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REAL HYPERSURFACES IN QUATERNIONIC KAEHLERIAN
MAMIFOLDS WITH CONSTANT Q-SECTIONAL CURVATURE

By JIN SUK PAK

Recently determinations of some kinds of real hypersurfaces in a complex
projective space CP(m) have been done by several authors (Lawson [7], Maeda
[9], Okumura [10], [11], [12] and etc.). They have obtained sufficient condi-
tions or necessary and sufficient conditions for a real hypersurface in CP(m)
to be one of model hypersurfaces M§,(a,b), where M (a,b) are defined in
CP m) by the same way as will be taken in § 7 to define model hypersurfaces
M$ (a, b) in a quaternionic projective space QP(m). Lawson also gave in his
paper [7] a sufficient condition for a real minimal hypersurface in QP(m) to
be one of model hypersurfaces M¢,(a,b). In the present paper, we shall obtain
quaternionic analogies to theorems proved in [7],[9], [10], [11] and [12].

On the other hand Eum and the present author [1] gave a characteriza-
tion of quaternionic Kaehlerian manifold QP(m) of real dimension 4m with con-
stant @-sectional curvature ¢ by the existence of a real hypersurface, which
satisfies the condition

(0.1) A(X, Y)=~i—g(X, Y)— {u(X)u(Y) +v(X)o(Y)+w(X)w(Y)}

passing through an arbitrary point and being tangent to an arbitrary (4m-1)-
direction at that point, where A denotes the second fundamental tensor and
u, v, w some local 1-forms. So, we shall prove in §7 that a real hypersurface
in QP(m) satisfying the condition (0.1) is necessarily one of model subspaces
M$ (a, b).

Real hypersurfaces in a quaternionic Kaehlerian manifold admit, under
certain conditions, what we call an almost contact 3-structure. In § 1, we define
almost contact 3-structures and give some formulas for later use. And we
prove there Theorem 1 concerning their normality. In §2, we show that there
exist a contact 3-structure on real hypersurface M in a quaternionic Kaehlerian
manifold (see Theorem 2). And we give there some necessary and sufficient
conditions for the induced contact 3-structure of a real hypersurface M to be
normal (see Theorem 3). In § 3, we recall some formulas concerning real hyper-
surfaces in a quaternionic Kaehlerian manifold with constant Q-sectional cur-
vature for later use and prove Theorem 4. And we characterize there real
quaternionic cylinders imbedded in Q™ in terms of the second fundamental
tensor (see Theorem 5).
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In §4, using the Laplacian 41l A|?% we find sufficient conditions for a com-
pact real hypersurface in a quaternionic Kaehlerian manifold with constant Q-
sectional curvature ¢=0 to satisfy the condition (0.1) (see Theorems 6 and 7).
In §5, using an integral formula, we give a necessary and sufficient condition
for a compact real hypersurface in a quaternionic Kaehlerian manifold with
constant @-sectional curvature to admit a normal almost contact 3-structure
(see Theorem 8).

In § 6, we shall recall definitions and some formulas concerning the submer-
sion #: S$™**—>QP(m) and an immersion :: M—QP(m) and prove some lemmas
for later use. And we prove there Theorem 9 giving some conditions equiva-
lent to the condition that a real hypersurface in Q P(m) admits a normal contact
3-structure. The last §7 is devoted to give characterizations of the model
subspace M ,(a, b) in QP(m) (see Theorems 10~14 and Corollaries 15 and 16).
Manifolds, submanifolds, geometric objects and mappings we discuss in this
paper will be assumed to be differentiable and of class C~. We use in the
present paper systems of indices as follows:

A) B’ C; D:]_, 2;'“) 4m+4r K, Z; s 1):1’ 2; Yy 4m+3;
a, ‘B)T) 5:1’ 2;"') 4m+2’ h: l;j} k:]-: 2:"'; 4771,
a,b,c,d e=1,2, -, 4m—1; r,s, t,u=1,2,3.

The summation convention will be used with respect to these systems of in-
dices.

The author wishes to express his appreciation to Professors Shigeru Ishi-
hara and Masafumi Okumura for their encouragement and help in developing
this paper.

§1. Almost contact 3-structures.

Let M be a differentiable manifold with Riemannian metric g and covered
by an open covering ¢=1{0, 0, ---}. Then M is called a manifold with almost
contact 3-structure if the following conditions (1) and (2) are satisfied:

(1) In each 0 there are given three 1-forms u,, u,, u; and three tensor fields
@1, s, §s of type (1, 1) satisfying

1 X=—X+u(X)U,, (¢, X)=0, $,U,=0, g(U,, Uy)=1,
$3X=—X+uy(X)Us, us($:X)=0, $,U,=0, g(U,, U)=1,
GIX=— X+ uy(X)Us, us($s X)=0, $U,=0, g(U,, Us)=1,

L1 $1($eX) =@ X+ (XU, $o($1X)=— s X +un(X)U,
$o($a X) =31 X+ us(X)Us, §s($2X)=—¢:1 X+u(X)Us,

¢3(¢1X):¢2X+u1<X)U3, 61(p: X)=—@ X+u(X)U,,
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¢1U2= US) ¢1Us=_U2: ¢2U3= U1, ¢2U1: _‘Us; ¢3U1=U2, ¢3U2:—U1 ’
g(¢1X; Y)":_'—g(Xy ¢1Y)7 g(¢2X) Y)Zﬁg(Xy ¢2y)y g(¢3X) Y)z—g(X’ ¢3Y)

for any vector fields X and Y, where U,, U, and U, are the vector fields asso-
ciated respectively to u,, u, and u,, i.e. g(U,, X)=u,(X), x=1, 2, 3.
(2) If ON'O+#¢, there are differentiable functions S,, in OO such that

/¢1 ¢1 Uy 3
/¢2 Z(S.Z‘ZI) ¢2 ’ /uZ =(S$Z/) uZ ’ (x; yzly 2) 3)
/¢s ¢3 "Ug Us

the matrix S=(S,,) being contained in the orthogonal group O(3). Then the
set {(0, uy, Uy, Us, P1, P, Ps, )10 A} is called an almost contact 3-structure. In
such a case the manifold M is necessarily of dimension 4m-1.

We define locally in O a tensor field T of type (1,1) by

T=u,QU,;+v,QV,+w,QW,.

Then, as a consequence of the condition (2), it follows that T determines
a global tensor field in M, which will be also denoted by 7. The condition (1)
shows that T satisfies the equation T°=T and hence it is a projection tensor
field of rank 3. Therefore there exists in the manifold M a distribution D de-
termined by T, and hence a 3-dimensional vector bundle B over M consisting
of all vectors belonging to the distribution D.

We assume that {O; z}, O= A are coordinate neighborhoods in the mani-
fold M. Let there be given a connection @ in the vector bundle B and denote
in each coordinate neighborhood {O; z} of M by w% the components of w with
respect to the local frame (U,, U,, U;) in B. Then the condition (2) implies
that in ON'O+#¢ the following relation is valid:

(1.3) 'Q=S"105+S5dS,

2=(w¥) being defined in each neighborhood O and dS the differential of the
matrix S=(Szy).

Denoting by ¥ the Riemannian connection determined by the Riemannian
metric g and putting

V s Vx $,
Ve |=| Vxgo |+(@t(X)| 6.
V xs Vs s
VU, VU, U,

VU, |= VU, +(@YX)N| U,|,
Vng VxU;; U3
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(x,¥y=1,2,3) for any vector field X in M, we can easily verify by using (1.3)
that in OO

Vg, Vg, v, ru,
Vg, |=Sa)| Voo |, V'u, |=(S.)| FU,
Vg, V. V'u, yu,

Now we consider in each neighborhood O local tensor field @(¢., ¢,), (x, y=
1, 2,3) of type (1,2) with components
(15)  D(ps, $)%=(3)F ($)i—(B2)F (3)—F ($)s—F o($)3} ($:)2
H(P)F (B —( B (P)—F (D)5~ o($2)2} ($1)2
A+ 7 ()o—V oo} () + 7 o()o—V o)} (2)°,

where (), (4;)° and (¢,)% are components of local tensor fields u,, U, and ¢,
respectively. Then a simple calculation by using (1.2) and (1.4) gives the fol-
lowing relation

D4y, ‘6 )P(' b1, '9)P(' s, ' $3) (91, $)D(91, $)D(¢1, $3)
D9, 'p)P( b5, '9)D(' 2, '$s) |=(Ssu)| P(P2, 9)D(B3, $)P(P2, §s) | (i)™
D('$s, "9)D('Ps, '9)P (b5, 'Ps) D(¢s, $1)D(¢s, $:)D(s, B:)

in ON'0O+¢ because of O(p,, ¢,)=P(p,, ¢.). Hence there is a global tensor
field 2, on M defined by

(1.6) Z21=0(¢1, $)+ (s, )+ P(Ps, $o)

and a tensor 2, globally defined on M by

(L7) Z,=0(¢s, $)RD($s, $2)+P (91, $o)QD(Bs, $a)+DP(s, 2)QP($s, $1)
—0($,, 92)RQD($s, $1)— D2, $s)RP(Ps, $2)—P(Ps, $)RP(91, Bs)

up to sign. We now have

THEOREM 1. In a (4dm—1)-dimensional differentiable manifold with almost
contact 3-structure a necessary and sufficient condition for the global tensors X,
and ¥, defined respectivery by (1.6) and (1.7) to vanish is that

¢(¢1‘1 ¢?/)=O) (X, y=1; 2’ 3) .

