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REAL HYPERSURFACES IN QUATERNIONIC KAEHLERIAN

MAMIFOLDS WITH CONSTANT Q-SECTIONAL CURVATURE

BY JIN SUK PAK

Recently determinations of some kinds of real hypersurfaces in a complex
projective space CP(m) have been done by several authors (Lawson [7], Maeda
[9], Okumura [10], [11], [12] and etc.). They have obtained sufficient condi-
tions or necessary and sufficient conditions for a real hypersurface in CP(m)
to be one of model hypersurfaces M%>q(a, b), where M$ιQ(a, b) are defined in
CPsjri) by the same way as will be taken in § 7 to define model hypersurfaces
M%q(a, b) in a quaternionic projective space QP(m). Lawson also gave in his
paper [7] a sufficient condition for a real minimal hypersurface in QP{m) to
be one of model hypersurfaces M%q(a, b). In the present paper, we shall obtain
quaternionic analogies to theorems proved in [7], [9], [10], [11] and [12].

On the other hand Eum and the present author [1] gave a characteriza-
tion of quaternionic Kaehlerian manifold QP(m) of real dimension 4m with con-
stant Q-sectional curvature c by the existence of a real hypersurface, which
satisfies the condition

(0.1) A(X, Y)=^-g{X, Y)-{u(X)u(Y)+v(X)υ(Y)+w(X)w(Y)} ,

passing through an arbitrary point and being tangent to an arbitrary (4ra-l)-
direction at that point, where A denotes the second fundamental tensor and
u, v, w some local 1-forms. So, we shall prove in § 7 that a real hypersurface
in QP(rn) satisfying the condition (0.1) is necessarily one of model subspaces
M%,la, b).

Real hypersurfaces in a quaternionic Kaehlerian manifold admit, under
certain conditions, what we call an almost contact 3-structure. In § 1, we define
almost contact 3-structures and give some formulas for later use. And we
prove there Theorem 1 concerning their normality. In § 2, we show that there
exist a contact 3-structure on real hypersurface M in a quaternionic Kaehlerian
manifold (see Theorem 2). And we give there some necessary and sufficient
conditions for the induced contact 3-structure of a real hypersurface M to be
normal (see Theorem 3). In § 3, we recall some formulas concerning real hyper-
surfaces in a quaternionic Kaehlerian manifold with constant Q-sectional cur-
vature for later use and prove Theorem 4. And we characterize there real
quaternionic cylinders imbedded in Qm in terms of the second fundamental
tensor (see Theorem 5).
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In §4, using the Laplacian JM| | 2 , we find sufficient conditions for a com-
pact real hypersurface in a quaternionic Kaehlerian manifold with constant Q-
sectional curvature c^O to satisfy the condition (0.1) (see Theorems 6 and 7).
In § 5, using an integral formula, we give a necessary and sufficient condition
for a compact real hypersurface in a quaternionic Kaehlerian manifold with
constant Q-sectional curvature to admit a normal almost contact 3-structure
(see Theorem 8).

In § 6, we shall recall definitions and some formulas concerning the submer-
sion π: S4m+3^QP(m) and an immersion i: M^QP(m) and prove some lemmas
for later use. And we prove there Theorem 9 giving some conditions equiva-
lent to the condition that a real hypersurface in QP(m) admits a normal contact
3-structure. The last § 7 is devoted to give characterizations of the model
subspace M$ιQ(a, b) in QP(m) (see Theorems 10~14 and Corollaries 15 and 16).
Manifolds, submanifolds, geometric objects and mappings we discuss in this
paper will be assumed to be differentiable and of class C°°. We use in the
present paper systems of indices as follows:

A, B, C, D=l, 2, -", 4 m + 4 ic, λ, μ, v=l, 2, —, 4 m + 3 ,

a, β, γ, δ=l, 2, - , 4 m + 2 h, i, j, k=l, 2, •••, 4m ,

a, b, c, d, e=l, 2, •••, 4m—1 r, s, t, u—\y 2, 3 .

The summation convention will be used with respect to these systems of in-
dices.

The author wishes to express his appreciation to Professors Shigeru Ishi-
hara and Masafumi Okumura for their encouragement and help in developing
this paper.

§ 1. Almost contact 3-structures.

Let M be a differentiable manifold with Riemannian metric g and covered
by an open covering σ={0, '0, •••}. Then M is called a manifold with almost
contact 3-structure if the following conditions (1) and (2) are satisfied:

(1) In each 0 there are given three 1-forms uu u2, u3 and three tensor fields
Φi, Φz> Φs of type (1,1) satisfying

φi(Φ*)Φ**()l9 φ2(φ1X)=-φΆX+u1(X)U2

φ(φX)

φs(φ1X)=φ2X+u1(X)U3>
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φ1U2=U3, φiU3= — U2, φ2Us=Ulf φ2U1=—U3f φ3U1=U2, φ3U2— — Uι,

9 Y)=-g(X,φ2Y),g(φ3X, Y)=-g(X,φ3Y)

'Φl

'φt

'Φx

\

/
>

( Φi

φz

\ Φz

for any vector fields X and Y, where Uu U2 and U3 are the vector fields asso-
ciated respectively to uuu2 and u3, i.e. g(Ux, X)=ux(X), x=l,2,3.

(2) If Or\Όφφ, there are differentiate functions Sxy in Of\Ό such that

(*,:v=l,2,3)

the matrix S=(Sxy) being contained in the orthogonal group 0(3). Then the
set {(0,ui,u2,u3,φ1,φ2,φ3,g)\0(=Jl} is called an almost contact ^-structure. In
such a case the manifold M is necessarily of dimension 4m-l.

We define locally in O a tensor field T of type (1,1) by

T=u1®U1

Jrv1®V1+w1®W1.

Then, as a consequence of the condition (2), it follows that T determines
a global tensor field in M, which will be also denoted by T. The condition (1)
shows that T satisfies the equation T2—T and hence it is a projection tensor
field of rank 3. Therefore there exists in the manifold M a distribution D de-
termined by T, and hence a 3-dimensional vector bundle B over M consisting
of all vectors belonging to the distribution D.

We assume that {O; z], O^Jί are coordinate neighborhoods in the mani-
fold M. Let there be given a connection ω in the vector bundle B and denote
in each coordinate neighborhood {O z) of M by ω% the components of ω with
respect to the local frame (Ulf U2, U3) in B. Then the condition (2) implies
that in Or\θΦφ the following relation is valid:

(1.3) Ώ=S-1ΩS+S-1dS,

Ω=(ώί) being defined in each neighborhood 0 and dS the differential of the
matrix S=(Sxy).

Denoting by V the Riemannian connection determined by the Riemannian
metric g and putting

?xφi \ I Φl

|+(α«(*))| φ2

φz
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(x,y=l,2,3) for any vector field X in M, we can easily verify by using (1.3)
that in Or\Ό

Now we consider in each neighborhood O local tensor field Φ(φx, φy), (x, y—
1, 2, 3) of type (1, 2) with components

(1.5) Ψ

+ {Pc(ux)b-Fb(ux)c} (uy)
a + {Fc(wΛ-^(^)c} (ux)°;

where (ux)c, {ux)
b and (φx)

b

c are components of local tensor fields ux, Ux and φx

respectively. Then a simple calculation by using (1.2) and (1.4) gives the fol-
lowing relation

Φ{'φu 'φWφu 'Φ2WΦ1, 'Φz) \

Φ('Φ*,'Φl)Φ{'φ2,fφ*)Φ('φi,'Φ*) =(S, t)

Φ('φi, 'ΦWΦ*, 'Φ*)Φ{'Φ*, 'Φs) I \ Φ(ΦZ, ΦlWz, Φ2)Φ(ΦS, φ9)

in Or\'θΦφ because of Φ(φx, φy)=zΦ(φy, φx). Hence there is a global tensor
field 2Ί on M defined by

(1.6)

and a tensor Σ2 globally defined on M by

(1.7) Σ2=Φ(φu φ,

up to sign. We now have

THEOREM 1. In a (im—l)-dimensional differentiate manifold with almost
contact ^-structure a necessary and sufficient condition for the global tensors Σx

and Σ2 defined respectivery by (1.6) and (1.7) to vanish is that

We say that an almost contact 3-structure is normal (with respect to a
connection ω in the vector bundle B) when Σλ=0 and Σ2=0. Then by means
of Theorem 1 a necessary and sufficient condition for an almost contact 3-
structure to be normal is that Φ{φx> φy)—Q are established.
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§ 2. Hypersurfaces in a quaternionic Kaehlerian manifold.

We first recall the definition of a quaternionic Kaehlerian structure given
by S. Ishihara [3]. Let M be a 4m-dimensional differentiate manifold and
assume that there is a 3-dimensional vector bundle V consisting of tensors of
type (1.1) over M satisfying the following conditions (a), (b) and (c):

(a) In any coordinate neighborhood {U yh}, there is a local base {F, G, H}
of V such that

(2.1) FiGϊ=

τii pn— pi τrh — riίnhr j — — r hn j — Lxj,

F), G) and H) denoting components of F, G and H in 0 respectively.

(b) There is a Riemannian metric tensor g5i such that

Fji=—Fτj, Gii=—GtJ, Hji=—Hlj,

where Fμ=ghxF), Gμ=ghiG
h

3 and Hόi=ghxH
h

3 .

(c) For the Riemannian connection D of (M, g)

D F^rfiΐ-qW,

(2.2) DiGi=-riFi+pjHi,

where p=zpidyι

y g—Qidy1 and r=ridyι are certain local 1-forms defined in U.
Such a local base {F, G, H} is called a canonical local base of the bundle V in
U, and (M, g, V) or M is called a quaternionic Kaehlerian manifold and (g, V)
a quaternionic Kaehlerian structure.

In a quaternionic_/Γaehlerian manifold (M, g, V) we take intersecting coordi-
nate neighborhoods U and 'U. Let {F, G, H) and {'F, fG, Ή) be jpanqnical
local bases of V in U and 'U respectively. Then it follows that in Ur\fU

(2.3) 'G \=(Sxy)\ G , (x, 3^=1,2,3)

with differentiate function Sxy, where the matrix S=(Sxy) is contained in the
special orthogonal group SO(3) as a consequence of (2.1).
As is well known, a quaternionic Kaehlerian manifold is orientable.

