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1. Introduction. Recently Professor T. Kawata [1] and Professor T.
Homma [2] have discussed on some queuing problem with single server in
which a newly arrived customer joined with specified probability pi when
he had found / customers waiting or being served. We will make further
discussions on their queuing theory. A queuing system is considered to
be specified when we know (1) the input, (2) the queue-discipline and (3)
the service mechanism. Throughout this paper, we will assume that (1)
the interarrival times of successive customers are distributed by a negative
exponential law with a parameter 1/X, (2) the first join will be first served
and (3) the distribution of service times is also a negative exponential law.

To analyse the queuing system, it is very available to use the concept
of imbedding Markov chain introduced by D. G. Kendall [3] , [4] . Consi-
dering discrete time points (epochs) at which services start, the number of
customers at successive epochs constitutes a simple Markov chain and the
queue becomes a birth process in any interval between two successive epochs.

In this paper, first, the transition probability of the simple Markov chain
will be calculated and next some characteristics of the birth process will
be investigated and further discussions will be done.

2. The transition probability. To begin with, we will restate precisely
three assumptions on the queue.

(1) The interarrival times of successive customers are distributed by a
negative exponential law with parameter 1/X, which is equivalent to that
the probability that n customers arrive in any time interval t is

/r-
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(2) The probability that a newly arrived customer joins in the queue is pt

when he has found i customers waiting or being served already and the
customers joining in it do not leave without receiving their services. Here,
pt's satisfy the following condition:

(2.2) A) = l

(3) The distribution of service times B(υ) follows a negative exponential
law with a parameter b, that is
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(2.3) B(v)=be~υυ,

the mean value being l/b.
In these assumptions, condition (2.2) means that any customer receives his

service always if no one is waiting when he arrives.
Now, we shall consider the transition probability of our Markov chain

p(i,j) = Pr(xt+ι — j\xt = ί) where xt be the number of waiting customers at
the epoch t (t — 1,2, •••). To calculate this probability, it is necessary to
consider a birth process constituted in an interval between successive epochs.
In its interval, let us denote Pm (t, n) as the probability that n + m customers
join in the queue at the time /, when n customers joined in it at the time
t — 0. Pm (ί, n) must satisfy the following initial conditions:

(2.4) P0(0,w) = l,

(2. 5) Pm (0, n) = 0, m φ 0.

Using the equilibrium condition, it is easily derived [1] that

(2.6) -£- PO (t, n) = -\pnPo (t, n),
ot

(2.7) -|- Pm (t, n) = -λ/wJP™ (ί, n) + \pn+m-ιPm-ι (t, n), m=£Q.
ot

The solution of (2.6) is

^" oy -*~0 \^> **/ — ^ ^ >

and the solution of (2.7) will be found in the next section.
Using this probability Pm (t, n), the transition probability p (i, j) can be exp-

ressed as follows:

"~ Po (t, 1) + A (ί, 1) }B (t) dt for i = / = 1,

(2.9)

for i — l<j (excluding the case i — j— 1),

0 for ί — 1 > y.

We will find the transition probability p(i,j) with the aid of (2.7) and
(2.8). Multiplying both sides of (2.7) by B(t)9 integrating them from 0 to
oo and applying the integration by parts on the left side, we have

(2,10) (b + λ/>»+m) Pm (t, n) B (t) dt = λ/>n+m»ι Λ»-ι (ί, w) jB (ί) Λ,

mφO.
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Putting m = n — 1 with slight modifications, we obtain

(2.11) /ιΠ n = 1 + PPi + P&
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where

(2.12) P =

which is called the relative traffic density in the case where customers
always join in the queue.

If we put m = 2 and « = 1 in (2.10),

(2.13) P(L,2) PPsY

and if we put m > 2 and w = 1, we obtain the following recurrence formula:

(2.14) (1 + ppm+1) p (1, m) = ppmp (1, m - 1).

Then we obtain p(l,j) for j > 1 as

(2.15) ί (U) - P'PiPt pj

Finally, the analogous recurrence formula

(2.16) (1 + ppj+ι)P(i,j) = ppjp(i,j - 1)

will be obtained for ί > 1 and with the aid of the relation

pι
(2.17)

we have

(Z. lo) jr \*>J / 7ϊ , _ . \ /-i—i—τ~r—\ ττ~
(1 + Ppt) (1 + f>A+ι) (1

Thus we can express the transition probability for all i and y as follows:

1 + P Pi + pp2

(2.19) (*'./) =
(1 + + . (1 +

0,

for ϊ—j~ 1,

-, for ί — i ̂  y,

for f — 1 > j.