We say that an almost contact 3-structure is normal (with respect to a
connection @ in the vector bundle B) when 2,=0 and 2,=0. Then by means
of Theorem 1 a necessary and sufficient condition for an almost contact 3-
structure to be normal is that @(¢,, ¢,)=0 are established.
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§2. Hypersurfaces in a quaternionic Kaehlerian manifold.

We first recall the definition of a quaternionic Kaehlerian structure given
by S. Ishihara [3]. Let M be a 4m-dimensional differentiable manifold and
assume that there is a 3-dimensional vector bundle V consisting of tensors of
type (1.1) over M satisfying the following conditions (a), (b) and (c):

(a) In any coordinate neighborhood {U; y"}, there is a local base {F, G, H}
of V such that

FiFt=—0! GiGt=—0!, HiH}=—§!,
2.1 FiGi=—GiF'=H! GiH"=—H,G"=F
H}F}=—F}H}=G},
Fi, G and H?Y denoting components of F,G and H in U respectively.
(b) There is a Riemannian metric tensor g;; such that
F;=—F,, G;=—G,,, Hy=—H,,
where F;;=g,,F", G;;=g,;G" and H;;=g,.H".
(¢) For the Riemannian connection D of (M, g)
D;Fhr=r,Gt—q,H?,
(2.2) D;Gr=—r;Fi+p,H"
D;H}=p,;F—p;Gt,

where p=p,dy*, g=q;dy* and r=r,dy* are certain local 1-forms defined in U.
Such a local base {F,G, H} is called a canonical local base of the bundle V in
U, and (M, g, V) or M is called a quaterniomic Kaehlerian manifold and (g, V)
a quaternionic Kaehlerian structure.

In a quaternionic_Kaehlerian manifold (M, g, V) we take intersecting coordi-
nate neighborhoods U and ‘U. Let {F,G,H} and {'F,’G,’H} be _canonical
local bases of V in U and ‘U respectively. Then it follows that in Un'0

'F F
(2.3 ‘G |1=(S)| G |, (x,y=1,2,3)
'H H

with differentiable function S,,, where the matrix S=(S,,) is contained in the
special orthogonal group SO(3) as a consequence of (2.1).
As is well known, a quaternionic Kaehlerian manifold is orientable.

We consider a real hypersurface M in a quaternionic Kaehlerian manifold
M of dimension 4m. Let M is covered by a system of coordinate neighborho-
ods {l_]: y*}. Then M is covered by a system of coordinate neighborhoods
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{U: y*}, where U= ﬁmM._ Let M be represented by y*=y*(x*) with respect to
local coordinates (3%) in U(CM) and (¥ in U(CM). Denoting the vectors
0,9%(0,=0/0y") tangent to M by £ and a unit_normal vector field by N¢, we
can put in each coordinate neighborhood U=UM

() FiBi=g'Bi+u,N', FiN*=—uB,
(2.4) (i) GiBi=¢@iBi+v,N?, GLN*=—v°B; ,
(iii) HiB:=6 Bi+w,N*, HiN*=—w"B},
@5, &%, 05 being local tensor fields of type (1.1) and u,, vq, W, local 1-forms de-
fined in U, where g,,=g;;B}{B: are the components of the induced metric tensor

in M. We have easily u’=g%u,, v°=g%v, and w’=g"w,, where (g"*)=(gps)"".
Applying F7 to (2.4), i) and taking account of (2.1) and (2.4), (i) itself, we find

Prde=—0%+uyu’, u.03=0, pu°=0, u,u°=1.

Transvecting FJ to (2.4), (ii) and using (2.1) give
6L Bi-+wo Ni=J(§2Bt-u, N") — v, By,
—w’Bj=—v($:B}+u.N’)

because of (2.4), (i) and (ii). Thus we obtain

BPe =00+ 0,1, U =W, P =1, u,0°=0.
Transvecting H? to (2.4), (ii) and using (2.1) imply

— o8By —u N’ =¢(0:B}+w. N') —v,w’Bj,
—u’Bj=—v*(65B}+w,N?)
because of (2.4), (i) and (iii). Thus we have
O%e=—PL+v,w°, wehe=—1u,, 05°=u’, w,v*=0.

Similarly, using equations (2.1) and (2.4), we can prove the following formulas
(2.5)~(2.13) :

(2.5) Plpe=—0p+uyu®, u,45=0, pou’=0, uu’=1,

(2.6) PAPe=—08+v,0%, v,05=0, =0, v,0°=1,

2.7 0208 = —0g+w,w*, w,05=0, O3w*=0, w,w’=1,

2.8) PLpe=0%+v,u°, uPe=w,, pr*=w’, u,°=0,

(2.9 03 =—@b+v,w°, W= —u,, 00°=—u’, w*=0,
(2.10) PRL=b+w b, v.05=u,, Piw=u’, v,w'=0,

(2.11) A5 =—b+w,ub, u05=—v,, Gw'=—v°, uw'=0,
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(2.12) 208 =l ua WP, Weds =104, Out=1°, wu*=0,
(2.13) P =—0%+ U0’ v,05=—w,, Pou‘=—u’, v.u'=0.
Putting @ra=8uc®%, Pra=8ec®t and 0,,=g0.05, we have from (2.4)
boa=F;iBiB, ¢yo=G;;BiB%, 0y,=H;;BiB:,
from which and the condition (b)
(2.14) Pra=—Pav, Pva="Pav, Ooa=—0as .

We now consider intersections of coordinate neighborhoods U= UmM and
'U="U~M. Then, taking account of (2.3) and of (2.4) established in U~'U,
we can prove that

‘D @ ‘u u
(2‘15) /gb :(SIII) Sb ’ /U :(Szy) v ’ (x’ y:]»: 27 3) .
‘4 7 ‘w w

hold in Un'U, where the restriction of functions S,, defined in Ur\’ﬁ to UNn
‘U is denoted also by the same letter S,,. Thus we have proved

THEOREM 2. A real hypersurface of a dm-dimensional quaternionic Kaehle-
rian manifold admits an almost contact 3-structure.

We denote by V' the Riemannian connection induced on M from the Rie-
mannian connection D of M. Then equations of Gauss and Weingarten are
given by

(2.16) VyBi=A,N*, V ,N'=— A¢ B,

respectively, Ay, being the components of the second fundamental tensor with
respect to the unit normal vector N* and A$ being defined by A¢=g*A,,,
where

Vo Bi=0,Bi+ { s} B{BL— {5} Bt

VyN*=0,N*+{}} B{N"
and {3}, {sa} are christoffel symbols formed respectively with g;; and g, .
Applying the operator V,=B¢D, to the first equation of (2.4), (i), we obtain
BUD;Fi)Bi+FiV Be=W «$)Bi+ ¢ Bi+F ul)N* +ul N,
from which, substituting (2.2) and (2.16) and using (2.4),
(r;Bi)(PaBi+va N —(g;BO(0e B+ waN*) — Acau” B}
=V P2 Bi+(AcepI N+ ua) N*— Aluo Bf .

Consequently, putting p.=p,;Bi, q.=q,B; and r.=r;B}, we have
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V pb=r p8—q.05— A+ Au,, V ety =7 v, —qoWo— Acodly .
Similarly, using (2.2), (2.4) and (2.16), we can find
217) { Vepa=redo—q.06—Acau®+ Aq ,
Vee=r0s—qwo— Acedl,,

Vedh=—rpt+p05— A"+ Alv,
Veve=—rug+pws—Aced? ,
V0e=qcpt—Des— Acaw’+ Alw,

Vcwu‘: QCua—pcva_ Aceez .