We consider a real hypersurface M in a quaternionic Kaehlerian manifold
M of dimension 4m. Let M is covered by a system of coordinate neighborho-
ods {0:yh}. Then A/is covered by a system of coordinate neighborhoods
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{U: ya}, where U—Uc\M._ Let M be represented by yι=y\xa) with respect to
local coordinates (/) in U((ZM) and (ya) in U((ZM). Denoting the vectors
day

ι(da=d/dya) tangent to M by βi and a unit normal vector field by N\ we
can put in each coordinate neighborhood U—Ur\M

(i) FiBϊ

(2.4) (ii) GlBh

a

(iii) mBϊ

φl, Ψba, θh

a being local tensor fields of type (1.1) and ua, va, wa local 1-forms de-
fined in U, where gba^gjiBίBi are the components of the induced metric tensor
in M. We have easily ub=gbaua, vb=gbava and wb=gbawa, where (gba)~(gba)~^
Applying F{ to (2.4), (i) and taking account of (2.1) and (2.4), (i) itself, we find

ua, ueφ
e

b=0, φ%ue=0, ueu
e=l.

Transvecting F{ to (2.4), (ii) and using (2.1) give

because of (2.4), (i) and (ii). Thus we obtain

φbeψea = θba + VaU
b, Ueψ

e

a = Wa, φb

eV
e = W

Transvecting H{ to (2.4), (ii) and using (2.1) imply

because of (2.4), (i) and (iii). Thus we have

θbώe — —ώb4-v wb w ώe — —υ θbve—υh w ve—0

Similarly, using equations (2.1) and (2.4), we can prove the following formulas

(2.5) φίφβa=-δi+ubu
a, ueφl=0, φbue=0, ueu

e=l,

(2.6) ψbeφea=-δ% + VbV
a, Veφ

ea = 0, ψbVe = Q, VeV
e = l ,

(2.7) θbθe

a=-δi+wbιυ
a, weθ

e

a=0, θbwe=0, wew
e=l,

(2.8) φbeψea = Θba + VaU
b, Ueψ

e

a = Wa, φbVβ = Wb, UeV
e = 0 ,

(2.9) θbφe

a= -φb

a

jrvaw
b, weφi= -ua, θbve=-ub, wev

e=0,

(2.10) ψbeθea = φba + tυav\ Veθ
e

a = Ua, ψ
bWe = Ub, VeW

e = 0 ,

(2.11) φbe0e

a=-φba + WaU
b, Ueθ

e

a=-Va, φ\vf=-Vb, UeW
e = 0 ,
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(2.12) θ\φl=ψL+uaw\ wβφ%=va, θb

eu
e=υ\ weu

e=O,

(2.13) ψbeφ€a=-βi + UaV
b, Veφ

e

a=-Wa, ψb

eU
e=-Wb, VeU

e = O .

Putting φba=gaeφb, Ψba=gaeΦt and θba=gaeθ
e

bf we have from (2.4)

from which and the condition (b)

(2.14) Φba=-φab, Ψba=-Φal» 0ba=-θab .

We now consider intersections of coordinate neighborhoods U—Ur\M and
'U=fUr\M. Then, taking account of (2.3) and of (2.4) established in Ur\'U,
we can prove that

(2.15) ' φ = ( S x y ) φ \, \'v = ( S x y ) v , {x, y^l, 2,3).

hold in UΓΛ'U, where the restriction of functions Sxy defined in Ur\'U to Ur\
ΊJ is denoted also by the same letter Sxy. Thus we have proved

THEOREM 2. A real hypersurface of a Am-dimensιonal quaternionic Kaehle-
nan manifold admits an almost contact ^-structure.

We denote by V the Riemannian connection induced on M from the Rie-
mannian connection D of M. Then equations of Gauss and Weingarten are
given by

(2.16) PbBi=AbaN\PbN*=-Aa

0Bi

respectively, Aba being the components of the second fundamental tensor with
respect to the unit normal vector Nι and A% being defined by A%=gaeAbe,
where

and {/ft}, {ίa} are christoffel symbols formed respectively with gμ and gba.

Applying the operator PC=BJ

CDJ to the first equation of (2.4), (i), we obtain

BiiDjFDBϊ+FiPcBί=(P'eφ*)B*b+φ*JcBi+(Pr

cua)N*+uaF' CN\

from which, substituting (2.2) and (2.16) and using (2.4),

Consequently, putting pc=pjB
3

Cί qc—q3B
3

c and rc=rjBJ

c, we have
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F cφ
ba=rcψl-qcΘ

b

a-Acau
b+Abua, Fcua=rcva-qcwa-Aceφ

e

a.

Similarly, using (2.2), (2.4) and (2.16), we can find

, Fcφ
b=rcψ

b

a-qcθ
b

a-Acau
b+Abua ,

(2.17) {
PcUa=reva—qewa—Aeeφ

e

a,

r Fcψba=-rcφ
b

a+pcθ
ba-AcaV

b+Ab

cVa ,

F'cVa^-rclla+pcWa-Aceψl ,

(2.19) {
Y W = <]Up

We now define a matrix ω consisting of local 1-forms P~Pbdyb, q—
and r=rbdyb in M by

in each coordinate neighborhood U, which is really the connection form of a
linear connection ω induced in the vector bundle B determined by the projec
tion tensor field T=u®UJrv^VJrw®W of rank 3. Obviously, we have

in Ur\fU, where Ώ is the connection form of ω in 'U. If we now put

Vcφΐ^Vcφϊ-rcΨϊ+qcθΐ, Fcu
a=Fcii

a-rcv
a+qcw

a,

FeψS=r cΨS+reφS-Pcθi, Fcv
a=Fcv

a+rcu
a-pcw

a,

F'M=F'βl-qcφl+Pcψl> Fcw
a=Fcw

a-qcu
a+pcv

a ,

then we have from (2.15)

F'φ \ / Fφ \ / V'u \ I Fu

Ffφ = ( S , t ) | Fφ V

V'θ I \ Fθ

in Ur\'U. On the other hand, (2.17), (2.18) and (2.19) give respectively

(2.20) Veφt=-Aebu
a+Aiub, Fcub=-Aceφl,

(2.21) Pcψl=-Aebv
a+A*vb, Fcvb=-Aceψ

e

b,

(2.22) VM=-Acbuf'+A°wb, Fcwb=-Aceθ
e

b.
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We compute components of local tensor fields Φ(φ, φ), Φ{φ, φ), Φ(θ, θ),
Φ(φ, φ), Φ(φ, θ) and Φ(β, φ) define by (1.5). Denoting by Ψ(φ, φ)cba=gaeΦ(φ, φ)cS,
we have from (2.20)

+(Aceub-Abeuc)φ*-(Aceφ
e

b-Abeφί)ua,

this is,

Φ(Φ, Φ)cba=(Aceφ%+Aaβφ$ub-(Abβφ
e

a+Aaeφ
e

b)uc.

Similarly we have by using (2.20), (2.21) and (2.22)

Φ(Φ, φ)cba=(Λceφ
e

a+Aaeφf)ub-(Abeφ
e

a+Aaeφ
e

b)uc,

(2.23) Φ(φ, φ)cba=(Aceψl+Aaeψζ)vb-(Abeψ
e

a+Aaeφf)vc,

On the other hand, denoting by Φ(φ, φ)Cba=gaeΦ(Φ, Φ)cb6, we have from (2,20)
and (2.21)

Φ(Φ,φ)cba=Φec(-Aebva+Aeavb)-φl(-Aecva+Aeavc)

+(Acevb-Abevc)φe

a+φp

c(-Aebua+Aeaub)

-φe

b(-Aecua+Aeauc)+(Aceub—Abeuc)φe

a

-(Aceφ
e

b-Abeφί)va-(Aceφi-Abeφt)ua,

and consequently

+(Aceφ«a+Aaeφΐ)ub-(Abeψ
e

a+Aaeφl)uc.

Similarly we have from (2.20), (2.21) and (2.22)

Φ(Φ,Ψ)cba=(Aceφ%+Aaeφl)vb-(Abeφ
e

a+Aaeφt)vc

+(Aceφ
e

a+Aaeφl)ub-(Abeφl+Aaeφt)uc>

Φ(Φ,θ)cba=(Aceφ
e

a+Aaeφί)wb-(Abeφ
e

a+Aaeφϊ)wc

+(Aceθ
β

a+Aaeθί)υb-(Abeθ
e

a+Aaeθt)vc,

+(Aceφi+Aaeφ
b

c)wb-(Abeφ
e

a+Aaeφl)wc.

We now assume the global tensor Σ1 defined by (1.6) vanishes. Then sub-
stituting (2.23) into (1.6) gives
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(Aeeφ%+Aaeφ°)ub-(Abeφl+Aaeφl)ue+(Aeeψi+Aaeψ°)vb
(2.25)

-(Abeφl+Λaeφl)vc+(Aceθl+Λaeθt)wb-(Abeθl+Aaeθl)wc=O.

Transvecting (2.25) with ub and using (2.5), (2.8) and (2.11), we have

Aceφl+Aaeφί-(ubAbe)φe

auc-(ubAbeψ
e

a-Aaew
e)vc

(2.26)

-(ubAbeθ
e

a+Aaev
e)wc=0,

from which, transvecting with ua,

(2.27) (uaAaβ)φi+2A(U, W)vc-2A(U, V)wc=0,

where and in the sequel the function AbaX
bYa is denoted by A(X, Y) for

arbitrary vector fields X=Xad/dya and Y=Yad/dya in M. Therefore, trans-
vecting (2.27) with υc and wc respectively gives A(U, V)=0 and A(U, W)=0.
Consequently (2.27) becomes

(uaAaβ)φ<=0.

Transvecting the equation above with φ% and using (2.5) imply

Abau
a=A(U,U)ub.

Similarly, using (2.5)~(2.13) and (2.25), we have

(2.28) Abau
a=A(U, U)ub, Abav

a=A(V, V)υb, Abaw
a=A(W, W)wb.

