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ON CERTAIN ENTIRE FUNCTIONS WHICH TOGETHER

WITH THEIR DERIVATIVES ARE PRIME

BY HIRONOBU URABE AND CHUNG-CHUN YANG

Introduction. In studying the factorization of meromorphic functions, we
may ask the relationship between the factors of a function and those of its
derivatives. A meromorphic function F(z)=f(g(z)) is said to have / and g as
left and right factors, respectively, provided that f is meromorphic and g is
entire (g may be meromorphic if /is rational). F(z) is said to be prime (pseudo-
prime, left-prime, right-prime) if every factorization of the above form into
factors implies either / is linear or g is linear (either / is rational or g is a
polynomial, / is linear whenever g is transcendental, g is linear whenever / is
transcendental). When factors are restricted to entire functions, it is called to
be a factorization in entire sense. In this paper only entire factors will be
considered. We note here it is known ([7]) that, when F is not periodic, then
F is prime if F is prime in entire sense. Because of this observation, in this
note entire factors only need to be considered.

Suppose that a transcendental entire function F(z) is prime. Does it follow
that its tt-th derivative Fcn\z) is also prime? In general, there is not much
that we can really say. For example, take F(z)=e*+z, then F is known to be
prime (cf. [5] or [10] etc.), but F'(z)'=ez+1 is not prime (F'(z) is pseudo-prime).
Further take F(z)=exp [e2]+z, then F(z) is prime (cf. [6] or [10]), but F'(z)
=ez-exp [>2]+l is composite (both factors are transcendental). While if we
take F(z)=z-ez, then Fw(z) is prime for n=0,1, - (FC0)(z)=F(z)). (Note that
F(z)=z-exp [>2] is prime but F'(z) is not prime, since F'(z) is an even func-
tion.) Another interesting example is given by

' F(z)=a(z)+P1(z)ez+P2(z)ez2+ - +Pn(z)e'm,

where a(z) is an entire function of order less than 1, Pj(z) 0 = 1 , •••, m; m^2)
are polynomials, Px(z)^Q and Pm(z)^0. F(z) is left-prime ([4] Cor. of Th. 6)
and right-prime ([12]). Also Fin\z) is prime for n=l, 2, •••. Further, also let
F(z)—a(z)+β(z)ez, where a and β are entire, a is transcendental and β^O, with
both of order less than 1. Fin\z) is prime for .τι=0,1,2, - (cf. [4]).

In this note we shall exhibit some classes of transcendental entire functions
which together with their derivatives are prime.
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1. Lemmas which will be used in the proofs of our results.

LEMMA 1 (Goldstein [3]). Let F(z) be an entire function of finite order such
that δ(a,F)=l for some a^oo or δ(0, F')=l, where δ(,) denotes the Nevanlinna
deficiency. Then F(z) is pseudo-prime.

LEMMA 2 (Baker-Gross [2]) Let F(z) be entire and periodic mod h(z) (a
non-const, entire function of order less than 1) with period σ. (This means that
F(z+σ)—F(z)=h(z).) Then every right factor g(z) of F(z) is of the form:

g(z)=H1(z)+h1(z)-exp lH2(z)+azl,

where Hj(z) O'=l, 2) are periodic entire functions with the same period σ, a is a
constant and hx(z) is an entire function of order less than 1. // h(z) is a poly-
nomial, then hx(z) is also a polynomial.

Remark. By the Rajagopal-Reddy Theorem ([13]), we have that hx is of
order less than 1, in Lemma 2.

LEMMA 3 (Pόlya [11]). Suppose that f(z), g(z) and h(z) are (non-const.)
entire functions such that f(z)=g(h(z)). If /ι(0)=0, then there exists a constant
c with 0 < c < l such that M(r, f)^M[_cM(r/2, h),g~] (r^r0), where M(r,f) denotes
the maximum modulus of f{z) for \z\—r. (Here the condition h(0)=0 is not
essential.)