(2.18) {

(2.19)

We now define a matrix @ consisting of local 1-forms p=p,dy°, ¢=q,dy"

and r=r,dy’ in M by

0 r —q
Q= —r 0 b
g —p 0

in each coordinate neighborhood U, which is really the connection form of a
linear connection ® induced in the vector bundle B determined by the projec
tion tensor field T=u@U+vQV+wXW of rank 3. Obviously, we have

'2=8"102S+S7(dS)
in UN'U, where ‘2 is the connection form of w in 'U. If we now put
i;cqsg:chS’b’—rcg!zH—qcﬂg, ﬁcu"chu“—rcv“—r-ch“ ,
Vi =V i +r.8—p.0%, V0=V 0o+rus—puw®,
V0= 03 —q. 95+, V wr =V wt—qut+p”,

then we have from (2.15)

l;’ng ﬁqﬂ V'u Fu
Pro |=S| Po |, | Pro |=Sw| Pv
ﬁ’ﬂ l%6‘ ﬁ’w Vw

in Un’U. On the other hand, (2.17), (2.18) and (2.19) give respectively

(2.20) 1070¢3’= — Apu®+ Agu,, ﬁcub: _‘Ace¢g »
(2.21) P oy=— Acyp®+ A2y, P 0= — Ao,
(2.22) V 05=—A,yu’+ Azw,, F cwy=— A, 05 .
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We compute components of local tensor fields (¢, @), D(¢, ¢), D0, 6),
D(p, §), (¢, 6) and @(6, ¢) define by (1.5). Denoting by ¥ (4, ¢)era=2aDP(P, $)es’,

we have from (2.20)
D(p, P)era=PU— Acsia+ Acathy) = 4 — Acclat+ Acalte)
+(Acetty— Apette) i —(AcePf— Avepia

this is,

D(P, )eva=(Acedot Aaepty—(Ape@o+ Aaeht)uc -
Similarly we have by using (2.20), (2.21) and (2.22)

(B, Pera=(AcePot AaepDtty— (APt Aaepuc ,
(2.23) (P, Peva=(Aceat AaeOvs—(Apelt Aaedpve ,

D0, 0)cpa=(Acelot+ Aael)ws—(Apebe+ Aacbw, -

On the other hand, denoting by D(@, P)eva=2.P(P, $)er’, we have from (2.20)

and (2.21)
D(h, Pera=L— Acrvat Aeas) = P — AecVat Acave)
F(Acevs— Apev )P+ Pi(— Aeptiat Acatts)
—5(— Agettq+ Agatte) F(Acotty— Apotie) s
—(AcePt— ApedVa—(Acels— ApePtla
and consequently
D($, P)eva=(AcePt AaeOVs—(Apeplt Aaept)ve
F(Aceat AgedDup—(Ape Pt AnefDutc -
Similarly we have from (2.20), (2.21) and (2.22)
D(P, Peva=(Acedt Aaepvs—(Apept Aucht)ve
F(Acelot Aaefty—(Aveda+ Aaet)tte ,
D(P, Dera=(Acedt AehDwo—(Apedbot Aaedp)we
F(Acelot Agelfvy—(Aplo+ Aael)ve
D0, @) eva=(Acelot Aaelus—(Apellit Aacl)ue
F(AcePt Agept)wo—(ApePt AaePt) e .

(2.24)

We now assume the global tensor 2, defined by (1.6) vanishes.

stituting (2.23) into (1.6) gives

Then sub-
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(Acepit AaepOts—(ApePot AzedDue+(Aceot Aaehvy
—(Apeet AaeD)ve+(Acellot AneIDwy—(Apedi+ Ageb5)w. =0
Transvecting (2.25) with «® and using (2.5), (2.8) and (2.11), we have
AcePit Aaedpi— (U Ape)pltte— (U Apeho— Aa )V,
— (U2 Apel+ Age?)w.=0,

(2.25)

(2.26)

from which, transvecting with u?%,
(2.27) (uAL)ee+2AU, WHv,—2AU, Viw,=0,

where and in the sequel the function A,,X°Y* is denoted by A(X,Y) for
arbitrary vector fields X=X%/0y* and Y=Y%9/dy* in M. Therefore, trans-
vecting (2.27) with v° and w°® respectively gives A(U, V)=0 and A(U, W)=0.
Consequently (2.27) becomes

(u*Age)pe=0.
Transvecting the equation above with ¢; and using (2.5) imply
Apau®=AU, U)uy .
Similarly, using (2.5)~(2.13) and (2.25), we have
(2.28) Apqu®=A(U, U)uy, Apo0*=A(V, Vv, Apew®=AW, Ww, .

Substituting (2.28) into (2.26) and taking account of (2.5),(2.12) and (2.13), we
obtain

(2.29) Aot Agedi=(AU, U)— AW, W)v,w,—(A(V, V)— AU, U))wev,,
from which, taking the skew-symmetric part,
(A(V, V)—A(W, W))(Ucwa_wcva)zoy

which implies A(V,V)=A(W, W). On the other hand, transvecting (2.29) with
v*w® and using (2.12), (2.13) and (2.28) give A(U, U)=A(W, W). Consequently
we have from (2.29)

Ace¢Z+Aae¢2:0 .
By the same way as above we can find
(230) Ace¢§,+Aue¢2:O; Ace¢3+1‘1ae¢§=0, Aceﬁz‘l’Aaeag:O .

Therefore, comparing (2.23) and (2.24) with (2.30) and taking account of (1.7),
we see that the global tensor field X', also vanishes. Thus 2,=0 implies 2,=0
for real hypersurfaces. Hence, combining Theorm 1, we have N .

THERREM 3. In a real hypersurface, of a quaternionic Kaehlerian manifold
the following conditions (1)~(3) are equivalent to each other:
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(1) The nduced almost contact 3-structure in the hypersurface is normal.
(2) The induced almost contact 3-structure tensors {¢, ¢, 0} commute with
the second fundamental tensor.

3 2,=0.

§ 3. Hypersurfaces in a quaternionic Kaehlerian manifold of constant Q-
sectional curvature.

Let M be a 4m-dimensional quaternionic Kaehlerian manifold with constant
Q-sectional curvature c. It is well known that its curvature tensor has com-
ponents of the form

Kisi*=—-(01g1— 03+ FiF j— F3F y—2F i+ GIGys

3.0
—G}Gu—2G1,Gi+ HyHy— H} Hy—2H, HY),

where ¢ is necessary a constant, provided m=2 (See Ishihara [3]). On the
other hand, as a characterization of quaternionic Kaehlerian manifold with
constant @-sectional curvature ¢, Eum and the present author [1] proved

THEOREM A. A necessary and sufficient condition that a 4m-dimensional
Kaehlerian manifold (m=2) is of constant Q-sectional curvature c is there exists
a hypersurface with the second fundamental tensor A,, of the form

4
Aba: Tgba —(ubua+ Ubva+ wbwa) ’

u,v and w being appeared in (2.4), through every point with every (4m-1)-direc-
tion at the point.

So, it seems interesting to study real hypersurfaces with second fundamental
tensor of the form

(3.2) Apa= e —AUpUa+ V0 +WpWs) ,

¢, 2 being assumed to be functions, in a quaternionic Kaehlerian manifold with
constant ()-sectional curvature.

Let M be a real hypersurface in the manifold M. Then the structure
equations of Gauss and Codazzi

KkjithBngBg,:chba.-’AdaAcb+AcaAdb »
KkjithB?;BlizNh:VcAba_VbAca
are established, where K, ;;n=g£1K:;i' and Kucpa=8acKueo®, Kacs® being components

of the curvature tensor determined by the induced metric g,, in M. Substitut-
ing (2.4) and (3.1) into the equations above give respectively
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(33) chba:% (gdagcb —8ca8as +¢da¢cb —'¢ca¢ db—'2¢ dc¢ba.

+¢da¢cb ‘—Ql)cagbdb —2¢dc¢'ba +0daﬂcb—0ca0db _2ﬁdcﬁba>
+ AdaAcb— Aca,Adb s

(34) VcAba_VbAca:'%“(ucgbba—Sbcaub _2¢cbua+ vc¢ba—¢cavb —2¢cbva

+wcﬁba—0cawb_20cbwa) .
We now denote by K., components of the Ricci tensor in M. Transvecting
(3.3) with g%, we have from (2.5), (2.6) and (2.7)
(35) Koy=— {(4m-+1)ge =3ttty + .0y wew,)} +BAy— Ao 45,

where and in the sequel the mean curvature A}=g%®A., will be denoted by B.