Substituting (2.28) into (2.26) and taking account of (2.5), (2.12) and (2.13), we
obtain

(2.29) Aeβφ<a+Aaβφ'MA(U, U)-A{W, W))vcwa-(A(V, V)-A{U, U))wcva,

from which, taking the skew-symmetric part,

(A(V, V)-A(W, W))(vcwa-wcva)=0,

which implies A(V, V)=A(W, W). On the other hand, transvecting (2.29) with
vcwa and using (2.12), (2.13) and (2.28) give A(U,U)=A(W,W). Consequently
we have from (2.29)

Aeβφi+Aaβφi=0.

By the same way as above we can find

(2.30) Aeβφi+Aaβφ<=0, Aceψ
e

a+Aaeψί=0, Aceθ
e

a+Aaeθ
e

c=0.

Therefore, comparing (2.23) and (2.24) with (2.30) and taking account of (1.7),
we see that the global tensor field Σ2 also vanishes. Thus Σ1=0 implies Σ2=0
for real hypersurfaces. Hence, combining Theorm 1, we have

THERREM 3. In a real hypersurface, of a quaternionic Kaehlerian manifold
the following conditions (1)~(3) are equivalent to each other:
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(1) The induced almost contact ^-structure in the hyper surface is normal.
(2) The induced almost contact ^-structure tensors {φ, ψ, Θ) commute with

the second fundamental tensor.
(3) Σ,=0.

% 3. Hypersurfaces in a quaternionic Kaehlerian manifold of constant Q-
sectional curvature.

Let M be a 4m-dimensional quaternionic Kaehlerian manifold with constant
(?-sectional curvature c. It is well known that its curvature tensor has com-
ponents of the form

(3.1)

where c is necessary a constant, provided m ^ 2 (See Ishihara [3]). On the
other hand, as a characterization of quaternionic Kaehlerian manifold with
constant (3-sectional curvature c, Eum and the present author [1] proved

THEOREM A. A necessary and sufficient condition that a 4m-dimensional
Kaehlerian manifold (ra^2) is of constant Qsectional curvature c is there exists
a hypersurface with the second fundamental tensor Aba of the form

Aba=-~gba—(ubua+vbυa+wbwa),

uy v and w being appeared in (2.4), through every point with every (4m-l)-direc-
tion at the point.
So, it seems interesting to study real hypersurfaces with second fundamental
tensor of the form

(3.2) Aba=μgba—λ(ubua+υhva+wbwa),

μ, λ being assumed to be functions, in a quaternionic Kaehlerian manifold with
constant (J-sectional curvature.

Let M be a real hypersurface in the manifold M. Then the structure
equations of Gauss and Codazzi

KkjihB
k

cBlBiNh=FcAba-FbAca

are established, where Kkjih=ghlKkji

ι and Kdcba=gaeKdcb

e, Kdcb

e being components
of the curvature tensor determined by the induced metric gcb in M. Substitut-
ing (2.4) and (3.1) into the equations above give respectively
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(3.3) Kdcba=—-{gdagcb—gcagdb+φdaφcb—φcaφdb—2φdcφba

~rAdaAcb AcaAdb,

(3.4) FcAba-FbAca=—(ucφba~φcaub-2φcbua+vcφba-φcavb-2φcbva

Jrwcθba—θcawb—2θcbwa).

We now denote by Kcb components of the Ricci tensor in M. Transvecting
(3.3) with gda, we have from (2.5), (2.6) and (2.7)

(3.5) Kcb=~j- {(±m+Ί)gCb-Xucub+vcvb+wcwb)} +BAch-AeeA%,

where and in the sequel the mean curvature Ab

b=gcbAcb will be denoted by B.
Now, we assume that the second fundamental tensor Aba of M has the

form (3.2), μ, λ being differentiate functions. Then substituting (3.2) into the
second equation of (2.17) and using (2.5), (2.12) and (2.13), we have

(3.6) PcUa=(rc+λwc)va-(qc+λvc)wa+μφca.

Similarly from those of (2.18) and those of (2.19) the equations

PcVa=-(rc+λwc)ua+(pc+λuc)wa+μφca,
(3.7)

Vc^a={qc

Jr^c)ua-{

will be obtained. Differentiating (3.2) covariantly along M and taking account
of (3.6) and (3.7), we find

-~λμ(uaφeb + Ubφea + Vaψcb + Vbψca + Wa0cb + Wbθea),

from which, taking the skew-symmetric part with respect to c and b and using
(3.4), we have

(F Cμ)gba-(F bμ)gca—F cλ(ubua

c

T
= ( - 7 — Λ μ ) ( u c φ b a - φ c a ι ι b — 2 φ c b u a + v c φ b a

—φcaVb-2φcbvc^-wcθba—θcawb—2θcbwa)t

Transvecting the above equation with gba and ubua-\-vbva-{-wbwa, we find res-
pectively

(3.8) (4m-2)Fcμ-3Fcλ+(uΨaλ)uc+(vaFaλ)vc+(waFaλ)wc=0

and
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3Pcμ-(uΨaμ)uc-(vΨaμ)vc-(wΨaμ)wc

=3Fcλ-(uΨaλ)uc-(vΨaλ)vc-(wΨaλ)wc.

Combining the last two equations, we get

(4nι-5Wcμ=-(uΨaμ)uc-(vaFaμ)vc-(wΨaμ)wc,

which implies that

uΨcμ=vΨcμ=wΨcμ=O

and consequently that Fcμ=0. Substituting Vcμ—0 into (3.8), we obtain

3Pcλ=(uaFaλ)uc+(vΨaλ)vc-\-(waFaλ)wc,

from which

uaP aλ=vaP aλ=wΨ J=0.

Hence FCΛ=O. Thus μ and λ are both constants and λμ—cjL Thus we have

THEOREM 4. Let M be a real hypersurface in a quaternionic Kaehlenan
manifold with constant Q-sectional curvature c. // the second fundamental tensor
Λba has the form

μ, λ being differentiable functions, then μ and λ are both constants and λμ—c/L
We now consider the case where the ambient manifold is of zero ζ?-sec-

tional curvature. Identifying the quaternionic Qm naturally with Rim, Qm can
be considered as a quaternionic /Γaehlerian manifold of zero Q-sectional curva-
ture with the natural quaternionic Kaehlerian structure {F, G, H} having nu-
merical components of the form

(3.9) F:

where E denotes the identity (m, m)-matrix. We assume that there exists a
real hypersurface in Qm with the second fundamental tensor Λba of the form
(3.2). Then by means of Theorem Aμ and λ are constants and Λμ=0. There-
fore Λba is one of the following forms

0

E

0

o

-E

0

0

0

0

0

0

E

0\

0

-E

oj

, G :

/O

0

E

o

0

0

0

- £

0

0

0

0\

E

0

oj

, H:

(0

0

0

0

0

E

0

0

-E

0

0

0

0

o,

(3.10)
Λ α = 0 ; Λba=μgba'}

Aba=—λ(ubua+vbva+wbwa).

Now let the second fundamental tensor Λba of a real hypersurface M in Qv
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be of the form (3.10). Since in this case

DjF!=Q, DjGt=0, DjHi=0,

the local 1-forms p, q and r in M are all vanish. Therefore taking account of
our assumption (3.10) implies

Vcua—-wcva—wavc, Fcva=ucwa—uawc, F cwa—vcua—vauc.

Applying the operator Fc to (3.10) and substituting the equations above, we
can easily verify FcAba=0. On the other hand the condition (3.10) implies that
the second fundamental tensor A% has exactly two eigenvalues —λ and 0
whose multiplicities are 3 and 4(m—1) respectively. Hence, using FcAi—0, we
see that the eigenspaces corresponding to — λ and 0 define respectively 3-and
4(m—l)-dimensional distribution D_λ and Do over M which are integrable and
parallel. .Denoting maximal integral manifolds of D_x and Do by M_λ and Mo

respectively, M_x and Mo and both totally geodesic in M. Taking account of
(3.10) and using (2.5)~(2.13), we have by a simple calculation

Abeφ
ea+Aaeφl=0, Abeψ

e

a+Aaeψl=0, Abeθ
e

a+Aaeθ
e

b=0.

Thus, for an arbitrary eigenvector Xa of A% corresponding to an eigenvalue p,
φbX

b, ψbX
b and θξXb are also eigenvectors corresponding to the same eigenva-

lue p. Putting qJ = qbBJ

b for an eigenvector qb of At and taking account of
(2.4), we see that the subspaces {qj\qb£ΞD_1}Q){Nj}* and {q3\qb^D0} are both
invariant under the actions of F,G and H, where {Ns}* is the linear closure
of the set {NJ}. Consequently Mo can be regarded as quaternionic submani-
folds of Qm. Let M_λ be represented by ya=ya(za) in M. Then the local ex-
pression of M_! in Qm can be written by yJ—y3{ya{za)). Denoting the tangent
vectors day

3 to M_x by BJ

a, we have B3a—Bb

aB
3

h. Since M_λ is totally geodesic
in M and B% are eigenvectors of A% corresponding to eigenvalue — 1, we obtain
FβBi=—gβaN

j, which means that M.λ is totally umbilical in Qm. Similarly we
can prove that Mo is totally geodesic in Qm and hence identified with <3m~\
Therefore, since M_xχM^S^xQ711'1 is complete, we have

THEOREM 5. Let M be a complete real hypersurface of Qm with the second
fundamental tensor Aba of the form

Aba=μgba-λ(ubua+vbva+wbwa),

μ and λ being differentiable functions. Then M is a Euclidean plane i?4™"1,

S'm-\1/V~μ) or S3 (l/VT)xQm-\

§4. The Laplacian Λ\\A\\2

Let M be a real hypersurface in a quaternionic Kaehlerian manifold of
constant ^-sectional curvature c. In this section we compute the Laplacian
Δ\\A\\2 of the function \\A\\2=AbaA

ba, which is globally defined in M, where J=



36 JIN SUK PAK

gcΨcFb. We thus have

where W cAbaf={V cAbaχVcAla). By using Ricci identity and the equation (3.4)
of Codazzi we find

(4.1) ^Δ\\Af=(VbVaB)A'>a+Kb

cAlAl-KιlcbaA
daAc>>+-j-c{B{A{U, U)

+ A(V, V)+A(W, W))-(\\Acbuψ+\\Actlvψ+))Acbwψ)

On the other hand a straight forward calculation by using (2.5), (2.6) and
(2.7) gives

|| Aceφl+Abeφlf+1! Aceφl+ Abeφi\\*+1| ACM+ Abβ%\\2

-2(\\AceιιT+\\Acevψ+\\AcewT),

from which, using the equation (3.3) of Gauss and (3.5), we can easily see that

+1| Aceθl+Abeθt\\2} -3( || Aceuψ+1| Acev
e || 2 +1| Acew

e\\2)

and

KcbAΪAca=^{(im+7)AebA
cb-3(\\Aceuψ+\\Acevψ+\\AcewΎ)

Therefore (4.1) becomes

(4.2) -j-

+ \\Aceψl+AbeφlΓ+\\Aceθi+AbM\\2}

+W{A(U, U)+A(V, V)+A(W, W)}+B(A>A$Ai)

In order to get further results, we shall prove some lemmas.
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LEMMA 4.1. On a real hypersurface in a quaternionic Kaehlenan manifold
the following inequality holds:

(4.3) B2^A(m-l)AcbA
cb+2B{A(U, U)+A(V, V) + A(W, W)} .