LEMMA 4 (Ozawa [10]). Let F(z) be an entire function of finite order whose
derivative F;(z) has infinitely many zeros. Assume that the number of common
roots of F(z)=c and F'(z)=0 is finite for any constant c. Then F(z) is left-
prime in entire sense.

LEMMA 5 (BoreΓs unicity theorem, cf. [9]). Let a5(z) be entire functions of
order p (at most), gj(z) also be entire, and let gj(z)—gk(z) (j^k) be transcendental
entire functions or polynomials of degree greater than p, then the identity

Σ aj(z) exp [£,(*)]=αo(*)

holds only when ao(z) = a1(z)= ••• =an(z)=0.

DEFINITION. Denote by p(f) the order of f(z) and by p*(f) the exponent
of convergence of the zeros of f(z).

With this notation, we have

LEMMA 6. Let f(z) be a transcendental entire function and let P(z) be a
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polynomial of degree k^l. Then p*(f(P)) — k-p*(f).

Proof. Give ε>0, using the usual notation n(r, 0, *), we have for sufficiently
large values of r,

k-n{rk~ε, 0, f)^n{r, 0, f(P))^k n(rk+% 0, / ) .

Hence, putting tk+ε=s or tk~ε=s, we deduce that

n(s,0,/) d^rWΛAP))^ k r- n(s,0,/)r- n(s,0,/)
J , ^/(*+o+i as

so

If ^>(fe+ε)/o*(/), then the right hand side is finite. If λ<(k—ε)ρ*(f), then the
left hand side is infinite. Thus ρ*(f(P))=k p*(f), (cf. [8] p. 25, Lemma 1.4)

2. We shall begin with the following:

THEOREM 1. Let F(z)=h(z)ez, where h{z) is a transcendental entire function
with ρ(h)<l which has zeros of multiplicity k for every natural number k. Then
Fin\z) is prime for n=0,1 , 2, •••. Generally, if h{z) is an entire function with
p{h)<l which has at least one simple zero, then F{z)—h{z) ez is prime. (Thus, for

instance, let F(z)=ez- Ilίl+z/enY, then Fin\z) is prime for n=0,1,2, •••.)
7 1 = 1

Proof. F{z) is pseudo-prime by Lemma 1. Let F(z)=f(P(z)), where P is a
polynomial of degree k^2. As p(F)=lf we have ρ(f)=p*(f)=l/K^l/2). By
Lemma 6, p*(h)=p*(f(P))=k-p*(f)=l, which contradicts p*(F)=p*(h)<L Next
let F(z)=P(f(z)), where P is a non-linear polynomial. As p(f)=l in this case,
if P{z) has two distinct zeros, then p*(P(f))=l by BoreΓs theorem (cf. [14] p.
279), which again contradicts p*(h)<l. There remains the possibility that P(z)
=a(z—b)m, for some constants aΦO and b, and for some integer m^2. In this
case, the zeros of P{f) must have multiplicities at least m. That is, P(f) and
so h(z) has no simple zeros, which is contrary to the hypothesis. Thus F(z) is
prime.

Remark. The pseudo-primeness of F{z)—h{z)>ez with ρ(h)<l, can also be
proved in the following manner: Let F(z)=f(g(z)), where / and g are both
transcendental. By a well-known theorem of Pόlya (which is proved by Lemma
3), ρ(f)=0, whence / has infinitely many zeros (at least two). As ρ*(h)<l, by
BoreΓs theorem, we have p(g)<l. Then by the proof of Lemma 9 (in this
paper), the factorization F(z)=f(g{z)) with p(f)=0 and p(g)<l is impossible.
Thus F(z) is pseudo-prime.
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3. We shall prove the following results which is a generalization
of a results in [2, Theorem 5].

THEOREM 2. Let F(z)=P(ez)+a(z), where P is a non-constant polynomial
and a is a transcendental entire function with ρ(a)<l. Then Fin\z) is prime
for n=0, ± 1 , ±2, •••. {Here F^l\z) means the indefinite integral of F(z).)