Now, we assume that the second fundamental tensor A,, of M has the
form (3.2), ¢, 2 being differentiable functions. Then substituting (3.2) into the
second equation of (2.17) and using (2.5), (2.12) and (2.13), we have

(3.6) Veug=(r+Aw)v,— (g, + 0 ) Wo+ o -

Similarly from those of (2.18) and those of (2.19) the equations
Veve=—(etAwue+(pet+Au)wat pdea
Vewe=(qe+Av)ue—(pe+Auc)vat pbcq

will be obtained. Differentiating (3.2) covariantly along M and taking account
of (3.6) and (3.7), we find

VcAbaz(Vc#)gba_Vcl(ubua_]_vbva+wbwa)
_zﬂ(ua¢cb+ub¢ca+va¢cb+vb¢ca+waacb+wbﬁca) ’

from which, taking the skew-symmetric part with respect to ¢ and b and using
(3.4), we have

(Vc#)gba_"(Vbﬂ)gca—‘ch(ubua‘{'Ubva’i“wbwa)+7b2(ucua+vcva+wcwa)

3.7

:(—Z—— 2#)(uc¢ba—¢caub—2¢0bua+v°¢ba

—¢cavb"2¢cbyc+ wcaba—ﬁcawb_20cbwa) .

Transvecting the above equation with g°* and w’u®+v%°+w'w® we find res-
pectively

(3.8 Am—=2)V ,p—3V 2+ uV ;Du.+ WV (v, 4+ (w7 Dw.=0

and
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W o pt—uV gpr)ue— WV o). — (W o) w,
=37 A—uV Qu;— ¥V v, —(w¥ Dw, .
Combining the last two equations, we get
@m—5) p=—uV ), — ¥ o). —(WV¥ o), ,
which implies that
uV p=vV p=wV . p2p=0
and consequently that V,p#=0. Substituting V,x=0 into (3.8), we obtain
3V A= AU+ (v +(w ADw, ,
from which
UV A=vW JA=wV ,2=0.
Hence V. 2=0. Thus g and 2 are both constants and Ag=c/4. Thus we have

THEOREM 4. Let M be a real hypersurface in a quaternionic Kaehlerian
manifold with constant Q-sectional curvature c. If the second fundamental tensor
Ay has the form

Apa= p8ya— AUylha T30+ Ww5w,) ,

u, A being differentiable functions, then p and A are both constants and Ap=c/4.

We now consider the case where the ambient manifold is of zero Q-sec-
tional curvature. Identifying the quaternionic @™ naturally with R*", Q™ can
be considered as a quaternionic Kaehlerian manifold of zero Q-sectional curva-
ture with the natural quaternionic Kaehlerian structure {F, G, H} having nu-
merical components of the form

0 —E 0 0 0 0 —E 0 00 0 —FE
E 00 0 0 0 0 E 0 0 —E 0
(39) F: , G: , H: ,
0 0 0 —E E 0 00 0E O 0
0 0 E 0 0 —E 00 EO0 0 0

where E denotes the identity (m, m)-matrix. We assume that there exists a
real hypersurface in Q™ with the second fundamental tensor A,, of the form
(3.2). Then by means of Theorem 4 ¢ and A are constants and Ax¢=0. There-
fore A, is one of the following forms
Aba:0 ; Aba:#gba;
(3.10)
Aba.: _x(ubua'l"vbva'l' wbwa) .

Now let the second fundamental tensor A,, of a real hypersurface M in Q™
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be of the form (3.10). Since in this case
D;,F!=0, D;G'=0, D,;H!=0,

the local 1-forms p,q and » in M are all vanish. Therefore taking account of
our assumption (3.10) implies

chu:wcva_wavc ’ chazucwa_uawc ’ Vcwa:vcua’_vauc .

Applying the operator F, to (3.10) and substituting the equations above, we
can easily verify V', A4,,=0. On the other hand the condition (3.10) implies that
the second fundamental tensor A¢ has exactly two eigenvalues —4 and 0
whose multiplicities are 3 and 4(m—1) respectively. Hence, using V. A§=0, we
see that the eigenspaces corresponding to —A4 and 0 define respectively 3-and
4(m—1)-dimensional distribution D_, and D, over M which are integrable and
parallel. Denoting maximal integral manifolds of D_; and D, by M_; and M,
respectively, M_, and M, and both totally geodesic in M. Taking account of
(3.10) and using (2.5)~(2.13), we have by a simple calculation

Abe¢g+ Aae¢g:0 » Abe¢§.+ Aaegbg:() ’ Abeﬁg—[_Aaeag: 0.

Thus, for an arbitrary eigenvector X* of A¢ corresponding to an eigenvalue p,
@5 X" 2 X" and 6¢X° are also eigenvectors corresponding to the same eigenva-
lue p. Putting ¢’=¢’B} for an eigenvector ¢° of A¢ and taking account of
(2.4), we see that the subspaces {¢?|¢°cD_}@{N/}* and {¢’|¢°D,} are both
invariant under the actions of F, G and H, where {N/}* is the linear closure
of the set {N’}. Consequently M, can be regarded as quaternionic submani-
folds of Q™. Let M_, be represented by y*=3%z*) in M. Then the local ex-
pression of M_, in @™ can be written by y’=3’(y%(z")). Denoting the tangent
vectors 0,y to M_, by B}, we have B;=B}Bj. Since M_, is totally geodesic
in M and BY are eigenvectors of A¢ corresponding to eigenvalue —1, we obtain
V ¢Bi=—gs,N’, which means that M_, is totally umbilical in Q™. Similarly we
can prove that M, is totally geodesic in Q™ and hence identified with Q™.
Therefore, since M_, X M,=S*xX Q™' is complete, we have

THEOREM 5. Let M be a complete real hypersurface of Q™ with the second
fundamental tensor Ay, of the form

Aba:#gba_l(ubua"_vbva"l' wbwa) ’

@ and A being differentiable functions. Then M 1s a Euclidean plane R*™,
Sl p) or S*(1/V/T )X Q™

§4. The Laplacian 4| A|j*

Let M be a real hypersurface in a quaternionic Kaehlerian manifold of
constant @-sectional curvature ¢. In this section we compute the Laplacian
4| A)? of the function || A|>=A,, A%, which is globally defined in M, where 4=
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gW .V, We thus have
o AVAP =g Ap) A1V Ay,

where |V Ay |*>=F . Ape) P ¢A*). By using Ricci identity and the equation (3.4)
of Codazzi we find

UD) AIAP=(F B A+ K2AG Ay Koo A% A+ (BCAU, U)

+ AW, V)+AW, W)~ Act® I+ Aco?II*+ 1| Acow®l|®)
—(Aee NP PeAT) — (Acet) (P A™) —(Acb5) (05 A™))
+ ”V(:Aba” 2-

On the other hand a straight forward calculation by using (2.5), (2.6) and
(2.7) gives

[ Acepst Ape@ll*+ 1| Acels+ Aveell*+ 1| Acells+ Apelel®
=64,y A —2{(Ace?)(95 A™) +(AcePi) P AT) + (A0 (07 A™)}
=2 Acere® [P+ Acev® P+ Acew?l®)
from which, using the equation (3.3) of Gauss and (3.5), we can easily see that

£

4
11 Aceli+ Apele)} —3(Il Acer|*+ | Acev® | *+[| Acew®|*)
+ B2 +8(A0p A®)+ (A A’ — | Ace A3°]

3
chbaAdaACb: [—_2— { ” Ace¢§+Abe¢§”2+ ” Aceg[)g"l" Abesl’g” 2

and
Kep AL A= (4m+T) Aep AP =3 Acit® "+ Acst" |+ At
+BALAS A5 — [ Ao, A1)
Therefore (4.1) becomes
(42 S AV AP=0F B A T3 At Al

+ ” ~Ace¢g+Abe¢g’[ 2+ ” Ace g'*’Abeag” 2}
+3B{AU, U)+ AV, V)+ AW, W)} +B(AL A AY)
— B+ (4m—10) A, A —(Acy A) I+ IV o Asall™.

In order to get further results, we shall prove some lemmas.
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LEMMA 4.1. On a real hypersurface in a quaternionic Kaehlerian manifold
the following inequality holds:

(4.3) B*<4(m—1) A, AP+2B{AU, U)+ AV, V)+ AW, W)} .
Proof. We define a symmetric tensor Py, by

1
Pba:Aba_I"m B(uyug+vv,+wyw,) .

Putting P**=g%g%P,; and P=g®P,, gives
1
HPba—(P/4m”‘1)gba“2:Poana_4m—_1P2§0,

which implies (4.3).