Proof. We define a symmetric tensor Pba by

P Λ +

Putting Pba=gbegadPed and P=gbaPba gives

which implies (4.3).

LEMMA 4.2. On a real hypersurface in a quaternionic Kaehlenan manifold
of constant Q-sectional curvature c

holds and that equality holds if and only if

Proof. Putting

* c

(4.4) PcAa^ycAa+^iφ

and using the equation (3.4) of Codazzi, we can easily check that

WcAba\\2=WeAba\\2—γ{m-l)c\

which implies our assertion.

By means of (4.2), Lemmas 4.1 and 4.2 we have the following inequality
(4.5) - γ ^

+ \\Aceψl+Abeψί\\2+\\Aceθt+Abeθί\\2}

+3B{A(U, U)+A(V, V)+A(W, W)}+B(A>AiA°a)-(AebA
eb)*

W

where V'cAba is defined by (4.4). Thus we have

THEOREM 6. Let M be a compact real hypersurface in a quaternionic
Kaehlenan manifold with constant Q-sectional curvature c^O. // the second
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fundamental tensor Aba is semi-definite and the mean curvature B constant and
if AbaA

ba^(m—ϊ)c, then Aba has the form

Aba=-γ- {gba-(ubua+vbva+wbwa)} .

Proof. When c—0, the lemma is trivially established. When c>0, (4.5)
and our assumptions imply

(4.6) Aeeφi+Abβφ<=0, Aeβψl+Abβψi=0, Aceθ
e

b+Abeθ*c=0,

(4.8) AcbA
eb=(m-ϊ)c,

(4.9) A(U, U)=A{V, V)=A(W, W)=0 .

As already show in section 2, (4.6) and (4.9) imply

(4.10) Abau
a=0, Abav

a=0, Abaw
a=0.

Applying the operator Vc to the first equation of (4.10) and taking the
skew-symmetric part with respect to the indices c and b, we find

(FcAba-PbAca)ua+AbaΓeu
a-AcaFbu

a=O.

Substituting (2.17) and (3.4) in the equation above and using (2.5), (2.8), (2.12)
and (2.13) give

c

4

because of (4.6) and (4.10). Transvecting the equation above with φc

a and
making use of (2.5), (2.12), (2.13) and (4.10), we can easily verify that

AbeAZ=— {gba-(ubua+vbva+wbwa)}

Combining (4.7) and (4.8), we see that the second fundamental tensor Al has
the components on M

'0 0 0 0 )

Vc

(Λ α )=

Vc

or (Al)=

Vc~
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with respect to the adapted orthonormal frame {U, V, W, Xu •••, X^m-irί Thus
we may consider only one case, for example, the first case. In this case we
can write the matrix {At) in the form

1 0 0

o\

this is,

o

n=-^τjr{δS-(ubu
a+vbv

a+wbw
a)}.

0)

which is a tensor equation and so holds for any frame, especially for natural
frame. Thus the theorem is completely proved.

THEOREM 7. Let M be a compact real hypersurface in a quaternionic
Kaehlerian manifold with constant Q-sectional curvature cg O. // the second
fundamental tensor Aba is semi-definite and the mean curvature B constant and
if B2^4(m-l)2c, then Aba is of the form

VT
A {g{u

Proof. The equation (4.2), Lemmas 4.1 and 4.2 also give the following
inequality:

m+2
m-\ B{A(U, U)+A(V, V)+A(W, W)}

Consequently our assumptions give (4.6), (4.7), (4.9) and 52=4(m—l)2c. Thus
the theorem is proved by the same method as in the proof of Theorem 6.



40 JIN SUK PAK

§ 5. An integral formula.

It is well known (Ishihara [3]) that for a 4m-dimensional quaternionic
Kaehlerian manifold with constant Q-sectional curvature c, when m^2, the
followings are valid :

Diqi-DiqJ+rjpi-pjri=--cGji,

Therefore, in a real hypersurface M the local 1-forms p, q, r defined by

pb=PiBb\ qb=qiBb\ rb^τiBb

%

satisfy

(5.1) F\qa-F'aqb+rbpa-pbra=-cψba ,

On the other hand, taking account of arguments developed in section 2, we
see easily that there are two global vector fields Sx and S2 on M with com-
ponents

ue(Feιι
b)+υe(Fev

ύ)+we(Few
b), (Feu

e)ub+(Fev
e)vb+(Few

e)wb

respectively. In this section by using these global vector fields Sx and S2 we
shall find an integral formula which corresponds to an integral formula given
by K. Yano (Theorem 1.9 in [13]). Putting

o o o o o

FCFbua=FCFbua—rcFbva+qcFbwa ,
0 0 O O O

FCFbva=FCFbva+rcFbua-pcFbwa ,

FcFbwa=FcFbwa-qcFbua+ρcFbva

and taking account of (5.1), we can verify

FCFbva--FbFcva=-Kcba

eve-cθcbua+cφcbwa ,

FcFbwa-FbFcwa= -Kcba

ewe+cψcbua—cφcbva,

which implies
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or equivalently

(5.2) FbS1

b-FbS2

b=Kba(ubua+vbva+wbwa)-6c- {(div w)2-f(d°iv vf

w)}+

-{Wbua\\2MWbva\\2+Wbwa\\2)f

where JCug=Vbua+V*ub and ά\vu=Vau
a. On the other side, (2.20), (2.21) and

(2.22) imply

o o o

div w=div v^div w=0 .
And (3.4) gives

Kba(ubua+υbva+wbwa)=-^{l2(m-ΐ)+B(A(U, U) + A(V, V)+A(W, W))

Substituting these equalities in (5.2), we obtain

(5.3) F^ftS^— f̂ts,
ft= -g 2 2

+B(A(U, U)+A(V, V) + A(W, W))}-3AbaA
ba

We can now prove

THEOREM 8. For a compact and onentable real hypersurface M of a 4m-
dimensional quatermonic Kaehlenan manifold (m^2) with constant Q-sectional
curvature c, any one of the three conditions (1), (2) and (3) stated in Theorem 3
is equivalent to the following conditions:

\W))}-3AbaA
ba

Proof. From (5.3) we find

- ί -^{UugΓ
J M Li

, U)+A(V, V)+A{W,



42 JIN SUK PAK

o o o o o o

Thus taking account of -Cug=F bua+F aub=Abeφa

ejrAaeφb

e, -Cvg=Fbva+Favb=

Λbeψa+Λaeφb

e and -Cwg—Fbwa+Fawb=Abeθa

e-{-Aaeθb

e, we have our theorem.

§ 6. Submersion π : S*M-»QP(m) and immersion i: M-+QP(m)

Let S4m+3(1) be the hypersphere {{q\ ~ ,qn+1)\ k 1 | 2 + - + \qm+1\2=l} of radius
1 in a (m+l)-dimensional space Qm+1 of quaternions, which will be identified
naturally with R«m+1\ The sphere S4m+3(1) will be simply denoted by S4 m + 1.
Let π: S4m+3->QP(m) be the natural projection of S 4 m + 3 onto a quaternionic
projective space QP(jn) which is defined by the Hopf ίibration. As is well
known Sim+3 admits a Sasakian 3-structure {ξ, fjf ζ) (See Ishihara and Konishi
[4]) and any fibre π~1(P), P<=QP(m), is a maximal integral manifold of the
distribution spanned by I, η and ζ. Therefore, the base space QP{m) of a
fibred Riemannian space with Sasakian 3-structure admits the induced a qua-
ternionic Kaehlerian structure, and moreover, is of constant ^-sectional curva-
ture 4 (See Ishihara [2], [3]). We consider a Riemannian submersion π: M^M
compatible with the Hopf fibration π: S4m+s-^QP(m), where M is a real
hypersurface in QP(m) and M—π~\M) a hypersurface of S4m+3. More precisely
speaking, π: M—*M is a Riemannian submersion with totally geodesic fibres
such that the following diagram is commutative:

M -*-> S4 m + 3

M — > QP{m)
i

where ϊ: M—>S4m+s and i: M—*QP(m) are certain isometric immersions.
We take coordinate neighborhoods {0 Xσ} of M such that π(U)—U are

coordinate neighborhoods of M with local coordinate (/*). Then the projection
7r: M-+M may be expressed by

(6.1) ya=y%x«),

where ya(xa) are differentiate functions of variables xσ with Jacobian (dya/dxa)
of the maximum rank Am—I. We take a fibreβ such that ^r\ϋφφ. Then
we can introduce local coordinates (2s) in $r\U in such a way that (ya,zs)
is a system of local coordinate in U, (ya) being coordinates of π(£F) in U.
Differentiating (6.1) with respect to xa, we put Ea

a=day
a(d<x=d/dxa) and denote

by Ea local covector fields with components Ea

a in D. On the other side,
Cs=d/dzs form a natural frame tangent to each fibre £F in $r\U. Denoting
by Ca

s components of Cs in U, we put Ca

s=gaβg
stCβ

t, where gaβ are components
of the induced metric of M from that of S4m>+3 in U,gst=gaβC

a

sC
β

t and (gst)
—(gst)'1' We now denote by Cs local covector fields with components CJ in
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0. We next define E\ by (£"«, Ca

s)=(Ea

a, C^)" 1 and denote by Ea local vector
fields with components Ea

a in 0. Then {Eb, Cs} is a local frame in 0 and
{E\ Cs} the coframe dual to {Eb, Q in 0.