Remark. The right-primeness follows from Goldstein's theorem ([4], Theo-
rem 1). But, here, we prove Theorem 2 by a somewhat different argument.

For the proof of Theorem 2, we shall use the following Lemmas:

LEMMA 7 (Pόlya [14] p. 273). Let Π{z) be a canonical product of order p
with zeros {zn}™=ι. If about each zero zn (\zn\ >1) we describe a circle of radius
\zn\~h, where h>ρ, then in the region excluded from these circles, we have, for
any ε>0,

I /7(2)| >exp [ - r ' + ] (\z\ =r>r o (ε) ) .

LEMMA 8 (cf. [1] Theorem 3). Let f{z) be a transcendental entire function
with 0^p(f)<l/2, and let Q(z) be a polynomial of degree k^l. Then for any
ε>0, δ>0, there exists a sequence of closed Jordan curves Γ 3 which contains the
origin and satisfies the following conditions * denoting by σ3 the distance of Γ 3

and the origin,

(i) σ,-oo (as ;-+oo) (ii) Γjd{σJ<\z\<σ3

1+δ}

(Hi)

LEMMA 9. Let F(z)—φ(ez)-]-a(z), where φ is a non-constant entire function
with p(φ(ez))<oo and a is also an entire function with p(a)<l, then F(z) can-
not be factonzed as F(z)=f(g(z)), where f and g are transcendental with p(f)=Q
and ρ(g)<L

The proof of this is essentially the same as the argument of Goldstein's
(cf. [4], p. 490-491), noting that F is of lower order not less than 1 and p(g)<l.

Remark. It follows from Lemma 3 that p(φ(ez))<co if and only if
log log M(r, φ) = o(log log r).

LEMMA 10. Let F(z)=φ(ez)^-a(z), where φ is a non-constant entire function
with p(φ(ez))<3/2 and a is also a non-constant entire function with ρ(a)<lf then
the right factor of F(z) cannot be a non-linear polynomial.

Proof of Lemma 10. Let F(z)—f(Q(z)), where / is transcendental and Q is
a polynomial of degree k^2. Assume &^3. Since k ρ(f)=p(F)<3/2, we have
p(f)< 1/2. Letting p(f) ^l/2-δ0 (0<δ0<l/2), we have cos[πp(fy]-e^
cos [(1/2—do)7r]—ε><5i>0, for sufficiently small positive number e. Then, apply-
ing Lemma 8, we obtain, for z^Γ3 with σ3< \z\ <σ3

1+δ2 (δ2: a positive constant),
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where Γ 3 and σ3 are defined as in Lemma 8. As φ(ez) is bounded on the nega-
tive real axis, we have from above that

(1) M(σ/"s, f)δ^O(l)+M(σJ

1+δ\ a).

Taking the iterated logarithm of both sides of (1), we have

log log M(σ/'δ, /)+O(l)^log log M(σ^f a)+0(1).
Hence

Γ log log M(σjk~ε, f) -—log log M(g /+ 3 2 , a) log σ/+δ2

We note here that F(z)=f(Q(z)) is of lower order not less than 1. Hence we
have that f(z) is of lower order not less than 1/k. It follows from the above
inequality that

< J ± i ( α ).
k ~~ k—ε r v J

As ε and δ2 are arbitrary, we obtain that p(a)^l, contrary to the hypothesis.
If k=2, we can write Q(z)=a(z—b)2+c for some constants aφO, b and c. Hence
we may assume without loss of generality that F(z) is an even function, that
is; <p(ez)+a(z)=<p(e~!!)+a(—z). Since ψ is entire, F(z) is at most of order ρ(a)
in the right half plane. But it is so, of course, in the left half plane. There-
fore we can conclude that l^ρ(F)^p(a), contrary to the hypothesis. Thus we
have proved that the right factor of F(z) cannot be a non-linear polynomial.