LEMMA 4.2. On a real hypersurface in a quaternionic Kaehlerian manifold
of constant Q-sectional curvature c

IV Az -5 (n— e
holds and that equality holds 1f and only 1f
VcAba—I_%(¢caub+¢cbua+¢cavb+¢cbva+0cawb+0cbwa):0 .
Proof. Putting
>k
(44) VcAba:VcAbu.+%(¢caub+¢cbua+¢cavb+¢cbva+0cawb+0cbwa)
and using the equation (3.4) of Codazzi, we can easily check that
ol 2 2 3 2
IV e AualP=17 cApall* =5 (m—1)c?,

which implies our assertion.
By means of (4.2), Lemmas 4.1 and 4.2 we have the following inequality

U8 S AIAPZE T B A (3 At Ansgl

Aot AP+ Acelit Ap 1)
+3B{AU, U)+A(V, V)+ AW, W)} +B(AL A AL)— (A, A®)?
+6{(m—1)c— Ape A T+ 7 Ayl

where P, A,, is defined by (44). Thus we have

THEOREM 6. Let M be a compact real hypersurface in a quaternionic
Kacehlerian manifold with constant Q-sectional curvature c¢=0. If the second
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fundamental tensor A,, 1s semi-definite and the mean curvature B constant and
if Ay A"=<(m—1)c, then A,, has the form
VT

Ae="g

{Goa—(UpUha+VpvaTWpwa)} .

Proof. When ¢=0, the lemma is trivially established. When ¢>0, (4.5)
and our assumptions imply

(4.6) AoPit Apepi=0, Acedi+ Apee=0, Acelli+ Ape9:=0,
4.7 B(AY A3 AZ)=(A0 A%,

(4.8) Ay A%=(m—1)c,

(4.9) AU, U)y=A(V, V=AW, W)=0.

As already show in section 2, (4.6) and (4.9) imply
(4.10) Apou®=0, Apev®*=0, Ap,w*=0.

Applying the operator V. to the first equation of (4.10) and taking the
skew-symmetric part with respect to the indices ¢ and b, we find

(VcAba“VbAca)ua'll‘Abacha—AcaVbua:()-

Substituting (2.17) and (3.4) in the equation above and using (2.5),(2.8),(2.12)
and (2.13) give

—2'<Ucwb _Ubwc_¢cb)+ AedAf¢:'i:o

because of (4.6) and (4.10). Transvecting the equation above with ¢ and
making use of (2.5), (2.12), (2.13) and (4.10), we can easily verify that

AbeAg,:_Z' {8pa—(UpUha+VoVa+wywo)}

Combining (4.7) and (4.8), we see that the second fundamental tensor Aj has
the components on M

0 0 0 0
0 0
0 0
Ve R
2 2
(A= . or (Af)=

Ve Ve

0 F 0 7
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with respect to the adapted orthonormal frame {U, V, W, X, --*, Xitm-1}. Thus
we may consider only one case, for example, the first case. In this case we
can write the matrix (A¢) in the form

1 ) 0 1 0 0
Y| o || -
T2 : 2
0 1 0 0
0 0 0 0
1 0
el 0 A
2 2 ’
0 . 0 0 0
this is,
Agz% {08 — (upu®+vv*+w,w*)}.

which is a tensor equation and so holds for any frame, especially for natural
frame. Thus the theorem is completely proved.

THEOREM 7. Let M be a compact real hypersurface in a quaternionic
Kaehlerian manifold with constant Q-sectional curvature c¢=0. If the second
fundamental tensor A, is semi-definite and the mean curvature B constant and
if B*<4(m—1)%c, then Ay, is of the form

Abazl/—zﬁ— {gba_(ubua+vbva+ WyWa)} -

Proof. The equation (4.2), Lemmas 4.1 and 4.2 also give the following
inequality :

%A“A“Zz(VbVaB)Aba'f‘—Z_[3{\‘Ace¢g+Abe¢2llz+“Aceﬁbg_"Abegbguz

I At A+ BLAU, U)+ AV, V)+ AW, W)

3

*
_ —1)2,_R2 bAa Ac)__ ba\2 2
% ) {4(m—1)2c—B?* +B(AA$AL) —(Apa AP ]+|IV . Asall®.

+

Consequently our assumptions give (4.6), (4.7),(4.9) and B?*=4(m—1)*c. Thus
the theorem is proved by the same method as in the proof of Theorem 6.
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§5. An integral formula.

It is well known (Ishihara [3]) that for a 4m-dimensional quaternionic
Kaehlerian manifold with constant @-sectional curvature ¢, when m=2, the
followings are valid:

D;pi—D;p,+qri—rgi=—cFy;,
D;q;—D.q,+7r;p;—pjri=—cGy,
Dyi—Dy,+p;9.—qpi=—cH;; .

Therefore, in a real hypersurface M the local 1-forms p, q,7 defined by

by=0:B;", 0=q;:B}, ry=r;B;

satisfy
Vopa—V abotasra—720a=—CPra,

(5.1 Vsaa—V aQo+7spa—Dora=—Cra,
Vira—=V ars+boga—qopa=—clsa .

On the other hand, taking account of arguments developed in section 2, we
see easily that there are two global vector fields S, and S, on M with com-
ponents

w0 +0°F ")+t w), w0t w

respectively. In this section by using these global vector fields S; and S, we
shall find an integral formula which corresponds to an integral formula given
by K. Yano (Theorem 1.9 in [13]). Putting

ﬁcﬁ,,u,,:Vj,,ua——rj,,va—l—qj,,wa s

Vocﬁbva:Vcﬁbva+7'cV°bua'_pcVobwa ’

ﬁcVobwa:VcVobwa_QcVobua-]'pcVObva
1

and taking account of (5.1), we can verify

o o o o

Vo=V cttg=— abceue"_cecbva_aﬁcbwa,

O o o o

Vchva_Vchva:_ cbaeve*’cocbua+c¢cbwa,

o O o o

Vchwa'—Vchwa:—‘ cbaewe+c¢cbuu_c¢cbv.z »

which implies

o °

Vbslb—Vbsz”:K,,a(u"u“+v”v“—|—wbw“)—6c+(l7°,,u“)(l7°aub)
(7 wF )+ ywF q0?)— (I yttg 12417 a1 swell?)
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or equivalently
(5.2) VS0 —V 4S5 = K (1?1 +0°0% + ww®) —6c — {(div u)?+(div v)?
.O 1 o o o
+(div w)?} +—2— {lL.glP+lLogl*+Lwgl?}

— (WP 2P ywal 417 ywal®)

where _Z’ugzﬁ,,ua—l-Voau,, and div u=ﬁau“. On the other side, (2.20),(2.21) and
(2.22) imply

17 st P17 o0l 17 5104 2= 3 Apg A% — (|| Ayt 41| Apet® 12+ 1| Apew®]2) ,

doiv u=divv=div w=0.
And (3.4) gives

Kba(u”u“—l-v”v“—l—w"w“):%{12(m—1)—l—B(A(U, U+ AV, V)+ AW, W))
— (Il Ape® [P+ 1| Apev® |2+ Apew®||®)} .
Substituting these equalities in (5.2), we obtain
o o 1 o o o
(5.3) VsS,"—V,S,'= o {ll-fugl|2+H-L’ugllz+ll~fwgllz+—2- {12(m—1)
+B(AU, U)+AWV, V)+AW, W)} —34,,A™
+(1—%>{”Abeuellz_l'”Abeve”z_l_"Abcwenz}‘
We can now prove

THEOREM 8. For a compact and orientable real hypersurface M of a 4m-
dimensional quaternionic Kaehlerian manifold (m=2) with constant Q-sectional
curvature ¢, any one of the three conditions (1), (2) and (3) stated in Theorem 3
is equivalent to the following conditions:

J L5 (Q20m—D+ BAWU, U)+ AWV, V)+ AW, W)} —3 4, 4%

+(1_%){”Abeue"2+"Abeve”2+”Abeweuz}]*lgo°
Proof. From (5.3) we find

[ gl Fogl gl
=[ [ 120m—1)+BAW, U+ AV, V)-+ AW, W)} 3 Ao A

(1) At Aust I Aueo1) o
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Thus taking account of .2’,,g=l°7 bua+l°7 aUs=Apeo’+ AuePs’, :Evg=i7 bva—l—f7 Vo=
Apeot+ Agey’ and :ngzl% bwa-}-lo7 We=Ap0°+ As0,°, we have our theorem.

