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THE CARATHEODORY METRIC IN PLANE DOMAINS

BY JACOB BURBEA

Abstract. Let D$OAB be a plane domain and let CD(z) be its analytic
capacity at ZGD. Let JCD(z) be the curvature of the Caratheodory metric
CD(z)\dz\. We show that JCD(z)<—± if the Ahlfors function of D with respect
to z has a zero other than z. For finite D,JCD(z)<^—4; and equality holds if
and only if D is simply connected. As a corollary we obtain a result proved
first by Suita, namely, that JίD{z)^k—i if D&OAB. Several other properties
related to the Caratheodory metric are proven.

§ 1. Introduction.

Let D&OAB be a plane domain and let CD(z) be its analytic capacity at
Let JCD(z) be the curvature of the Caratheodory metric CD(z)\dz\. This

paper is divided into three main parts. In the first part we study the curvature
JCD(Z) and its relation with the curvatures of the Bergman metrics (Theorem
1). As a corollary, we show that the boundary value of JCD(z) is —4 if D is
bounded by C2 curves.

The second part of this paper is devoted to the discussion of the bounded-
ness of JCD(z) by —4. Suita [8], using the notion of supporting metrics, has
shown that JCD(z)^—i. However, this method of proof seems not to apply for
deciding when <KD(z)—— 4 occurs. After submitting this paper for publication
the author's attention was drawn to the existence of another recent paper of
Suita [9] wherein a different method of proof is provided to settle the above
question when D is finite. This method is similar to the one we employed in
our Theorem 2 and it is based on the "method of minimum integral" with
respect to the Szegδ kernel function. In fact, with similar methods and with-
out being aware of [9] we were able to extend some of the present results to
higher order curvatures [2]. This part is revised accordingly. The author is
most indebted to Professor N. Suita for his valuable comments and suggestions,
and, in particular, for pointing out the possibility of sharpening our assertions
to the form embodied in Theorem 3 of this paper.

Finally, in the third part we study in some detail the curvature JCD(z) for
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doubly connected domains D. Part of this treatment is patterned after that of
Zarankiewicz [10] for the reduced Bergman kernel. Several interesting rela-
tionships arise from this study (Theorem 4).

§ 2. Preliminaries.

Let D be a plane domain &OAB and let H(D: Δ) designate the class of all
analytic functions from D into the unite disc Δ. Let ξ^D and set Hξ(D: Δ)=
{f*=H(D: Δ): /(£)=()}. The analytic capacity C(ξ)=CD(ξ) is given by C(£)=
sup{!/'(£)I : fsΞHξ{D: Δ)}. It follows that the metric C(z)\dz\ is conformally
invariant. This is exactly the Caratheodory metric for D (cf. Reiffen [6]).
There exists a unique function F in Hξ(D: Δ), called that Ahlfors function
F(z)=F(z:ξ), such that F'(ξ)=C(ξ).

Let B(z, z) and B(z, z) be the values of the Bergman kernel and reduced
Bergman kernel of D respectively. We write M(z)=MD(z)=VπB(z, z) and M(z)
=MD(z)z=VπB(z,z). It is well known [7] that M(z)<C(z)^M(z). Consequently,
C(z)\dz\ is complete if D is bounded by C2 non-degenerate curves. In fact, by
employing a method described in [1, p. 38] and noting that the above three
quantities are monotonic with D, one obtains:

PROPOSITION 1. Let D be a domain bounded by C2 non-degenerate curves and
tedD. Then, within the angular sector \arg(z-t)\^a<π/2, lim[2 Re (z-t)C(z)~]2

z->t

=1.

§ 3. The Curvature.

For a positive C2 function f(z), defined in an open subset of the plane, K(f),
given by

K(f)=-(2f)-1Δlogf> f=f(z),

is the curvature of the metric f(z)\dz\2. Let g(z) be another positive C2 func-
tion defined in the same open set as that of f(z). We note the following
identity

dz ~g

Consequently,

(3.1) (f+g)2K(f+g)^ PK(f)+g2K(g).

By Using a canonical exhaustion process (cf. [8]) it can be shown that
C(z) is real analytic and hence we can introduce the curvature of C(z)\dz\

j{D(z)=K(C2)=-C-2Δ log C, C=C(z).

Similarly, μD(z)=K(M2) and βD(z)=K(M2) are the curvatures of M(z)\dz\ and
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M{z)\dz\ respectively.
For future reference we denote by <DVt l^p<co} the class of all ̂ -connected

domains with no degenerate boundary component and we let 2)^ designate
the subclass of plane domains bounded by p analytic Jordan curves. We now
state:

THEOREM 1. Let D&OAD. Then

(3.2) {-^-)AμD{z)S^D{z)s{-^)AβD{z).