Proof of Theorem 2. Let F(z)=f(g(z)). Then by Lemma 2, g(z)=
H(z)+h(z)-eaz, where p(H)^l and H(z+2πi)=H(z), a is a constant and h(z)
(^0) is entire with p(h)<l. Since H(z) is either a constant or of exponential
type (order 1 and mean type), it is well known that H(z) can be expressed as:

m

H(z)= Σ (2ke
kz, where ak (—m^k^m) are constants and m is a non-negative

integer. Thus g(z)= Σ ak>ekz+h(z) eaz. Noting ρ(h)<l (IIΞ£0), we can con-
k = — m

elude, using Lemma 7 if necessary, that there exists a positive constant δ
such that M(r,g)^eόr (r^r0), except when H(z) = constant (i. e. ak=Q, kφΰ) and
α—0, in which case we have ρ(g)<l. Here assume that both factors / and g
are transcendental. Then ρ(f)=0 by a well known theorem of Pόlya (which
is reduced from Lemma 3), since p(F)=l: finite. Then by Lemma 9, we can
rule out the case when p(f)=0 and ρ(g)<l. Thus we may assume that M(r,g)
^eδr (r^r0). As / is assumed to be transcendental, for any K>0, we have
M(r,f)^rκ (r^r0). By these, together with Lemma 3, we have
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M(r, P{ez)+a(z)) = M{r, F)^M[CM(-^-, g),

As K>0 is arbitrary, this leads to a contradiction, since F(z) (=P(ez)+a(z)) is
of exponential type. If f(z)—Q(z), where Q is a non-linear polynomial, then we
have the following identity:

m

Qί Σ ak'e
kz+h(z) eaz^=P(ez)+a(z).

We note here that in this case H(Z)Ξ£constant or aφO. Using Lemma 5, we
see at first that a-k—0 for k=l, ••• , m and a is a non-negative integer. In this
step, we must show that there does not occur the following case where there
exists some with —m<,j^—l such that cij+h(z) = 0 and a—j, while at=0 for

— m ^ / ^ ~ 1 , Iφj. Then the above relation becomes that Qί Σ ak e
kz~\~

P(β2)+#(>). Taking z—it (pure imaginary), we have a{z) is bounded on the
imaginary axis. As ρ{a)<\ and a{z) is non-constant (transcendental), we have
a contradiction, noting the Phragmen-Lindelof s theorem. If h(z) is a constant
(^0), comparing the growth in the suitable half plane, we have a contradiction.
Noting that neither a(z) nor h(z) is a constant, again by Lemma 5, we will
arrive at a contradiction. Thus F{z) is left-prime.

But by Lemma 10, the right factor of F(z) cannot be a non-linear poly-
nomial. Therefore F(z) must be prime. Also Fin\z) is prime for w=0, ±1, ±2, •••,
since Fin\z) has the same form as F(z). This completes the proof of Theorem 2.

Along similar lines we prove

THEOREM 3. Let F{z)=ψ{ez)JrP{z), where ψ is a non-constant entire func-
tion with ρ(ψ(ez))<oo and P is a non-constant polynomial. Then F(z) is prime.

Remark. It follows from Theorem 3 that, given a natural number n, there
is an entire function F(z) of finite order such that Fa\z) is prime for k^n
and Fik\z) is composite (both factors are transcendental) for k^n+1. In the
case where F{z) is of infinite order, F(z)=exp[_ez2-\-P(z), where P(z) is a non-
constant polynomial of degree n, gives such an example, since we can prove
that F{z)—P(z)JrQ(ez) exp (β2) is prime, where P^const. and Q^O are poly-
nomials, cf. [10].