§6. Submersion 7: S*‘™**—QP(m) and immersion 1: M—QP(m)

Let S*™*3(1) be the hypersphere {(¢*, -, ¢™*)|| ¢*|*+---+ | ¢™**|*=1} of radius
1 in a (m+1)-dimensional space Q™' of quaternions, which will be identified
naturally with R*™*®, The sphere S*"**(1) will be simply denoted by S*™*%
Let #: S*™**—QP(m) be the natural projection of S*"** onto a quaternionic
projective space QP(m) which is defined by the Hopf fibration. As is well
known S*"** admits a Sasakian 3-structure {&, 7, &} (See Ishihara and Konishi
[4]) and any fibre #°Y(P), PEQP(m), is a maximal integral manifold of the
distribution spanned by &,7 and . Therefore, the base space QP(m) of a
fibred Riemannian space with Sasakian 3-structure admits the induced a qua-
ternionic Kaehlerian structure, and moreover, is of constant @-sectional curva-
ture 4 (See Ishihara [2],[3]). We consider a Riemannian submersion 7 : M—M
compatible with the Hopf fibration #: S*™**—QP(m), where M is a real
hypersurface in QP(m) and M=#"'(M) a hypersurface of S™**. More precisely
speaking, #: M—M is a Riemannian submersion with totally geodesic fibres
such that the following diagram is commutative :

1
M > Gam+s

nl lﬁ'
M — QP(m)
1

where : M—S*"** and 1: M—QP(m) are certain isometric immersions.

We take coordinate neighborhoods {U; X°} of M such that =(0)=U are
coordinate neighborhoods of M with local coordinate (y*). Then the projection
7. M—M may be expressed by

(6.1 yr=y"(x"),

where y*(x”) are differentiable functions of variables x” with Jacobian (dv*/0x®)
of the maximum rank 4m—1. We take a fibre & such that FN\U+#¢. Then
we can introduce local coordinates (z°) in FN\U in such a way that (3% z%)
is a system of local coordinate in U, (»*) being coordinates of zn(ZF) in U.
Differentiating (6.1) with respect to x% we put E,;‘:Bayj(aa:a/ax"‘) and denote
by E® local covector fields with components E,” in U. On the other side,
C,=0/0z° form a natural frame tangent to each fibre & in FNU. Denoting
by C% components of C, in U, we put C.=g.38"C’, where g,z are components
of the induced metric of M from that of S*"** in U, gstzgaﬂC“sC‘Bt and (g%)
=(gy)"'. We now denote by C* local covector fields with components C,° in
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U. We next define E°, by (E%, C*)=(E,*, C,°)™" and denote by E, local vector
fields with components E% in U. Then {E,, G} is a local frame in U and
{E®, C*} the coframe dual to {E,, C;} in U. N

We now take coordinate neighborhoods {{J; x*} of S*"** such that #({)

=0 are coordinate neighborhoods of QP(m) with local coordinates o). T hen
we can also define similarly a local frame {E ,,C } and the coframe {E’ Cs}
dual to {E 25 Cs} in U (See Ishlhara (27, (3], [41, [5] -and Konishi [4] [5]). We
denote by {E 2 C"} and {E C ’} components of {EJ,C} and {E’ C*} respec-
tively in

Let the isometric immersions i and 7 be locally expressed by x*=x(x%)
and ¥'=»’(y*) respectively. Then the commutativity Zei=iew of the diagram
implies

Y (H(xM))=y(x"(x")),

and hence
(6.2) BJE =E, B.*,

where B,’=0d,y’ and B, =0a,x".

For an arbitrary point PEM we choose a unit normal vector field N’ to
M defined in a neighborhood U of P in such a way that {B,’, N’} span the
tangent space of QP(m) at i(P). Let P be an arbitrary point of the fibre &
over P, then the lift N*=N’E*, of N’ is a unit normal vector to M defined in
the tubular neighborhood over U because of (6.2).

Let’s denote by &%, 7* and & components of & 7 and £ of the induced
Sasakian 3-structure {&, 7,8} in S*™* respectively. Since any fibre # ' (P),

PeQP(zn), is a maximal integral manifold of the distribution spanned by &,7
and , &%, 7* and &* can be represented by

(6.3) gr=g°B,f,  7*=79"B,;, [*=(°B,,

where &%, n* and {* are unit vector fields in M which are vertical and span
the tangent space to the fibre & at each point of M because of (6.2). We now
put in

E=a'C,, 7=bC,, t=cC,,
a,=a'g;, by=b'g; ’ cs:Ctgts ’

where §¢s=§1ﬂ@f"s and £, components of the induced metric in S*™*}(C Q™).
Then it follows that

(6.4) Ci=af+bi+ct,
(6.5) a,at+bbt+cyct =6
Transvecting (6.2) with 173"1 and substituting (6.4) imply
(B3 BE =B —(0% b et LICH
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where £,=£°8s, 7a=17°8s« and (,={Pgs,. Thus, transvecting the equation
above with E“ and using the fact &, 5, and {, being vertical, we have

(6.6) E*,By=BE=,.
Hence the vertical vectors C; can be written as
6.7) Co=a,§+bm+cl

in such a way that the functions as, b; and ¢, satisfy (6.5), where a;, b, and ¢,
are respectively the restrictions of a,, b; and ¢, appearing in (6.4) and in the
sequel these restrictions will be denoted by the corresponding letters respecti-
vely.

Denoting by {1}, {#}, {§} and {&} the Christoffel symbols formed with
the Riemannian metrics ézﬂ, &i, 8ap and gy, respectively, we put

DEr=3,Er— {5} E;+ G EJEY,

D E* =0, + (A} B — (B} E B2,
and

VE 2 =05E—{u} ES+ {8} ESE,S

V oE%=0E%,+ {g&} ETy— (&} ESES, .

Since the metrics gy, and g, are invariant with respect to the submersions #
and 7 respectively the van der Waerden-Bortolotti covariant derivatives of E;,
E*, and E % E°, are given by

D Er=h(E Cr+ClED),
DB =h E 28 —np C B
VﬁEaa: hbas(E‘BbCas + CﬁsEab) s
V sE% =Ry  EQC?—hC5E?,

(6.8) {

(6.9) {
respectively, where A, ;=g"Z,h;n’, b =8%gshsc’, h;i® being hy,® are the struc-
ture tensors induced from the submersions # and 7 respectively (See Ishihara

and Konishi [5]).
On the other side the equations of Gauss and Weingarten for the immer-

sion i: M—S*"* are given by

6.10) Ti $Ba=0sB™ + {2} B Bo) —{ju B=AgN*,
V sNe=0sN*+ {3} B N*=—As"B,*,

and those for the immersion i: M—QP(m) by
VoBa'=0,Bo'+{/i} By’ B — {1} Be'=ApaN*,

(6.11) ;
VyN*=0,N"+{}s} By N'=—A,"B,",
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where A;"=Agg™, A)*=A,.8°%, Az, being A,, are the second fundamental
tensors of M and M with respect to the unit normals N* and N’ respectively.
Moreover in this case (6.2) and (6.6) imply

Vb:Eabﬁa .

Putting ¢,*=D €% §,*=D 7" and §,°=D,Z% we have by definition of Sasa-
kian 3-structure

3,81 =—0+E8, B rEr=0, E&4=0, EF=1,

SPi=—0+0%,  §l=0,  9:4,=0, 77*=1,
020=—84+2.2%  82¢'=0, Thr=0, %=1,

(6.12) Gr=—g 0r=8, FRr=—6Er=7, §rEr=—3 "=

LPl=—0240.8, A== A, G3=FAHED,

03 =3 +0.8% 3201 =3 +T.8,
Gut+$,=0, $utd,=0, 0,+6,=0,

and

(6.13) D, 3r=805—E8,,, D.Jr=105—78., D.0r=005~8"5.,

where we have put &.=&4,, 7,=78w, L.=08, 3u=0,"8r $.=9,"8., and
0#1—0 g,1 (See Kuo [6])
We now put in 0

6,30 By g=GiBn By, 0,—0EFy.

Then we have from (6.12)

Gu'd=—0,, PP ==0,  0.'0,=—0;,

Pr' P, ==, =0,0,00'0,"=—0,'p =0, 0.}, =—u'0,"=¢,".

We also have by using (6.8), (6.12) and (6.13)

Lyg) =0,  Lyg;'=-20",  L¥p, =20,
(6.15) Lyd =20},  Lyd)=0, Lz =-2¢,

L0} ==2¢",  L£70,;=2¢},  Ld,)=0,

(6.14)

L¢ denoting the Lie derivation with respect to £, and
(6.16) hy'=—(a'¢;i+b')jitc'0;) ,

where ¢]t ¢] 8has Sbjz Gb; 8n; and 0”—0 S -
Consider a point P of QP(m) and a point P of S*™** such that n(P) p.