Proof. Assume first that D^£D%\ l^p<oo. (3.2) clearly holds when p—1
for, in that case, M=C—M and βD(z)=JCD(z)=μD(z) = — 4. Assume now that
Kp<oo. Then (cf. Hejhal [5, p. 107])

C\z)=M\z)+kx(z), M\z)=C\z)+k2(z),

where
p-i

ki(z)= Σ |^5ΰ(-?)|2>0, ZGD, ( Z = 1 , 2 ) ,
.7 = 1

and φf(z), l^j^p—1, i—1,2, are analytic in D. It is easily verified that K(kt)
^0, ι=l , 2. Therefore, employing (3.1), we obtain M*K(M2)^C4K(C2)^M*K(M2)
which is exactly (3.2). For the general case D&OAB, we take a canonical
exhaustion {Dn} of D, with Dn<^£)^, l^pn<oo. The theorem now follows in
an obvious way by letting n-̂ oo.

COROLLARY 1. Let D be a domain bounded by C2 non-degenerate, curves and
t^dD. Then, within the angular sector \arg(z—t)\^a<π/2, lim JCD(z)=— 4.

2—ί

Proof. Within the above angular sector we have [1, p. 38]

lim [2 Re (^-0M(*)]2=lim [2 Re (z-t)M{z)J=l
z*-t z-+t

and \\m μD(z)=\\m βD(z)=— 4. The assertion now follows from Proposition 1
z—*t z—*t

and Theorem 1.

§ 4. The Szegδ Kernel.

Let D^£D(«\ As usual, H2=H2(dD) stands for the Hardy-Szegδ space of D.
It is a Hubert space of analytic functions in D with the scalar product (/, g)

= f f(z)gζz)\dz\ and | | / | | 2 =(/, /). The integration is carried over the boundary

values of the analytic functions / and g (this refers to an arbitrary non-
tangential approach). H2 admits a reproducing kernel K(z, f) which is the
classical Szegδ kernel for D.

According to a classical result of Garabedian (cf. [1, p. 118]) C(ξ)=2πK(ξ, f)
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and F(z)=F(z:ξ)=K(z,ξ)/L(z,ξ). Here, F'(£)=C(£) and L(z,ξ) is the adjoint
of K(z, I) satisfying the boundary relation

(4.1) ιK(z, ξ)\dz\ =L(z, ξ)dz; ztΞdD,

Therefore, \F(z)\-=\ for Z(Ξ3D and \F(z)\ ̂ 1 throughout D. Moreover the divi-
sor of L(z, ξ) is exactly ξ~1 with residue (^π)'1 and the analytic function L(z, ξ)
—{2π)~1{z—ξ)~1 vanishes at z=ξ. The divisor of F(z) is therefore ξb^ξ) ••• bv-λ(ξ)
where bj(ξ), j=l, ••• ,p—l, are the p—1 (possibly repeated) zeros of K(z, f) (none
of which is on dD). The functions bj(ξ) are analytic in ξ.

Quite recently, Hejhal [4] has obtained certain relationships for a large
class of kernel functions. One of these relationships reads

32 __ _ p — 1

provided ξ is a non-exceptional point of D. Furthermore, Theorem 2 states
that JCD(ξ)<— 4 for p>l. To prove that, one, of course, is tempted to use the
above identity. This amounts to in only showing that the second term on the
right hand side of (4.2) is strictly positive for z=ξ and p>l. Apriori, the truth of
such as an assertion is not known and in fact it is only a corollary of Theorem 2.

§ 5. Boundedness of Curvature.

For ξ^D we write δD(ξ)= sup \z—ξ\ whence if coeZ) and
z<=dD

gco. Again, assume that D^®f> and ξ<=D. Write A(ξ)={ff=H2: /(f)=0, f'(ξ)
= 1}. A(ξ) is a closed convex subset of H2 and it is not empty for, the func-
tion

2πF(z)K(z,ξ)

is in A(ξ). Let φ be the unique solution of the minimal problem λ(ξ)
min {\\f\\2:f(ΞA(ξ)}. Then (cf. Bergman [1, p. 26])

(5.2) J(£)=4(/ΓJ log K)-1, K=K(ξ, ξ),

and

(5.3) φ{z)=Kλ{ξ)4r K{Zy f )

1 K(ξ9 ξ) '

Part (i) of the following theorem appears also in [9].

THEOREM 2. Let D<=Ξ£)P and ξ fixed in D. Then

(i) JCD(ξ)^—£ and equality holds if and only if p=
(ii) // DtΞWf\ the identity,
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(5.4) ί 9 / ( z ) ~ i ^ H f
holds foy all f^H2 if and only if p=l.