Proof of Theorem 3. Let F(z)=f(g(z)), where / and g are transcendental
entire functions. Then ρ(f)=0, and g(z)=H1(z)+P1(z) έaz, where Hλ(z) is entire
with i/1(z+27ri)=if102r), a is a constant and Px(z) is a polynomial (^0). Hence
we can write

(2)
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As jθ(/)=0 and / is transcendental, given ε>0, there exists a sequence {rn}™=1,
rn>0 and rn-»oo (as n-^oo) such that m(rn, f)^M(rn, fY"ε, where m(r,f) =
min|/(z)|, and, for any K>0, we have M{r,f)^r2K (r^r0), whence we obtain
\z\ =r

that

(3) m{rnj)^rn

κ (n^n0),

here we take ε as 0<ε<l/2.
If flGi? (the set of real numbers) and P^const. (p=άegP1^ί), restricting

z as purely imaginary; z=it, t^R, we have \Hι(itn)
J

rP1(itn)eaitn\=rn for some
tn^R. (This is indeed possible, since Hx{it) is bounded, \eait\—l and P^it) is
continuously unbounded.) Since φ(eu) is bounded, we have \φ{eίt)J

ΓP{it)\ fg \t\q,
for some n a t u r a l number q ( | ί | ^ | ί o | ) . Hence we have from (2),

(4) rn{rn, f)^ \KHι{itn)+Pι{ιtn) **«»] |

While, noting that

we have from (3),

(5) m{r

A comparison of (4) and (5) gives that q^pK/2. As Λ>0 is taken arbitrarily
large, this contradicts q<<χ>.

If flGi? and Pi = const. (^0), the left hand side of (2) is bounded on the
imaginary axis, while the right hand side of (2) is unbounded there. This is a
contradiction.

If CLGR, then noting P^O, \H1(eit)+P1(it)έait\>eδιt* for some <5>0, when
t>0 or t<0 ( | ί | ^ | ί o | ) . Hence we have again a similar contradiction as above.
Thus F{z) must be pseudo-prime.

It is known that the left factor of F(z) (periodic mod a polynomial) cannot
be a non-linear polynomial ([2] Theorem 2) and the right factor of F(z) cannot
be a polynomial of degree greater than 2 ([2] Theorem 3). There remains only
the possibility that F{z)—f{Q{z)), where Q is a polynomial of degree 2. Putting
Q(z)=a(z—b)2+c, where aΦQ, b and c are constants, and substituting the vari-
able, we may assume without loss of generality that F{z) is an even function,
that is: φ(ez)+P(z) = φ(e~*) + P(—z). If the identity is satisfied, φ(ez) must be
of polynomial growth in the (whole) plane, which is clearly impossible. Thus
we have proved that F(z) is prime.

Remark. It is known that F(z)=φ(ez)-i

Γaz, where ρ(φ(ez))<co and a is a

non-zero constant, is prime, (cf. [2] or [6]).
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4. Next we shall prove.

m

T H E O R E M 4. Let F(z)= Σ c3 exp [ α , z] ( m ^ 2 ) , where c3 0 = 1 , •••, m) are non-
]=\

zero constants and a3 (j=l, ~- ,m) are distinct non-zero constants such that (i)
a3/ak$R (the set of real numbers) for any l^j<k^m and (aj—aι)/(ak—aι)^R
for any distinct l^j,k,l^m and (ii) a3 (j=l,~- ,m) all lie on a half plane
(including the relative boundary) which has the origin as a boundary point. Then
FCn\z) is prime for n=0,1, 2, •••.

LEMMA 1Γ Let a, β, a and b be non-zero constants. Assume that there
exists an unbounded sequence {zn}n=i such that exp \_azn~]-^a and exp \_βz^]-*b as
n->oo. Then β/a^R.

Proof of Lemma 11. By the assumption, we can write

ea**=a+ε(n) and β^»

where ε(n) and δ(n) tend to zero as n->oo. Hence azn=\og (a+ε(ή))+2lnπi,
where we take as the value of log (a-\-ε(n)) the principal value and ln is an
integer. We may assume (taking a subsequence if necessary) that ln are mutu-
ally distinct (\ln\ T oo). We have

As exρ(βzn+1)/exp(βzn) = (b+δ(n+l))/(b+δ(n))-^l as n-*oo, we see that
exp[(2β/α)(/n+1—ln)πi~]->l as n-^oo. Hence we obtain Im (β/a)=0, this is β/a^R.