We now take coordinate neighborhoods {0 xff} of S4 m + 3 such that π(0)

— U are coordinate neighborhoods of QP(rn) with local coordinates (yJ). JΓhen
we can also define similarly a local frame {EJf CJ and the coframe {EJ, Cs}
dual to {Ej,C,} in 0 (See Ishihara [2], [3], [4], [5] and Konishi [4], [5]). We
denote by {Eκ

3, C
κ

s} and {Eκ>, CJ} components of {EJf Cs} and φ, Cs} respec-
tively in 0.

Let the isometric immersions ϊ and i be locally expressed by xκ=xκ(xα)
and yJ—y3(yα) respectively. Then the commutativity π°ϊ=i°π of the diagram
implies

and hence

(6.2) BJEα

α=EκJBα«,

where Bα

J=dαy
J and Bα

κ=dαx
κ.

For an arbitrary point P G M we choose a unit normal vector field Nj to
M defined in a neighborhood U of P in. such a way that {iV, N3} span the
tangent space of QP(m) at z(P). Let P be an arbitrary point of the fibre 3
over P, then the lift Nκ=NjEκj of TV-7 is a unit normal vector to M defined in
the tubular neighborhood over U because of (6.2).

Let's denote by ξκ, ψ and ζκ components of ζ, η and ζ of the induced
Sasakian 3-structure {ξ, η, ζ} in S4 m + 3 respectively. Since any fibre π " 1 ^ ) ,
P^QP(m), is a maximal integral manifold of the distribution spanned by i,y
and ζ, ξκ, ψ and ζκ can be represented by

(6.3) e*=ξαBα*, r=vαB«κ, ζκ=ζαB*κ,

where ξα, ηα and ζα are unit vector fields in M which are vertical and span
the tangent space to the fibre £F at each point of M because of (6.2). We now
put in 0

ϊ=αsCs, v=b*Cs, ζ=csCs,

αs=αtgts> bs^b'gts, cs=cιgts,

where gts=gλμCλ

tC
μ

s and gλμ components of the induced metric in S4m+3(C<3m+1).
Then it follows that

(6.4) Cs=αJ+bsy+csζ,

(6.5) αiα'+bib'+cc'^δl

Transvecting (6.2) with Eμ

3 and substituting (6.4) imply
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where ξa=ξβgβa> Va=Vβgβa and ζa=ζβgβa- Thus, transvectmg the equation
above with Ea

b and using the fact ξa, ηa and ζa being vertical, we have

Hence the vertical vectors Cs can be written as

(6.7) Cs=asξ+bsη+c$ζ

in such a way that the functions as> bs and cs satisfy (6.5), where a8, bs and cs

are respectively the restrictions of as, bs and cs appearing in (6.4) and in the
sequel these restrictions will be denoted by the corresponding letters respecti-
vely.

Denoting by {fa}9 {/J, {#} and {£} the Christoffel symbols formed with
the Riemannian metrics g^μ,gji,gaβ and gba respectively, we put

=dμES- {£}£/+ {}h}Eμ>Ex

h,

DμE\=dμE\+ {£lE*t- {®EμΦh,
and

FβEa

a=BβEa

a- {β

r

a}E/+ {&

Since the metrics gχμ and gaβ are invariant with respect to the submersions^ π
and π respectively the van der Waerden-Bortolotti covariant derivatives of Eχ,
E\ and Ea

a, E°a are given by

(6.8) Ί

V βEa

a=hb\(

*• V βE
a

a=hha

sEβ"Ca

s-ha\Cβ

sE%

respectively, where hJ

ι

s=gthgsthjh

t, h^s=gacgstht,c

t, hn

s being Λ6α

s are the struc-
ture tensors induced from the submersions π and π respectively (See Ishihara
and Konishi [5]).

On the other side the equations of Gauss and Weingarten for the immer-
sion I: M-*Sim+3 are given by

β a β £ fBj- {β

r

a} Br'=AβaN*,
(6.10)

VβN'=dβN'+ {
and those for the immersion i: M-*QP(m) by

Γ»ββ =3»5β '+{Λ}5» ίββ*-{ώ

Γ i V t a i V i + { / J β ^ * Λ
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where Af=A?rg
χa, Ab

a=Abeg
ea, Aβa being Aba are the second fundamental

tensors of M and M with respect to the unit normals N* and Nj respectively.
Moreover in this case (6.2) and (6.6) imply

Putting φ/=Dμξ
z, φ/=Dμv

;> and 8μ

λ=Dμζ\ we have by definition of Sasa-
kian 3-structure

(6.12)

and

(6.13) Dμfc=ϊχδμ-tgμX, Όμφ{=fιxδl-ψgμλ, Bμ8f=WM-ζ'gμlί,

where we have put L=ξλgχ*, Vκ=yλgi*, ζ*=ζλ§i*, Φμ\=Φ~μgΛ, Φμx=ΨμLλ and
Sμl=S;gvχ (See Kuo [6]).

We now put in U

Then we have from (6.12)

φh

xφ,%= -d'3, φh

%φ3

h= -δ;, θh

ιθ,h=-δ;,
(6.14)

ΦSΦ^-ΦSΦ^θϊjφCθ^-θSφ^φ;, θSφ^-φ

We also have by using (6.8), (6.12) and (6.13)

J:ΪΦ;=O, Xΐφ3

ι=-2θ;,

Xζ d e n o t i n g t h e Lie d e r i v a t i o n w i t h r e s p e c t to $, a n d

(6.16) V = -(a'Φit+

where φJt=φ}

hgΛt, φjί=φJ

hgh} and θj^θfg^ .
Consider a point P of QP(m) a n d a point P of S 4 m + 3 such ̂ ^ ( )

D e n o t i n g b y φp, ψp a n d θp r e spect ive ly t h e v a l u e s of φ, φ a n d θ a t P, w e c a n
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define tensors F~,Gp and Hp of type (1.1) at P^QP{m) respectively by

(6.17) P?A=dπ(fcAL), GpA

for any vector A tangent to QP(m) at P, where dπ means the differential of
π and AL denote the horizontal lift of A. We now denote by V$ the linear
closure of the set

( \J J ^ M U G )̂W( \J H7)

of tensors of type (1.1) at P^QP(m) and put V ^ W ^ ρ p ^ V * , which is a
linear subbundle of the tensor bundle of type (1,1) over QP(m).

Take a coordinate neighborhood 0=>P of QP(m) and consider a local cross-
section τ of S4m+3 over Ό. If we put

(6.18) Fp-FrCp), Gi=6 r ci) ,

then the correspondence P->Fp,P->Gp and P-^Hp define respectively local
tensor fields F, G and // of type (1,1) on 0. Thus, taking account of (6.14),
(6.17) and (6.18), we find

(6.19) FΛ*G/=-GΛ^/=i//, GSHf^-HSG^FS, H^F^-Fh^H3

h=G3\

Fji=—FlJ, Gji= — GlJ, Hji=—HlJ

where F5i=F3

nghx, Gμ^Gfg^, Hj^Hfg^, F,\ G3

ι and /// being respectively
local components of F, G and H in ίλ

We take another local cross-section τ' of QP{m) in '£/. Then we can con-
struct a triple {'F, fG, Ή} in ̂  by the same way as above and {'F, 'G, Ή]
also satisfy (6.19). Thus, taking account of (6.15) implies in Ur\fUφφ

(6.20) 'G \=SCxyA G , (x,y=l,2,3)

with functions Sxy in Ur\'U, where the matrix (Sxy) is contained in the special
orthogonal group S0(3).

Next, denoting by (τκ(y)) coordinates of the point τ(P), we have from (6.18)

F3

ι{y)=φ;(τ*(y)), G;(y)=ψ;(τ*(y)), H}\y)=θ;(τ%y)).

Differentiating the first equation above with respect to yh and using (dhτ
κ)Eκ

ι

= % imply

3 , F / - 3 ^ / + ( 3 Λ ^ ) C / 3 ^ / .

Thus, taking^ account of (6.16), we obtain DhFJ

l=rhGJ

l—ghHJ\ where we have
put qκ~—bsCκ

8dhτ
κ and rh——csCκ

sdhτ
κ. Similarly, using (6.16), we obtain in 0
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DhF,x=

(6.21) DhG;=

for certain local 1-forms p, q, r defined in 0. By means of (6.19), (6.20) and
(6.21) the quaternionic projective space QP(m) admits a quaternionic Kaehlerian
structure (See Ishihara [2], [3], [5] and Konishi [5]).

Let's denote by Kκμv

λ and Kkji

h components of the curvature tensors of
(54 m + 3, gλμ) and (QP(m), gμ) respectively. Since the unit sphere S4m+3 is a space
of constant curvature 1, using the euqation of co-Gauss (See Ishihara and
Konishi [5])

and (6.16) implies

—2GkjGτ -\-Hk Hji—Hj Hki—2HkjH% .

Hence QR(m) is a quaternionic Kaehlerian manifold with constant Q-sectional
curvature 4 (See Ishihara [2], [3], [5] and Kanishi [5]), and consequently the
real hypersurface M of QP{m) can be regarded as a manifold with almost
contact 3-structure as already shown in section 2.

We are now going to prove that the structure of M induced by the im-
mersion i: M—>S4m+8 and the submersion π: M^M is the same as the structure
induced by the submersion π: Sim+z-^QP(m) and the immersion i: M-*QP(m).