(iii) For DcΞg)^ and p>l we have

dξ C{ξ)

JCD{ξ)< 4 %

where ξ3 is any one of the (p—ϊ) zeros of K(z, I), i. e., ξj=b~(ξ).

Proof. Since JCD{z) is conformally invariant we may assume that
Clearly, IMI2^(f). But IM|2=2τrC-3(f) and thus, using (5.2), ±C\ξ)^Δ log#=
JlogC(f) which shows that JCD(ξ)S—h Equality holds if and only if φ=ψ
which is equivalent to (f,φ)=(f,ψ) for each f^H2. According to (5.3) this is
equivalent to

Since JCD(ξ)=—A, using the reproducing property, we obtain

u ' φ ) C\ξ) dξ K(ξ,ξ)

for all /ei/ 2 . According to (4.1) and (5.1)

and thus (5.4) holds for all f^H2. However, for p>l, (5.4) does not holds.
Indeed, K{z,ξ)={z-ξ1) - {z-ξ^^z) where h(z) and H(z)=L(z,ξ)(z-ξ) do not
vanish in D. Let

/oW=(3r-f.) (^-fp-i)(^»ί)2.
Then fo<BH2 and

On the other hand, the right hand side of (5.4) is zero for /0. We therefore
proved (i) and (ii). We now show (iii). Let p>l and thus ξj—bj{ξ)f l^j^p—L
Thus ξjΦξ. Let

gj(z)=(z-ξ)F(z)L(z, ξ,),

Since F(£,)=0 it is clear that ^ e / / 2 and ft(f)=^J(f)=O. Also, by (4.1),
f,) The function
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belongs to A(ξ) whence

I I I , π ^ i, π2 \(gj><P)\*
l l ; " lιr" toll

Here, again, \\φ\\2=2πC-\ξ) and, using (4.1),

, ξ,)L(z, ξ)dz

2π

Consequently,

2ττ 4ττ2 l ^ - g Γ I L ( ^ g )

c\ξ) c\ξ)

Write

Then

and 0<ΛJ<1. Therefore

Hence, by (5.2),

and (5.5) follows. This concludes the proof.

COROLLARY 2. Let ξ be a non-exceptional point of fleίj,", p>ί. Then

/. This follows from (4.2) and Theorem 2.

COROLLARY 3. Let D&OAB. Then JCD(z)^-L

Proof. Let {Dn} be a canonical exhaustion of D such that dDn consists of
a finite number of analytic curves. Then JCD(z)=\imJCDn(z), and since JCDn(z)

^ — 4 for each n the corollary follows.

COROLLARY 4. Let D$OAB. Then
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Proof. By Theorem 1, for D&OΛB, μD(z)^JCD(z)[C(z)M-\z)y and the corol-
lary follows from Corollary 3.

Corollary 3 was first proved by Suita [8]. He also raised the following:

Conjecture. Let D&OAB. Then JCD(z)^ — 4 and equality, at one point, holds
if and only if D is conformally equivalent to the unit disc less a (possible)
closed set expressed as a countable union of compact NB sets.

Of course, this conjecture is already verified, in case D<=2)v, via Theorem
2. The next theorem strengthens the validity of the above coniecture and in
fact sharpens the assertions of Theorem 2.

Let D(£θAB and let {Dn} be a canonical exhaustion of D such that dDn

consists of a finite number of analytic curves. In every Dn we have the Szego
kernel Kn(z,ξ), its adjoint Ln(z,ξ) and the Ahlfors function Fn(z)=Fn(z, ξ).
Here, as before, Fn(z)=Kn(z, ξ)/Ln(z, ξ\ F'n(ξ)=Cn(ξ)=2πKn(ξ, f) and Fn(£)=0.
Then, the sequences {Fn(z)} and {Kn(z, f)} converge uniformly on compacta of
D to F(z) and K(z, I) respectively [8]. Of course, C(ξ)=2πK(ς, ί). Therefore,
{Ln(z,ξ)} converges uniformly on compacta of D—{ξ) to L(z.ξ).

THEOREM 3. Let D&OAB and feZλ Assume the Ahlfors function F(z)=
F(z: ξ) has a zero ξ0 in D other than ξ. Then JCD(ξ)<—4.

Proof We may suppose that OOGD and ξ, fo^0 0- Let {Dn} be a canonical
exhaustion of D as before. Since F(ξo:ξ)=O, ξ0Φξ, it follows from Hurwitz's
theorem that, for a sufficiently large n, Fn(z: ξ) has a zero ξn^ζ near ξ0. This
zero must be a zero of Kn(z,ξ) and thus Dn^£>{^, pn>l, for such a large n.
Therefore, by Theorem 2 (in) and since δ

δ2 Cn(ξ)Cn(ξn)

for a sufficiently large n. Since Ln(z,ξ) has no zeros in Dn—{ξ} it follows by

another application of Hurwitz's theorem that Ln(ξn,ξ)-*L(ξo,ξ)Φθ. Letting

n->oo in the above inequality results in

and the assertion follows.