To prove the left-primeness of F(z) in Theorem 4, we only need to check
the condition in Lemma 4. For this we prove the following:

T H E O R E M 5. Let c3 (j=l, •••, m) be non-zero constants, and a3 0 = 1 , ***, m )
m

be distinct non-zero constants (mΞ>2). Let F(z)= Σ c3 exp [_a3z~]. Then for every

complex number a, the number of roots of the simultaneous equation

(6) F(z)=a, F'(z)=0

is always finite, unless either a3/ak(=R for some jφk or (aj—aι)/(ak—aι)^R for
some distinct j , k and /.

Proof of Theorem 5. Assume aΦO. Equation (6) becomes

(7)

Let {zn}n=i be an infinite sequence of the solutions of (7). If {exp (α,2rn)} 0'==
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l,'",m; ?ι=l, 2, •••) are bounded, we can choose a subsequence {znk} of {zn}
such that expί(XjZnk2—>b3 as nk-*oo ( j = l , ,m), In this case at least two of
{bj}?^ are not zero, as is seen from (7). Then by Lemma 11, we have aj/ak

ei? for some jφk. If {exp(ajzn)} are unbounded, we may assume without loss
of generality that exp (α^J-^co as n->oo. Dividing both side of (7) by
we obtain

for z—zn, where ε1(2rΛ)-*O as n->oo. If {exp [(α^ —oc1)zn~\} ( j=2, ••• , m ; nΞ>l) are

bounded, then, noting {α^ } are mutually distinct, we can conclude that

{aj—a1)/{ak—a1)^R for some 2^jφk^m. If {exp Z(<Xj—α^nH} are unbounded,

by repeating the above argument, we will arrive at the conclusion that either

(aJ—aι)/(ak—aι)^R for some distinct j , k and /, or
cmi£ — cm-ί rti\*j

for some sequence z=zk, where Sj(zk)—*0 as ^-^oo (7 = 1, 2). We wish to put
aside the latter case, {exp [(αm—ocm_1)zk~]} cannot be unbounded, since {cj} are
non-zero constant. Now suppose that the sequence {exp C(αTO—oίm-1)zk~}} is
bounded and it has a finite cluster point bΦO (say). Then from (9) we have
Cm^-^m-i and amcmb=—am-1cm-1. This will lead to a contradiction, since {cj}
are non-zero constants and {α,} are distinct non-zero constants.

If α = 0 , w e only need to start from (8), where we take ελ{z) as identically
zero. Then the number of roots of (6) must be finite for every complex num-
ber a.

Proof of Theorem 4. The left-primeness of F(z) (in Theorem 4) follows
from Theorem 5, since F\z) has infinitely many zeros, which is clear by Lemma
5. The right-primeness of F(z) is proved easily as follows: Let F(z)=f(P(z)),
where P is a polynomial of degree k^2. Then f(z) is an entire function of
order 1/k. If k^3, then i o(/)^l/3(<l/2), whence we have by a well-known
theorem of Wiman /(P(^)) is unbounded on any radial straight half line, while
F{z) is bounded on a suitable such one, as is seen by the assumption that
{ttj\T=i all lie on a half plane. If k=2, we can rule out this possibility by
Lemma 5, noting that F(z—z0) is an even function of z for some z0. Thus F{z)
is prime. Also Fin\z) is prime for n=l,2, •••, since Fin\z) has a similar form
to F{z).

5. Here we note the following.

THEOREM 6. Let F(z)=ez\ez-l) (k^2: an integer). Then FCn\z) is prime
for n—0,1, 2, •••. More generally, F(z)=ezk-(P(z)ez+Q(z)) is prime, provided that
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P and Q are polynomials (^0) such that deg P=άegQ and the leading coefficients
of P and Q have the equal modulus.

