that

Sn(x’fk_l) "'fk—l(x) gl/(k_l)z (n%nk).
Further, setting
ay = 7/ — 77/”%, by = 7/nx + ”/ﬂ;ﬁ,

4y = (dk, bk) )
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we define fi(x) such that

Su(x) = J;i(x — a) in (aw, 7/m),
= Jﬁ‘—(bk — x) in (7/m, by,
=0 otherwise in (0,7).
We write now
Flx) = 3 fol®) in (0,m),
= — f(—x) in (—=0),

and we shall show that Fourier series of f(x) does not represent the Gibbs
phenomenon at x = 0, that is,

Nn~>o0

lim sup sn (%) <1, lim inf s, (%) = — 1

for any sequence (%,), tending to zero. We can here suppose that x, > 0 for

all »n.
For any #, there is a k such that

Ny é n< Nior 10

We distinguish two cases.
(i) O0< =< 7/n.

5a () = S ) smn(t;agn_)_dt_l_o(l

=_%(Vm-+gm+szm)+om

J_ain
=L+ 1L+ I+ 0Q).
We have easily
L= 207" 5@ 1t + o)
T J_aln
by the construction of f(¢). Moreover

f ) smn(t; %n) ¥n) g4

Mkr

v»
-

M?ﬁ‘

S f;(t smnt;xn) dt + 0(1)

Il
o~

i_
T
1
T
i\

k
g-[zj‘l‘O )

where [ may be taken sufficiently large but fixed.

k-1
=Xr=0,
J=1l
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and
Ll = -+ 2 =1 (n=n)
k
= (14o(1)—5 =o(l) (n > n).
k

Similarly I; = o(1).
Thus we have

[Sn(xn) |[= | L|+0(1) =1+ 17 +0(1),
where [ is a sufficiently large constant.
(ii) xp=m/n.

sulza) = = 51 f(t)—sm—;’—(}iﬁ'idt =31

=
i
-

=S L+ L+ 3 Ly=1'+ L+ I,

J=k+1

If ¥y =7/me_1, then ' <1+ 171, I'" = 0(1) and

L=

%—SAkfk(t)M’“ﬂdt 1 mey, (D).

If #/n< x, < w/ne_;, then we get also
k-2 oo
Efz,j‘f‘ ] I2,j= o(l).
=1 )=k—2

We have
A sinn(t — x,) ny,
= L, e SRy

137 H —
Sﬂ/nk(b’“—t) sin % (t — xn) di

t— Xn

= f; S::k«t — %n) + (%0 — ak))—ﬁi;z{t—;nﬁ')—dt
™ () + (= ) SRR =) g
= —Z—%‘(S:,:nksin n(t — xn)dt — S:/knksin n(t — %n) dt)
A e mel)

= Izvk)‘ + Izikyz'
Now

i

iy (= (= cosn(a — %a) + cos n(z/my — %n))

Iz,k,l =

+ (— cos n{(w/me — %n) — cOS 71 (bx — %n))}
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2n: .
= - nszz (sinn(z/me — ax) /2 - sinn(ae + 7/mc — 2%) /2

—sinn(bs — 7/me) /2 - sinn(be + 7/ — 2%2) /2)

"

n

sin (nm/2nz) - (— sinn(be + 7/1x — 2%4) /2

— sinn(ax + /1 — 2%y) /2)

= A sin 2% _ . gin % cosn( i x)
nt 2n 4n? N ")

P InE=TR) gin ¢

n(hg~%n) sin ¢ }
dt;.

2
Ly, = —Z’;—{ (%0 — azc)S dt + (b — x,,,)S

nlag-on) t n(rw/ng-2n) t
If we take
n = N, Xn = 70/ N,
then
Ig,k,l = g Sinzg—sin—4— = — L{rzz‘— = — 0.285 cey,
n, [ ™ (0 sint 7w (" sint
Lips = ,"7;2.{ i) SRt = SO ! dt}
= _Z_S sint o _ 2. 1.851 -+ = 1.179 ---,
T Jo t T
and then

I =1.179--- —0.285-- = 0.894 --- <1,

Let x, be a point in a neighbourhood of #/#,. Then

_1¢rm sinn(t — 7/nz) 1 (" sinn(t — x,)
4= _z_gofk(t) t— 7/ n ot — —7z_5(,f’°(t) tht“}niidt

= %S:[fk(t) — fult — x)] Sint”it ;/Zc/m) at

where #x, = x, —7/n. If we prove that 4>0, then I, <1. We suppose
%, > 0 and put

hi(t) = fu(t) — f(t — x7),

then we distinguish three cases.
If 7/me — m/mi < %0 < 7/my, then

2

T () = ij; (t — aw) in (@ ar+ 1),
=Xy in (ax + x,, 7/m),

T
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n?

= ; (t — (m/mc + x,)/2)
in (7w/me, w/me+ %),
2
- :1': x; in (ﬂ/%}c“}-x;,bk),
2
- ’:r" (b = 1) in  (be be + x,),
=0 otherwise.

Let us prove that

sin % (¢t — 7 /nx)

(15) %S:hk(t) i mm gz,

The integral, being considered as a function of 4,

SA+ ] sin t

. tdt

is maximum when @ = 0, for any positive number A. Hence the sum of the
integral of (15) on the intervals (@e + %0, 7/me) and (7/m + %, be) is non-
negative. Further, by the second mean value theorem, the sum of the in-
tegral of (15) on the intervals (aw, @ + %) and (bx, bx + %») is also non-negative,
In order to prove that the integral in the remaining interval (z/m, 7/me + %)
is non-negative, it is sufficient to show that

2na M
S (a—t)rsmt”t dt=0
0

for a = (%), + m/mx)/2. The left side integral is

2na o _
S sin ¢ di — 1 — cos 2an
0 t n

which is non-negative for larg » and small a.
In the case 7/m < %o < 7/mx+ 7 /ni, We have

2
My
V4

-~

1l

I (2) (t — av) in (ax, 7/m),

2
?’::— (b — 1) in (7/m, ax + %),

Il

e

2
T (@ + bt 2,) /2~ 1)
in (ak + x;,a bk‘)y
2
- _ _nL(t—ak——x;L)
V4

in (bk, ”/nk + x;) ’
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2
= _“’j: (t — be— )
in (#/m+ x,, be + ).

In this case the estimation is similar and
we get I <1.

Finally, in the case x, > 7/m: + 7 /%2, h(t)
becomes the function as in the graph.
The estimation of I, becomes easier.
Thus in the case %, > 0, we get also the
inequality

Ig,k <1.

If x, lies in a neighbourhood of 7=/us,
then we can easily see that

Ly + Ly = 0(1).

If x, lies in a neighbourhood of z/#nx_, or = /nx.,, then we get

Iz,k—x <1, Iz,k + Iz,k-l = 0(1)
or

Iz,k-u < 1, Iz,k_], + I2,k = 0(1):
respectively.

We have proved that I, <1. Since we can easily see that I; = o(1), we
have thus proved that

lim sup s,(x,) < 1.

Similarly
lim inf s,(x,) = — 1.

This completes the proof of our theorem.
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