Denoting by 43, 3 and 0 respectively the values of @, and § at P we can
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define tensors £y, Gy and Hy of type (1.1) at PeQP(m) respectively by
(6.17) FyA=d#(@7AY), GpA=di(§zAr), HyA=dx(f3Ar)

for any vector A tangent to QP(m) at P, where d% means the differential of
# and Al denote the horizontal lift of A. We now denote by V; the linear
closure of the set R
(Y Fpu( vV GHu( Y Hp)
Fer 1) per-1p) per-1p)

of tensors of type (1.1) at P€QP(m) and put V¥=Ujcopm V¥, which is a
linear subbundle of the tensor bundle of type (1,1) over QP(m).

Take a coordinate neighborhood U=P of QP(m) and consider a local cross-
section = of S*™** over U. If we put

(6.18) F;=F.;,, G;=0«;,, H;=H.;,, PeU,

then the correspondence P—F;, P—G; and P—H; define respectively local
tensor fields F, G and H of type (1,1) on U. Thus, taking account of (6.14),
(6.17) and (6.18), we find

Fy'Fh=—0t, GGt =—0¢, H,'H»=—-0t,
(6'19> FhlG]h: _Gh’LFJ’L: HJ’L, Gh‘LHJ’L: _Hh‘LG]h:F]L’ thFJh: __FhZH]h: G]l,
Fy=—F,, Gji=—0Cy, H;=—H,,

where F;;=Fg,, G;;=G,"gn, H;;=H,"g,, F,", G,* and H,' being respectively
local components of F, G and H in U

We take another local cross-section ' of QP(m) in ‘0. Then we can con-
struct a triple {/F,’G,’H} in ‘U by the same way as above and {'F,’G, H}
also satisfy (6.19). Thus, taking account of (6.15) implies in Un'U#¢

'F F
(620) /G :S(zy) G ’ (X, y:]-: 2: 3)
'H H

with functions S., in Un\'U, where the matrix (S;,) is contained in the special
orthogonal group S0(3).
Next, denoting by (z*(¥)) coordinates of the point z(P), we have from (6.18)

Fr=¢,0),  G0=¢, (" 0), H'(3)=0,(z"0).

Differentiating the first equation above with respect to »* and using <ah7~>E;
=0% imply
ah.FJl:ah¢11+(ahrx)cxsas¢;~

Thus, taking~ account of (6.16), we obtain D, F}'=ryG,'—q,H,", where we have
put ¢,=—b,C,*0,7* and 7,=—c,C,*0,7". Similarly, using (6.16), we obtain in U
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DyF ' =1,G,'—q,H,',
(6.21) DuG=—ryF, Dy H,,
DyH,'=q,F,'—p,G,".

for certain local 1-forms p, g, 7 defined in U. By means of (6.19),(6.20) and
(6.21) the quaternionic projective space QP(m) admits a quaternionic Kaehlerian
structure (See Ishihara [2], [3], [5] and Konishi [5]).

Let’s denote by K,C,,,f and K,;;* components of the curvature tensors of
(S*™*, g;,) and (QP(m), g;;) respectively. Since the unit sphere S**** is a space
of constant curvature 1, using the euqation of co-Gauss (See Ishihara and
Konishi [5])

K=K B 5 B B B PR hyst — R R’ —2h SR
and (6.16) implies
K, =04g;,—0"8y+F"Fj;—F *F 4y —2F  ,JF "+ GG ;;—G ' Gy,
—2G,,G*+H"H;;—H,*Hy;—2H, ;H,".

Hence QR(m) is a quaternionic Kaehlerian manifold with constant @-sectional
curvature 4 (See Ishihara [2],[3], [5] and Kanishi [5]), and consequently the
real hypersurface M of QP(m) can be regarded as a manifold with almost
contact 3-structure as already shown in section 2.

We are now going to prove that the structure of M induced by the im-
mersion 2: M—S*™** and the submersion w: M—M is the same as the structure
induced by the submersion #: S**"*—QP(m) and the immersion 1: M—QP(m).

Applying the operator ¥ ﬁzBﬁ”E# to (6.3) and using the euqations (6.10) of
Gauss and Weingarten, we find

5 Bo'=(7 &%) B, + Ap&°N*,

$£Bg* = g B+ Agn*N*,

0,5 B = 5L B, + Ag LN,
from which, putting
(6.22) G2=V o, "=V,  057°=V ",
(6.23) ug=Asf%  vp=Apan®,  ws=ApLY

u'=gluy, v =gy, w'=g"ws,
we also have
¢flEB,9y:¢ﬁaBan+uﬂny SngN#: —uﬁBﬂx;

(624) gZ#’cBlgyng‘gaBaE—l-UﬂN‘, (Z;H'CN#Z—‘U'SBﬁ”,
éﬂxBﬁp-:ﬁ‘gaBax‘i" wlgNE, éiuxN#: —_ LU‘BBlglc.
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Transvecting ¢ to (6.24) and using (6.12) and (6.24) itself in the usual
way, we can easily obtain that

¢ P =—0ftugu +£.£8,  pul=05"6=0, uql=1, £5°=1,
O =—05+vw e, P vP=¢nP=0, vpf=1, pmf=1,
0,%05"=—085+waw+Lpl% 05 wP=04"CP=0, wawf=1, {LP=1,
G P =—05"Tvau"+1E%,  Pgfu=wp,  upsf=0,

GG =0"Fug"+Esn%,  Ggva=—ws, vy’=0,

D057 =—d"Fwav +Lan®,  O5v.=us,  wil’=0,

0" =0 " tvew+ngls,  Pgw.=—us,  Eul=0,

0,57 =—Pa"Fusw+EsL%,  dpfw=vg, =0,

¢ 05 =dg Tweu+Cs8%, O ua=—vs,  Lu’=0,

O nP=—¢CF=€%,  wemf=0, v7=0,

P CP=—0s"EP=7",  wuglP=0, wsEf=0,

P eP=—0g =L um=0, wvEP=0.

Applying the operator F =B,D, to (6.24) and using (6.11), (6.13)"and (6.24)
itself, we also have

(6.25)

V,0:°=E508 —£°g5tupA " —uAss, T ls=—Ar005%
(6.26) Vs =108 —1°8rs+vs A" v As,  Fws=—Arats”,
V057 =Cp0f —C0grptwsA —wArg,  Fws=—A.05
which and (6.25) imply
Leppg™=0,  Lpfg"=—205",  Lps"=2¢5",
(6.27) Lepg®=205",  Lohs"=0,  Lohs*=—205"
LeO7=—205%,  Ly055=2¢5% L H5=0.
and
Leu=0, Lou®=—2w*, Lou"=20%

(6.28) Lav*=2uw?, Lp*=0, Lov%=—2u",
Lew*=—2v% Lyw*=2u*, Lw =0,
If we put in a neighborhood U of M
¢ab:¢aﬁEaaEﬁb7 ¢ab:¢a’ﬁEaaEﬁb) 0ab:0a[9EaaEl3b}
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u*=u"E", v*=p*E %, w*=w°E_°,
then, taking account of (6.7), we find from (6.25)
b L=¢ L E EPy+(csb*—bsc)C,CP,
G P=Pa"E CEP,+(asct —c,at)C CPy
0,,=0,E *Ef,+(bsa*—ab")C, CP, .
and
u’=uE’,, v°=v*E°,, w*=w*E",,
which imply the following formulas
G 2Py = —0%+u,u’, ¢ u*=0, Uy 9,°=0, uu’=1,
Dl =—0+v? P =0, 1,0, =0, vp'=1,
0.40,°=—05+w,w?, 0,'w*=0, wy0,°=0, wyw'=1,

which are already given by (2.5), (2.6) and (2.7) respectively, where u,=u"gss,
vy=0%g,, and w,=w’g,,. Therefore we can construct a triple {#, &, §} of almost
contact metric structures defined in each coordinate neighborhood {U; 3%} of
the hypersurface M by the same method as in the construction of the quater-
nionic Kaehlerian structure {F, G, H}, and moreover prove that they satisfy
the other algebraic conditions given by (2.8)~(2.13). Since #oi=iom, choosing
suitably local coordinates in M and in QP(m), we can find in Un'U#¢ the
relations

‘' @ % 7
,¢_ :(Sxy) S‘E s /27 :(Sxy> 5 ’ (x) y"_—l) 2; 3)
4 6 i w

with functions S,, defined in Un'U which coincide with those appearing in
(6.20). By denoting by {8.%, &%, 8,°} and {@#® 9%, W} respectively the components
of {¢,$, 6} and {@, v, w} with respect to coordinate neighborhood {U; %}, the
commutativity of the diagram gives in U