§ 6. Doubly Connected Domains.

Let D<=£>2 and assume that its modulus is 1/r so that it can be represented

as the annulus R={z: r< \z\ <1} , 0 < r < l . Here we have at our disposal the

Weierstrass £P-function with half periods ωx=πi and ω 2 = l o g r . T h e reduced

Bergman kernel is given by [1, p. 10]
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(6.1) B(z, £)=-^ξ {&(\og zξ ωuω2)-a), a=-ηι/ωι>

where 2η3 is the increment of the Weierstrassian ζ-function with respect to
the periods 2ω3 (7 = 1,2).

Since the sequence zn/V2π(l+r2n+1), n— •••, — 1, 0,1, •••, forms an ortho-
normal basis for H2(dR) the Szegδ kernel for R is given by

^ ' w 2π »^«

By a well-known formula of Garabedian [1, p. 119] we have

(6.2) iπK\z, ξ)=B(z, ξ)+aw(z)ϊίKξ),

where w;(2')=(2>εlogr)"1. Comparing the coefficients of (^l)"1 in (6.2) and nothing
that the term with (zξ)'1 does not appear in B(z, f), we obtain

a = SlogV g r«»«

As usual, we set α)3=ft)1+ω2; ej—S{ω}), j=ί, 2, 3, where &{u)=g(u\ ωuω2).
We have the identities (cf. Hancock [3, p. 483])

(6.3)

(6.4)

(6-5)

Consequently,

This, together with (6.1) and (6.2), implies that

We set p=\z\, ρ^[r, 1]. The reduced Bergman kernel and the analytic
capacity for R, are therefore

respectivelτ. The curvature of M(ρ), β, was treated by Zarankiewicz [10].
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Here we study the curvature of C(p), JC, and its relation with μ.
For Rz)=f(p), p=\z\, we have df=(l/p)(d/dp)p(d/dp)f(p). Hence, using

the above expressions, and after some manipulations, we obtain

( β β ) μ{z) = ~4L1+ A{3>-aY - J

and similarly

(6-7) Λ W =

Here £(α)=4α3 — £ 2α— £3.
Now, on the boundary of the rectangle 0, πi, logr+πi, logr, &(u) attains

values increasing monotonically from —oo to +oo and thus e1<e3<e2. Further,
by (6.3) and (6.4), we have e1<es<a<e2. Moreover, since

it follows that eλ<0, e2<0, g2>0 and

Also, for giϋ^if-gj-g^iit-e.χt-e.χt-e

and, since g(t) does not have zeros between e3 and e2, g(a)<0. It can be shown
[10] that g2—12α2>0 and thus β(z)<—L This led Suita [7] to conjecture
that μD(z)^—4 for any D&OAD.

We are now in a position to state:

THEOREM 4. There exists an r oe(0,1) such that for any D^W2 with modulus
it holds μD(z)<JCD(z).

Proof. Let h(r)=es+a. Using (6.4) and (6.5) we find that h(r) is decreas-
ing in re(0,1) and Λ(0)=l/6, h(ϊ)=—oo. Consequently, there is an r 0e(0,1)
with h(ro)=0 and h(r)<0 for r>r0. Hence es^—a for r^r0. This, together
with ^ 3 <α, implies that g2—12a2^g2—12el The theorem now follows from (6.6)
and (6.7), and, by noting that £(α)<0 and 0<^—α<£P—e 3 .

We should remark, however, that the above theorem fails for r<r0. Simi-
larly to Theorem 4 one easily shows:

PROPOSITION 2. JC(p) has only one extremal point in (r, 1). This extremal

point is at Vr and it is a minimal point.

By direct computation we obtain
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and by [3, pp. 480-481]

i / Σ ( - l ) m r 2 m 2

(6.8) «*( V r ) = - - j M

\ "V2 m 2 + m
Σ (-l)"V

COROLLARY 5. Lέtf D G ^ ) 2 u ίf/i modulus 1/r. 77i£n «X(Vr)^<#i>(2)<—4,

ί/ie ί α/we 0/ JC(Vr) is driven 6j> (6.8).

Finally, consider the invariant /(ίo)=(M/C)2=l+(β3—a)/(&—e3). Hence
<1 (which is a well-known fact for more general domains). Again, J(ρ) has
only one extremal point in (r, 1). This extremal point is at Vr and it is a
minimal point.
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