Applying the operator V β=Bβ

μDμ to (6.3) and using the euqations (6.10) of
Gauss and Weingarten, we find

from which, putting

(6.22) Φβ^Ppξ", Ψβ"

(6.23) uβ=AβJ
a, vβ=Aβaη

a, ιυβ=Aβaζ
a,

we also have

$μ'Bf=φfBa'+uβN',

(6.24) $μ'Bf=φβ"B
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Transvecting φ>s to (6.24) and using (6.12) and (6.24) itself in the usual
way, we can easily obtain that

ψβ°v
β=ψβ

af=S), vβv
a=l, ηβη

β=l,

θr

αθ/=-δf+wβw
α+ζβζ

α, θβ

αwβ=θβ%
β=Of wβw

β=l, ζβζ
β=l,

ΦrαΦβr= -θβα+vβW+Vβξ
α, ψβ

αuα=wβ, uβξ?=0,

φr

αφ/=θβ"+UβVα+ζβV

α, φβ

αvα=-wβ, vβV?=0,

ψr

αθ/= -φβ

α+wβv
α+ζβη

α, θβ

αvα=uβ, wβζ'3=0,
(6.25)

θr

αψβr=Φβα+vβιv
α+Vβζα, Ψβαwα=-uβ, ξβu's=0,

θr"φ/=-ψβ

α+uβw
α+ξβζ

α, φβ

αwα=vβ, VβVβ=0,

ξ<*, θβ

αuα=-vβ, ζβw'3=0,

φβ%
β= -θβ

αζβ=Vα, uβζ
β=0, Wβϊβ=Q,

Ψβαξβ=-φβ

αVβ=ζα, uβVe=0, vβξ?=0.

Applying the operator Ψr=Br

κΌc to (6.24) and using (6.11), (6.13)'and (6.24)
itself, we also have

Pΐφβ

α=ξβδ?-ξ<'grβ+uβAr°-u°Arβ, Vruβ=-Arαφβ",

(6.26) Pr

rψβα=Vβδ?-Vαgrβ+VβAr

α-voArβ, V rv β= - Arαψ β«,

Prθβ"=ζβδ?-ζ<'grβ+wβAr''-wαArβ, Vrwβ=-A,αθβ\

which and (6.25) imply

Xξφβ*=0, Xvφβ

α= -2θβ°, Xζφβ*=2ψβ",

(6.27) Xeψβ«=2θβ«, Xvφβ"=0, Xζφβ

α= -2φβ

α,

χeθβ«= -2φβ", Xvθβ«=2φβ

α, Xζθβ

α=0.

and

-ΓςUα=0 , XvU
α= -2wα, Xζll

α=2vα,

(6.28) XξV°=2wα, Λvv
α=0, Xζv

α=-2uα,

χξw
α=-2vα, Xvw

α=2uα, Xζw
α=0.

If we put in a neighborhood U of M

JL b—Jt βτ?σ p b (r. b — (r. βpα p b β b — fj βpα p b
ψα —ψΐx & α.E'β > ψα — ψ α & α&β > ϋ α — " α ^ α&β >
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ua=uaEa

a, va=vaEa

a, wa=wσEa

a,

then, taking account of (6.7), we find from (6.25)

and

uσ=uaEσ

a, v°=vaE°a, wa=ivaEa

a,

which imply the following formulas

φa

bua=0, ubφa

b=0, ubu
h=l,

ψa

bva=0, vbψa

b=0, vbv
b=l,

θc

aθb

c=-δΐ+wbw
a, θa

bwa=0, wbθa

b=0, wbw
b=l,

which are already given by (2.5), (2.6) and (2.7) respectively, where ub=uagab>

Vb—vagab and wb~wagab. Therefore we can construct a triple {φ, ψ, θ} of almost
contact metric structures defined in each coordinate neighborhood {U ya} of
the hypersurface M by the same method as in the construction of the quater-
nionic Kaehlerian structure {F,G,H}, and moreover prove that they satisfy
the other algebraic conditions given by (2.8)~(2.13). Since πofz=zoτr, choosing
suitably local coordinates in M and in QP(rn), we can find in Ur\fUφφ the
relations

'Φ \=(SXV)\ φ \, \ 'ϋ =(SM) v \, (x,y=ί,2,3)

with functions Sxy defined in U'Γ\'U which coincide with those appearing in
(6.20). By denoting by {φa

b, Φa\ θa

b} and {Ua, ϋa, wa} respectively the components
of {φ,Φ,β} and {u, v, w} with respect to coordinate neighborhood {U ya}, the
commutativity of the diagram gives in U

where ua—Ubgba, va=vbgba and wa=wbgba.
Here and in the sequel we use the notations {φa

b, ψa

b, θa

b} and {ub, vb, wb}
instead of {φa

b, Φb, θa

b} and {ύb, vh, wb) respectively. In the followings the
algebraic relations (2.5)~(2.13) and the structure equations (2.17)~(2.19) will be
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very useful.

First we apply the operator Fb=Ea

bFa=BbWJ to (6.2). Then we have

from which, substituting (6.8), (6.9), (6.10) and (6.11),

Δ p a\Tj\U α Γ S D J_L j n STD κf> i\ Λ pβ ATj
Siba^Όc i V >nb s^a D o — n ι s^κ ncc n b ^Γ-nβa12' δ i V y

and consequently

(6.29) Aba=AβaE
β

bE\,

(6.30) hfiCa'Ba^hS& BSBS

because of (6.7), (6.23) and (6.25). Transvecting Er

bEδ

A to (6.29) and replacing
the indices γ and δ with β and a respectively, we get

or equivalently

(6.31) Λβa=AbaEβ"Ea

a^uβ

Then, transvecting (6.31) with gβa and using (6.25), we find

A a A a

And also transvecting (6.31) with Aβa and using (6.25) and (6.29) give

AbaA
ba=AβaA?a-6.

Thus we have

LEMMA 6.1. (See also Lawson [6])

Aa

a=Aa

a and AbaA
ba=AβaA?°-6.

On the other hand, as a consequence of (6.16) and (6.18), we have

r j — — rtj su , Ljj — iij su , nj — itj sc .

Thus substituting these equations into (6.30) and taking account of (2.4) imply

{p. QON A. b— fo b n s r b— U b us f) b— U b rs

{Ό.oΔJ <pa — — n a sa , ψa — — " a s 0 * σ a — — n a sc

Applying Fc=Er

cFr to (6.31), we can easily obtain

from which, substituting (6.9), (6.22) and (6.26) and using (6.32),
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Er/rAaβ=(FcAba+φcaub+ψcavb+θcawb+ψcbua+ψcbva+θc<>wa)Eβ

ι'Ea

a

-{Abeθc>+Aceθb°)(EβXa+Ea%β).

Thus, using Lemma 4.2, we have

LEMMA 6.2. // the second fundamental tensor Aβa of M=π~1(M) is parallel,
then the following two conditions (1) and (2) are valid in M\

(1) ||ΓcΛαll2

(2) Aceφb

e+Abeφc

e=0, Aceψb

e+Abeφc

e=0, Aceθb

e+Abeθc

e=0.

Next we prove

LEMMA 6.3. // the second fundamental tensor Aba of M satisfies

(6.33) Abeφa

e+Aaeφb

e=0, Abeφa

e+Aaeφb

e=0, Abeθa

e+Aaeθb

e=0,

then the following two conditions (1) and (2) are valid in M=π~\M).

(1) FrAβ°=0,

(2) AβrAar=λAβa+gβa,

where λ is a function defined by λ—Abau
bua.

Proof. We have already seen in section 2 that the condition (6.33) implies

Abau
a=A(U, U)ub, Abav

a=A(V, V)vb, Abaw
a=A(W, W)wb.

On the other hand transvecting the first equation of (6.33) with va and making
use of (2.13) give Abew

e+vaAaeφb

e=0, and consequently A(V, V)=A(W, W). Simi-
larly we can also obtain A(U, U)=A(V, V)=A(W, W). If we put λ=A(U, U)=
AiV, V)=A(W, W), then we get

(6.34) Abau
a=λub, Abav

a=λvb, Abaw
a=λwb.

Substituting (2.17) and (6.34) itself in the equation obtained by applying the
operator Vc to the first equation of (6.34), we have

(FcAba)ua+AbaAc

eφe

a=(Fcλ)ub-λAceφb

e,

from which, taking the skew-symmetric part and using the euqation (3.3) of
Codazzi and (6.33),

(6.35) vcwb-wcvb-φcb-AceAb

dφd

e=-γ {{FCλ)ub-(Fbλ)uc) -lAceφb\

and consequently Fcλ=(ueFeλ)uc. By the similar way as above the second
equation of (6.34) implies Fcλ—{veFeλ)vc. Accordingly, since u and v are mu-
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tually orthogonal unit vectors, uΨeλ=vΨeλ=0 and hence Λ=const. If we
substitute Vcλ—0 into (6.35) and take account of (6.33), then we have

vcwb-wcvb-φcb—Ac

eAedφb

d=—λAceφb

e,

from which, transvecting with φa

b and using (2.5), (2.12) and (2.13), because of
(6.34)

(6.36) ΛeeAae=λΛca+gea—(ucua+vcva+wcwa).

On the other side, if we transvect (6.31) with Ar

a and use (6.25), (6.29),
(6.34) and (6.36) itself, then we get

from which, substituting (6.36),

(6.37) AβaAr

a=λAβr+gβr.

If we now apply the operator Vδ to (6.37), then using Λ=const. implies

(VδAβa)Ar°+AβfδAr°=}VδAβr.

Thus, taking account of FδAβa—F βAδa=0, we get

AβaFδAf=AδaFβAf,

and consequently AβaF δAr

σ—AraF δAβ

a. Therefore we find

2AβJδA°=WδAβr.

from which, transvecting A/ and using (6.37),

2λAσ/δAr

a+2FδArσ=λAoβPδAβr,

and consequently

V A, — — —•-— λA aF-A-,
,σ 2 σ o ,a -

Hence {2+(λ2/2)} AβnFδAr"=0, which implies FδAβr=0. Therefore the lemma
is completely proved.

LEMMA 6.4. If \\FcAbJ
2=24:(m-l), then

Aceφb

e+Abeφc

e=0, Aceψb

e+Abe(pc

e=0, Aceθb

e+Abeθc

e=O .