Proof. By Lemma 1, F(z) is pseudo-prime. We can conclude that the left
factor of F(z) is linear, by comparison with the exponent of convergence of
the zeros and by noting that the zeros of P(z) e*+Q(z) are all simple except
at most a finite number of them (cf. the proof of Theorem 1). Since the zeros
of P{z)ez+Q(z) distribute almost near the imaginary axis, it follows that the
right factor of F{z) cannot be a polynomial of degree greater than 2. Also, as
in the proof of Theorem 8, we can rule out the possibility that the right factor
of F(z) is a polynomial of degree 2.

6. Finally, we note the following two results.

THEOREM 7. The only non-trivial factorization ofF(z)= f ep{z\Pλ{z)ez -\- P2{z))dz
Jo

is F(z)=Q(g(z)) or F(z)=g(Q(z)), where P, P^O and P2ξέ0 are polynomials with
degPΞ>2 and deg Q=2, and g{z) is entire.

We leave the verification to the reader.

ez\ez—\)dz is prime.

0

Proof. F{z) is pseudo-prime by Lemma 1. Let F(z)=P(g(z)}, where P is
a polynomial of degree k^2. Then p(g)=2 and F'(z)=ez*>(e*-ϊ)=P'(g(z))g'(z).
We shall treat two cases separately: case (i) k^3 and case (ii) k=2. In case
(i) we have deg P' = k—1^2. If Pf has two distinct zeros, then we have p*(Fr)
=p:¥(P/(g))=2> while p*(F')=p*(e*-1)=1, which is a contradiction. If P' has
only one zero, then we may write P/(z)=A(z—z0)

k~1 and g(z)=zo+e9(*\ where
A=£θ, z0 are constants and Q is a polynomial with degQ=2, since ez—1 has
only simple zeros. Then, as g\z)=Qf(z)e9(Λ\ we have F'(z)=P'(g(z))g'(z)=
= A-eik-1)<t<*)Q'(z)eft™=:A'Q'We**™, which has only a finite number of zeros.
This is a contradiction.

Now we consider case (ii) k=2. Then degP'=l . Let P\z)=az+b. Then
(e*-l)e**=(ag(z)+b)g'(z). Putting f(z)=ag(z)+b, we have

(10) α (e '- l) e W(s)/'(2).

But no entire function f(z) can satisfy the equation (10), which is proved as
follows: Let f(z) be an entire solution of (5), then we have

f(z)2=2aC(ez-l)ez2dz+c (c : a const).
Jo

We note that along the imaginary axis, the limit values f(ιoo) and/(—zoo) both
exist. Also we have
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(e'-ϊ)et2dz
oo

=2αi[j"~ e-t2+itdt-jj°° e-t2df\

=2af-Vi-[exp(—j-)-

Thus either /(zoo) or /(—zoo) cannot be zero. On the other hand, from the
equation (10), we can conclude that f(z)=h(z) ez2/2, where h(z) is an entire func-
tion of order at most 1. It follows that /(ioo)=/(—χoo)=0, as the limit values
of f(z) along the imaginary axis. This contradicts the above fact just derived.
Hence F(z) is left-prime.

Now, suppose that F(z)=f(Q(z)), where Q is a polynomial of degree k^2.
Then ρ(f)=2/k. If k^3, then ρ(f)<l, whence /' has an infinite number of
zeros. But then the zeros of f'(Q) cannot be distributed along a line. If k=2,
let Q(z)=a{z—zo)

2+b. Putting w—z—z0 and P(w)=F'(z), we have F{—w)~
-P(w). That is (β-w+2°-l) e x p [ ( - ^ + ^ ) 2 ] = -(^+ e°-l)exp[(w;+^o)2], from
which it follows that either zo=ΰ and ew=l or e2z°=l and exp[(l+42ro)w] = ± L
In any case, we have a contradiction. Therefore the right factor of F{z) must
be linear. Thus we have proved that F(z) is prime.

Finally the authors wish to express their gratitude to the referee for his
valuable suggestions.
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