Since the transition probability satisfy the relation p (i, i — 1) =H 0 and p ( i,
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i + 1)ΦO if pi > 0 for every /, our Markov chain is irreducible and aperiodic
if pi > 0 for every /. By a well known theorem of probability theory, this
chain is ergodic or null. In both cases, the limit probability uj exists for
all j without depending i:

(2.20) u} = lim /><»> (i, j) ^ 0,
n-*°o

where £(n>(/,./) is the ^-steps transition probability Pr (xt+n = j \ xt = z). If
the chain is null, HJ = 0 for all 7 and if it is ergodic, «/s are determined
uniquely by the following equations.

(2.21) *=ι

J=l

In our process, the second equation of (2.21) can be written as

J+l
(2.22)

t— 1

owing to the relation p (i, j) = 0 for ί — 1 > j. With the aid of (2. 16) we
have

(2.23) Σ Hi ΣJ (1 + Ppj+ι)P(iJ)z3 = Σl 5

Changing the order of summations and using (2.22), we obtain

00

Σ(i-
(2.24)

Since the coefficients of the power zj on both sides must be equal, we have

(1 -f
(2. 25)

j-i - UiP (1. ./ - 1) } for y ̂  2.

Here, we note the relations

(1 + Ppj+ι)P(j + l,y) = 1 for j ^ 2,
(2. 26)

j -!)-(! + PPj+ι)P(l,J) = 0 for f ̂  3.
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Then we have the following difference equation:

(2.27) uj+ι - (14- ppj+i) u5 + ppjuj-i = 0 for j

The solution of the equation can be easily found as follows:

(2.28) uj^ppjuj-ϊ for j

For u2, putting j = 1 in (2.22), we can find

(2.29) ifa = -
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Finally, we can express uj as

(2.30) .7-1

for 2,

.7 = 1

in the ergodic case and we mention that it is known [ 1 ] that the ergodic
condition is

(2.31)

3. Solution of PΊΛ(t, n). In the previous section,, we introduced the prob-
ability Pm(t, n) concerning a birth process. Let us solve it in this section.

Now we will impose a slight strengthen condition on pl9 that is

(3.1) pm > pn, m< n.

Then the solution of (2.7) is expressed as

(3.2) Pm (t, n) = (- 1) m Π pn,U-o
0,

where Πr denotes multiplication for all 0 ̂  k ̂  m except k = /. To prove
fc = 0

this it is sufficient to show -that (3.2) satisfies both (2.7) and (2. 5), for the
uniqueness of the solutioji is evident in the pure birth process. We shall
check this by substitution.

First, substituting (3.2) in both sides of (2.7) respectively, we obtain the



122 KANEHISA UDAGAWA AND GISAKU NAKAMURA

folio wings:

left side of (2: 7) = (-l)m + 1λ|^V«}Σ m

Pn+Je~λ*n+jt ,

right side of (2.7) = (- I)m+l\Γπpn+λ ^^/n+me ^n+J—
U-o Jj-o Π'(£„+,-/>„+*)

fc = 0

+ (-1)"-1 λ{πVπ} Σl <J>»£-*»+**)* ***** m

Comparing coefficients of e~κ*n+P in both sides, we can easily find that (2.7)
is satisfied.

Next, we put t = 0 in (3.2) and we have

fm — l \ m 1pm (o, M)=(- iH π pn+l\ a -ϋ—
U-β h-° U'(pn,}-pn+K

And it is sufficient to show that

(3.3) = o.

To prove this we reduce to common denominator of D, and we have

(3.4)

In (3.4), the /-th numerator can be expressed as

1 1 1 -

(3.5)

Pn Pn+1 Pn+2

h2

Pn <n+i Pn+z

1 1

Pn+j-l Pn+j+l •"

Pn+j-l Pn+j+l '" Λ2
Pn +

Pn Pn+i Pn+z '" Pn+j-l Pn+j+l '" Pn+n

with the aid of Vandermonde's determinant, then the sum of numerators is
an expansion form of the lowest raw of the determinant
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and this determinant clearly vanishes.

4. Other considerations. In this section, we shall consider the number
of customers that do not join in the queue but give up to receive their
services when they arrive. Now, we introduce the probability Qm(t, n). In
an interval between any two successive epochs, Qm(t,ri) is defined as the
probability that m customers give up their services until t when n customers
joined in the queue at the time t = 0.

Since the input process is followed by Poisson law, the probability Qm(t, n)
can be expressed as

(4.1)
/?-λί/ \ / \ in+l

Let us put Qm (n) as the probability that m customers give up their services
between two successive epochs when n customers have joined in the queue
at the preceding epoch. Then

(4.2) Qm(n)= \~Qm(t,n)B(t)dt.
J o

The mean value of leaving customers Q(n) between two successive epochs
when n customers joined at the preceding epoch is

(4.3)

£τ '
° Π' (pn+j — ̂ w+fc)

 P PPn+J)

If the chain is ergodic, then the limiting mean value of Q(n) is

(4.4) Q :

We are imdebted to Professor T. Kawata for valuable criticism in prepar-
ing this paper.
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