Proof. By means of Lemma 4.2 the assumption \\FcAba\\2=24(m—1) im-
plies

(6.38) F€Aba+φcaub+φcbua+φcavb+φcbva+θcawb+θebwa=O.
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Differentiating (6.38) covariantly along M and applying Ricci identity to the
equation thus obtained, we can easily find from (2.17), (2.18) and (2.19)

K e A K e Δ
-^dcb ^ea — Λ-dca Άbe

-(Λdeφb

e)φca-i-(Aceφb

e)φda-φcb(Adeφa

e)+φdb(Aceφa

e)

On the other hand, by using the equation (3.3) of Gauss and c=4 a direct
simple calculation gives

J^-dcb Aea— Adagcb gdbAca

Consequently the equation above reduces to

(6.39) Aia(A,eAeb-gcb+ucuh+vcvb+wl.wb)-Aca{AliAet>-g<ιi

+uiub+vdvb+wiwb)+Aib(Ac

eAea—gca+ucua+vcva+wcwa)

—Acb(Ai

eAea-gda+uiua+vdva+wdwa)+φda(Aceφb

e+Abdφc

e)

-φca(Adeφb

e+Abeφd

e)+φdb(Aceφa

e+Aaeφc

e)

-φct,(Adeφa

e+Aaeφd

e)+2φdc(φt,
eAea+φa

eAeb)

+ψaa(Aceψt,
e+Abeψc

e)-ψca(Adeψb

e+Abeψd

e)

+ψdb(Aceψa

e+Aaeψc

e)-ψcb(Adeψa

e+Aaeψd

e)

+2ψdc(ψb

eAea+ψJAeb)+θda(Aceθύ

e+Abeθc

e)

-θca(Adeθb

e+Abeθd

e)+θdb(Aceθa

e+Aaeθc

e)

-θa(Adeθa

e+Aaeθd

e)+2θdc(θb

eAea+θa

eAeb)=0.

Transvecting (6.39) with ueu" and using (2.5), (2.8), (2.11), (2.12) and (2.13), we

can easily verify that

A(U, U)(AdeAa

e-gda+udua+vdva+wdwa)-1|Aceu
e\\2Aaa

+(Aaeu°XAdcAb°u»)-(Aieu°XAacAb°u»)+2A(U, W)ψda-2A(U, V)θda
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+va{Adev
e+(Aceu

c)θd

e}+Zvd{Aaev
e+(Aceu°)θa

e}

+ wa{Adew
e-(Aceu

c)Φ/} +3wd{Aaew
e-(Aceu

c)ψa

e} = 0 ,

from which, taking its symmetric and skew-symmetric part, we get respectively

(6.40) A{U, U)A/Aea=A(U, U)(gda-udua-vdva-wdwa)+\\AceuψAda

-2va{Adev
e+(Aceuηθd

e}-2vd{Aaev
e+(Aceu

e)θa

e}

-2wa{Adew
e-(Aceu

c)ψd

e}-2wd{Aaew
e-(Aceu

c)ψa

e}

and

(6.41) vd{Aaev
e+(Aceuηθa

e}-va{Adev
e+(Aceu

c)θd

e}+2A(u, w)φia

+ wd{Aaew
e-(Aceu

c)ψa

e} -wa{Adew
e-(Aceu

c)φ/} -2A(u, v)θda

If we transvect (6.40) with ua and use (2.5), (2.12) and (2.13), then we have

A(U, U)AdeAt>

eub=\\AceιιψAdbu
b-iA(U, V)vd-iA{U, W)wd .

Similarly using (2.5)~(2.13) and (6.39) implies

A(U, U)AdeAh

eub^\\Aoeu
efAdbu

h-iA{lJ, V)vd-4A(U, W)wd,

(6.24) A{V, V)AdeAύ

ev<>=\\AcevψAdiv
b-iA(U, V)ud-4A(V, W)wd,

A(W, W)AdeAb

ew»=\\AcewΎAdbw
b-4A(U, W)ud-4A(V, W)vd.

Multiplying A{U,U) to (6.41) and substituting the first equation of (6.42), we
have

A(U, U){vd(Aaev
e+Aceu

cθa

e)-va(Adev
e+Aceu

cθd

e)}+2A(U, U)A(U, W)ψda

+ A(U,U){wd(Aaew*-Aceu
cψa

e)-wa(Adew
e-Aceu

cψd

e)}

-2A(U, U)A(U, V)θda+4(Adeu
e){A(U, V)va+A(U, W)wa]

-i(Aaeu
e){A(U, V)vd+A{U, W)wd}=0,

from which, transvecting φΛa and θΛa respectively and using (2.5)~(2.13),

A(U, U)A(U, V)=0, A(U, U)A{U, W)=0,

and consequently

A{U, U){(Aaev
e+Aceu

cθa

e)-(A(V, V)-A{U, U))va-A(V, W)wa}=0,
(6.43)

A{U, U){(Aaew
e-Aceu

cψa

e)-A(V, W)va+(Λ(U, U)-A{W,

Therefore, (6.40) and (6.43) imply

(6.44) A(U, U)AdeAa

e=A(U, UXgda-udua-vdva-wdw
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-A(A(V, V)-A(U, U))vdva+i{A{U, U)-A(W, W))wdwa

-4A(V, W)(vdwa+wdva).

On the other side, transvecting (6.39) with φdc and taking account of (2.5)~
(2.13), we obtain

(6.45) Hm

-va{Abew
e-(Aceu

c)φb

e] -vb {Aaew
e-(Aceu

c)ψa

e}

+wa{Abev°+(Aceu°)θb

e} +wb{Aaev
e+(Aceιι

c)θa

e} ,

from which, multiplying A(U, U) and substituting (6.44),

(6.46) %2m-ΐ)A(U, U)(Abeφa

e+Aaeφb

e)

=A(U,U){(Aaev
e)wb-(Aaew°)vb+(Abev

e)wa-(Abew°)va}

-4{A(U, U)-A(W, W)} {(Aaev<)wb+(Abev
e)wa}

-4{A(V, V)-A{U, U)} {(Aaew*)vb+(Abew
e)va}

+ A{U, U){ua(Aceu<)φb°+ub(Aceu<)φa

e}-2A(U, U)A{V, W){vavb-wawb)

+ A(U, U){A(V, V)-A(W, W)}(vawb+wavb).

Transvecting vav" to (6.46) and using (2.5)~(2.13) imply

A(U, U)A(V, W)=0.

Thus transvecting ua to (6.46) gives

(4m-3)A(U, UXAaeu
a)φb

e=0,

and hence A(U, U){Abeu
e—A(U, U)ub}=0. Moreover, substituting this equa-

tion into (6.43), we also find

A(U, U){Abev
e-A{V, V)vb] = 0 , A(U, U){Abew

e-A{W, W)wb} = 0 .

Accordingly (6.46) becomes

(2m-ί)A(U, U)(Abeφa

e+Aaeφb

e)=A(U, U){A{W, W)-A{V, V)}(vbwa+wbva),

from which, transvecting vbwa, we find

A(U, U){A(W, W)-A(V, V)}=0,

and consequently

A(U, U){Abeφa

e+Aaeφb

e)=Q.

Similarly, using (6.39) and (6.42), we can derive

A(U, UXAbeφa

e+Aaeφb

e)=0, A(U, U){A(V, V)-A{W, W)}=Q,
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(6.47) A(V, F ) ( 4 ^ e + 4 « - 0 , A(V, V){A(U, U)-A{W, W)}=0,

A{W, WχAbeθa

e+Aaeθb

e)=O, A(W, W){A(U, U)-A(V, V)}=0.

Now, we consider the following three cases. Let P be an arbitrarily fixed

point of M.
Case I. A(U,U)P=O and A(V, V)pΦθ.
Case II. A(U,U)P=O, A(V,V)P=O and A(W,W)pΦθ.
Case III. A(U, U)P=A(V, V)P=A(W, W)p=0.
In Case I, we have from (6.47)

(Abeψa

e+Aaeψb

e)P=Q,

from which, transvecting ubua and ψc

bva respectively,

A(U,W)P=0 and A(U,V)P=0.

Hence, from (6.42) we obtain (Abeu
e)P=Q.

In Case II, we can similarly prove that (Abeu
e)P=0 by using (6.24) and

(6.47).
In case III, using (6.42), at the point P

\\AeβuVAbau
a=4A(U, V)vb+4A(U, W)wb,

\\Acev
e\\2Abav

a=4A(U, V)ub+4A(V, W)wb,

\\Acew
e\\2Abaw

a=iA{U, W)ub+4A(V, W)vb.

Suppose that A(U,V)PΦϋ. Then we have \\AceuψP=i and \\Aeev
e\\2

P=4, and
consequently

Abeιι
e=A(U, V)vb+A(U, W)wb, Abev

e=A(U, V)ub+A(V, W)wb,

\\AcewψAbaw
a=4A(U, W)ub+iA(V, W)υb

at that point P. Substituting these relations into (6.41) and transvecting θda,
we can easily see that £(m—ϊ)A(U,V)P=Q because of \\Aceu

e\\2

P—L In contra-
dicts the assumption A(U, V)PΦθ. Hence A(U, V)P=0 and similarly A(U, W)P

= 0 will be obtained.
Summing up the results obtained in these Cases I, II and III, we can say

that if there exists a point ? G M such that A{U, V)P=0, then (Abeu
e)P=0. On

the other hand, (6.47) implies that at the point P satisfying A(U, U)P—0 at least
one of A(V, V) and A(W, W), say A(Vf V), is zero. Then (Abev

e)P=0. Trans-
vecting wavb to (6.45) and taking account of (Abeu

e)P=0 and (Abev
e)P=Q, we have

A(W, W)P=Q and consequently (Abew
e)P=Q. Summing up, if we put S={P^M\

(Abeφa

e+Aaeφb

e)PΦ$\, then we have

(6.48) Aaeiι
e=0, Aaev

e=0, Aaew
e=Q on S,

since (6.47) implies A(U, U)=0 on 5. As was proved in section 6, (6.34) with
Λ=0 implies (6.35) with Λ=0. Thus, (6.48) implies (6.35) with ^=0, that is,



REAL HYPERSURFACES IN QUATERNIONIC KAEHLERIAN MANIFOLDS 57

vbwa—wbva—φba—AbeAa

dφd

e=O on S,

from which, transvecting Λc

a, we have

-φdeAbeAadAc

a=Aceφb

e on S.

Hence, from (6.45) we have Λbeφa

βJrΛaeφb

e=0 on S, and consequently the set
S should be void. Therefore, the equation Λbeφa

ejrΛaeφb

e—0 holds identically
in M. Similarly, using (6.42) and (6.47), we obtain

Λbeφa

e+Λaeφb

e=Q, Abeψa

e+Aaeψb

e=0, Abeθa

e+Aaeθb

e=O ,

which completes the proof of Lemma 6.4.
Thus, joining Theorem 2, Lemmas 6.2, 6.3 and 6.4, we have

THEOREM 9. Let M be a real hypersurface of QP(m) and π : M->M the
submersion which is compatible with the Hopf fibration S4m+3—^QP(m). Then the
following conditions (1)~(5) are equivalent to each other:

(1) The second fundamental tensor of M is parallel.
(2) The induced almost contact ^-structure in M is normal.
(3) The induced almost contact ^-structure tensors {φ, ψ, θ) in M commute

with its second fundamental tensor.
(4) The square of the length of the derivative of the second fundamental

tensor in M is equal to a constant 24(m—1).
(5) The global tensor field 2\ defined by (1.6) vanishes.

§ 7. Characterizations of hypersurfaces M$tQ(a, b) in QP(m)

Before we state our main results we should explain model subspaces which
will appear in our theorems. We denote by S4p+3(α) the hypersphere of radius
a centered at the origin in Qp+1. If we identify Qp+q+2 with the product space
Qp+1χQ*+1, then, taking spheres S4p+\a) in Qp+1 and S4q+\b) in Qq+\ we con-
sider the product space M%t<ι(a, b)=Sip+%a)xS4q+*(b), which is naturally consi-
dered as a submanifold in Qp+q+2. When a2+b2=l, M%q(a, b) is a hypersurface
in S4C*+«+1)+8(l)Cζ?p+β+2. Thus, if a*+b2=l, for any portion (p, q) of an integer
m—\ such that p+q^m—l p^Q, q^O, M$,q(a, b) may be considered as a real
hypersurface of Sim+\l)dQm+\ Considering the Hopf ίibering π: S4m+3(l)->
QP(m), we put M$fQ(a, b)=π(M$}q(a, b))f which gives an example for submani-
folds satisfying the commutative diagram shown in the previous section. We
are now going to prove

THEOREM 10. Let M be a complete real hypersurface of QP(m). Suppose
one of the following conditions (1), (2) and (3) which are equivalent to each other
is valid:

(1) The induced almost contact ^-structure in M is normal.
(2) The derivative of the second fundamental tensor in M has constant

norm 24(m—1).
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(3) The global tensor field Σλ defined by (1.6) vanishes.
Then M—M%^ (a, b) for some portion (p, q) of m—\ and some a, b such that
a2+b2=l.

However in order to prove this theorem we need the following Lemmas
7.1 and 7.2.

LEMMA 7.1. Assume the relations

Abeφa

e+Aaeφb

e=0, Abeφa

e-{-Aaeφb

e=0, Abeθa

e+Aaeθb

e=0

are valid. Then the second fundamental tensor Aa

β of M has exactly two
eigenvalues whose multiplicities are 4£+3 and 4#+3 respectively, where

Proof. As shown in Lemma 6.3 the assumption implies

(7.1) AβrAar=λAβa+gβa,

where λ is constant defined by λ=Abau
hua. Denoting by p the eigenvalue

corresponding to an eigenvector of Aj, the equation (7.1) implies p2—λp—l
=0. Consequently Aj has exactly two eigenvalues p1—(λ+Vλ2jr4)/2 and
p2=(λ-Vλ2+4:)/2. On the other hand, transvecting (7.1) with ξa

9τηa and ζα

and using (6.23), we have respectively

Aβrv
r=λvβ+ηβ ,

from which, taking account of Pi2=λp1+1,

Therefore p^+ξ0, p^+rf and p^+ζ", which will be denoted by eλ

a,e^a

and e3

a respectively, are eigenvectors of Aj corresponding to ply where ef,
e2

a and ez

a are mutually orthogonal because of (6.25). Assume there exists
another eigenvector e4

a of Aj corresponding to ρx. Suppose e±a is orthogonal
to έ?Λ e2

a and e3

a. Then we find

(7.2) /o1(uα

On the other side, taking account of (6.23) and Aje4

a=p1e4

a, we get

(7.3) ( w Λ β ) - ^ i ( U f f ) = 0 , (vae<")-Pl(Vae<«)=0, ( ^ 0 - / 0 ^ 0

Since pf+lΦO, (7.2) and (7.3) give

(7.4) u&a=vjf=wjf=Q, ξ ae«=ηae«=ζae«=ϊ).

Moreover, by means of (6.25), (6.31) and

φa

βE?b=φb*Eβ

a , φa

βE?b=φb*Eβ

a , θa

βE"b=θb*Eβ

a ,
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our assumption implies

ΛβrφJ+Λarφ/=0, AβrψJ+Aarψ/=Q, Aβrθ/+Aarθ/=0,

from which, taking account of skew-symmetry of φβa, ψβa and θβa> we find

Thus φje4

a, φje4

a and ΘJeA

a are also eigenvectors of Aj corresponding to plf

which are mutually orthogonal and also orthogonal to ef, e2

a, e3

a and e4

a be-
cause of (7.4). Hence multiplicity of the eigenvalue Pl is necessarily 4^+3 for
some integer p. Similarly we can prove that multiplicity of ρ2 is 4#+3, where
q=m+l—p.
By means of Lemma 7.1 and PΐAcf=0 the eigenspaces corresponding to px and
ρ2 define respectively (4^+3)- and (4tf+3)-dimensional distributions DPl and
DP2 over M which are both integrable and parallel. Moreover each integral
manifold of DPl is totally geodesic in M and so is each integral manifold of
DP2'

Let {F, G, H) be the natural quaternionic Kaehlerian structure of Qm+1

whose numerical components {FA

B, GA

B, HA

B] are given by (3.9). Denoting by
Ba

A and BK

A the differentials of the isometric immersions ιx: M(dS4m+3)c:Qm+1

and i2: S4 m + 3cQm + 1 in terms of local coordinates respectively, we can see that
Ba

A=Ba

κBκ

A. Accordingly the vector NA=N*B£

A and the position vector NA

of S4m+3 can be chosen as unit normals for the immersion ιλ and then (6.21)
implies

PΛ

BBa

Λ=φ/B/+uJίa+ξaN',

(7.5) GΛ

BBa

Λ=φ/Bβ

B+vJίB + ηaN
B,

HA

BBa

Λ=θjBβ

B+wJB+ζaN
B.

and

(7.6) GΛpi

ffBΛ(ρ1ft
B+NB)=-(PlW+ζr)Ba

A, HB

A{p2N
B+NB)=-{Pϊw"+ζ<*)Ba

A.

In this case the equations of Gauss and Weingarten are given by

β a β J
FβN

A=-Aβ»Ba

A, FβN
A=-Bβ

A.

If we put qA=qaBa

A for an eigenvector qa of AJ, then the direct sums
{qΛ\qa(ΞDPl}®{p1N

A+NA}* andJqA\qaZΞDP2}®{f>2N
A+NA}* are both mvariant

under the actions of P,G and ^because of (7.5) and (7.6), where {PlN
A+NA}*

is the linear closure of the set {piNA+NA}. Moreover we can verify from
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(7.7) that qΨa(p1ft
A+NA)=0fq

a^DPi and pψ a(p2N
A+NΛ)=0f pa^DPl because

Pip2——1. Therefore the maximal integral manifolds MPl of DPl and MP2 of
Z^2 can be considered as real hypersurfaces in Qp+1 and in Qq+1 respectively.
Now we can easily prove

LEMMA 7.2. The MPl and MP2 are both totally umbilical in Qm+1.

Proof of Theorem 10. Combining Theorem 9, Lemma 7.1 and Lemma 7.2
implies immediately the theorem.

We shall next prove

THEOREM 11. Let M be a complete real hypersurface in QP(m) whose second
fundamental tensor Aba is of the form

(7.8) Aba=μgba—(ubua+vbva+wbwa),

μ being a differentiable function. Then M=M%ί^1J—.==9 , - j ,

Proof. First by using (2.3)~(2.13) we can easily verify that (7.8) gives

Abeφa

e+Aaeφb

e=0, Abeψa

e+Aaeψb

e=0, Abeθa

e+Aaeθb

e=0.

Since μ=l which is a consequence of Theorem 4 and c=4, Aj has exactly
two eigenvalues 1 and —1 whose multiplicities are 4m—1 and 3 respectively
because of Lemma 6.1. Thus by the same way as in the proof of Theorem 10
we can complete the proof.

Combining Theorem 6 and Theorem 11, we have

THEOREM 12. Let M be a compact real hypersurface in QP(m). If the

second fundamental tensor Aba is semi-definite and the mean curvature B con-

stant and if AbaA
baS4(m-Ό, then M = M « _ l j 0 ( ^ = , ^ = ) .

Combining Theorem 7 and Theorem 11, we have

THEROEM 13. Let M be a compact real hypersurface in QP(m). If the
second fundamental tensor Aba is semi-definite, the mean curvature B constant

and B^(4m-i)\ then M=M^lt(^

Combining Theorem 8 and Theorem 10, we have

THEOREM 14. Let M be a compact and orientable real hypersurface in
QP{m). If

{12im-ϊ)+B(A(U, U)+A(V, V)+A(W, ^))-3Λ,αΛδ α}*1^0,

then M=M$ιβ(a, b) for some portion (p, q) of τιt—1 and some a, b such that
a2+b2=l.
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COROLLARY 15. Let M be a compact and onentable real hypersurface in
QP{m). If

I2(m-1)+B(A(U, U) + A(V, V) + A(W,

at each point of M. then M=M%q(a,b), p+q=m—l, p^O, g^O and a2+b2=l.

COROLLARY 16. (See also Lawson [6]). Let M be a compact and onentable

minimal real hypersurface in QP(m). If AbaA
ba^4(m —1) at each point of M,

then M=M%q(a,b), p+q=m-l, p^O, q^O and a2+b2 = h
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