F'B =3By +u,N',  F'N'=—iB,",
G, B=@ By +0.Nt, G} N'=—"B,,
H'B,/=6,"B,"+w,N!, H'N'=—@°B,
where #,=i’gyq, 1,=1°Zpq and W,=W’gsq.
Here and in the sequel we use the notations {@,’, ¢.°, 4.% and {u?, v°, w’%

instead of {4.%, ¢.°,8.°} and {@®, 7%, W’ respectively. In the followings the
algebraic relations (2.5)~(2.13) and the structure equations (2.17)~(2.19) will be
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very useful.
First we apply the operator V,=E*F «=B8By’D, to (6.2). Then we have

(7 4Bo)E S+ B EA 4B =By £ (D £ )B,+EE*F B~
from which, substituting (6.8), (6.9), (6.10) and (6.11),
Ay E NI+ 1,2,C 0 By? =h,? G Bo Byt + A EP, NV,
and consequently
(6.29) Apa=ApoEPLE,
(6.30) hy®Co*Bo?=h,?C.*B,* By

because of (6.7), (6.23) and (6.25). Transvecting E,E;* to (6.29) and replacing
the indices 7 and 0 with 8 and « respectively, we get

ApoESE 2= Agy— A (@ 874b,7 4 ,01)C o — A (@ T+by07 +6,L)C,
or equivalently
63D Ase= AR E A (s 4t 037wl )+ (el s F 075 F 0, L5) -
Then, transvecting (6.31) with g?* and using (6.25), we find
Al=AL
And also transvecting (6.31) with A®* and using (6.25) and (6.29) give
Ay A=A, AP*—6 .
Thus we have
LEMMA 6.1. (See also Lawson [6])
A=A and Ay A=Ay, A% —6.
On the other hand, as a consequence of (6.16) and (6.18), we have
Fl=—ha*, G=—htb', H)=—h'c’.
Thus substituting these equations into (6.30) and taking account of (2.4) imply
(6.32) Pl=—hla, P lP=—hb", L= —hgbc’.
Applying V,=E"FV, to (6.31), we can easily obtain
E' A= ;A EQLE 2+ Apa BT (T ERE 2+ Apo ESETV E 2
FE AV jupeatV e st 00 nat (Vv ) na+ (7 1wp)le
+ T w )l st sl eatud Eo vl atvd matwel Latwdl 05},
from which, substituting (6.9), (6.22) and (6.26) and using (6.32),



REAL HYPERSURFACES IN QUATERNIONIC KAEHLERIAN MANIFOLDS 51
ET 7 1 Aus=W cAva+Geatlst PeatotOcats+ Gesthat PostvatOepw ) ELE 2
—(Apepe*+ Aeeps NEEat Eo’6 ) —(Aeh e+ Aceps NE 0 (Eol75)
—(Apel*+ Acels N ECatELCp) -
Thus, using Lemma 4.2, we have

LEMMA 6.2. If the second fundamental tensor Az, of M=% (M) is parallel,
then the following two conditions (1) and (2) are valid in M:

oY) IV ¢ Apall*=24(m—1),
(2 Aeedrt+ Apedt=0,  Aceths’+Apep’=0,  Acely’+A50.°=0.
Next we prove
LEMMA 6.3. If the second fundamental tensor A,, of M satisfles
(633)  Apeha’+Awy’=0, Ao+ Aac’=0,  Apba’+Ae.0,°=0,
then the following two conditions (1) and (2) are valid in M=7"(M).
(v V,As#=0,
2 Agr Ad =2 At 850
where 2 1s a function deflned by 2= A, uu’.
Proof. We have already seen in section 2 that the condition (6.33) implies
Apu®=AU, Uduy,  Ap0*=AV,V)v,,  Apw*=AW, W)w,.

On the other hand transvecting the first equation of (6.33) with v* and making
use of (2.13) give A, w*+v*A4.0,'=0, and consequently AV, V)=A(W, W). Simi-
larly we can also obtain A(U, U)=A(V,V)=AW,W). If we put z=AU, U)=
A(V,V)=A(W, W), then we get

(6.34) Abauazlub y AbaU“Zva ) Abawa:/?wb .

Substituting (2.17) and (6.34) itself in the equation obtained by applying the
operator V. to the first equation of (6.34), we have

(VcAba)ua+ Aba.AceSZSea: (V c'Dub _RAceque’

from which, taking the skew-symmetric part and using the euqation (3.3) of
Codazzi and (6.33),

(635> vcwb—'wcvb—¢cb_AceAbd¢de:*_;— {(Vc'z)ub—(Vbl)uc} —ZAce¢be:

and consequently V A=(u?V,)u.. By the similar way as above the second
equation of (6.34) implies V. A= ,A)v.. Accordingly, since ¥ and v are mu-
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tually orthogonal unit vectors, u?¥ ,A=v¥,1=0 and hence A=const. If we
substitute V' ,2=0 into (6.35) and take account of (6.33), then we have

Ucwb—wcvb'—qscb- AceAed¢bd: “ZAceGﬁbe,

from which, transvecting with ¢,” and using (2.5), (2.12) and (2.13), because of
(6.34)

(6'36) AceAae:]Aca—*_gca'—(ucua+vcva+wcwa) .

On the other side, if we transvect (6.31) with A,* and use (6.25), (6.29),
(6.34) and (6.36) itself, then we get

A A=A AL ESE (A8 u)us+(An, +vv s+ (A +wwg
+ApA-EDE s (A0 + Qw4+ 5,
from which, substituting (6.36),
(6.37) Ag A=A Ap+85; .
If we now apply the operator Vs to (6.37), then using A=const. implies
(V5A8) A+ Asll 54,5 =2 5A;, .
Thus, taking account of V;As5,—V :45,=0, we get
Al A= As7 s A7,
and consequently Az ;A,°=A4,.V ;A5". Therefore we find
24540 5 A, =4V 5As, .
from which, transvecting A,° and using (6.37),
20 A, s A+ 20 5 Are=2AST 5 A5,
and consequently

Podsm—s AAT A,

Hence {2+(2%/2)} A3V 5A,"=0, which implies F;A45=0. Therefore the lemma
is completely proved.

LEMMA 6.4. If |V Au.l*=24(m—1), then
Ace¢be+Abe¢ce:0 ) Ace¢be+Abe¢ce:0 » Aceabe+Abeﬁce:O .

Proof. By means of Lemma 4.2 the assumption ||, Aql*=24(m—1) im-
plies

(638) VeAba +¢caub+¢cbua+¢cavb+¢cbva+ 0cawb+0cbu"a :O .
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Differentiating (6.38) covariantly along M and applying Ricci identity to the
equation thus obtained, we can easily find from (2.17), (2.18) and (2.19)

—Kyer® Aca— Kot Ape

(A2 )Peat(Aceps)Pac—Peo( Aaea®) + Par(Aceda’)
—(Aaehr’ ) cat(Acehs)Paa—Per( Aaea®) +Par(Aceha”)
—(Agels)0 cat(Acels’)0 00— 0cb( Aaela®) +0ap(Aceba®)

+ Ago(Upt e+ 050 FWow, )+ Agp(Uelhg+V 00+ W, 0,)

— Aca(Upttg+v50a+WoWa) — Aco(Ugtha 400+ Wawe)=0.

On the other hand, by using the equation (3.3) of Gauss and c=4 a direct
simple calculation gives

Kaco' Aea=Ada8er—8arAca
+(Ba"Aca)Per—Par(Pe" Aca) =20 ac($o" Aca) +(Pu" Aca) Pes
— (Pt Aea) =20 ac(r° Aea) +(04° Aea)lco—0an(0.° Aca)
—20,(0,°Aca) (A’ Aea) As— Aus(AlAca) -
Consequently the equation above reduces to
(6.39) Aga(AL A —L o+ Uty 0.0+ w wy)— Aco(Ad’ Acr—8as
F gy + vV Wawy)+ Agp( Al Aea—8eatUetlaFV 00+ W W,)
—Aer(Ad® Aeca—8aat UattatVaVa+Wala) T Pua(AcePs’ + AvaPc)
—Pea( Aaedo’+ Apeda?) + Par( AcePa’+ Aaedc’)
—Per(AaePa’+ AgePa®) +20ac( Do’ Acat Pa®Aes)
tPaaAces’ + Avepe?) = Pea( Ases’ + Avepa’)
+Pur(Acea’+ Aaed ) —Per(Agea’+ Aged o)
F2¢04:(Po* AcatPa’ Aev) T 0aa( Acelo’ + Apel )
—0ca(Aaels"+ Apel o) +Oar(Acel o’ + Agel.)
—0eo(Agela®+ Ao a?)+2030(00° Aeat04°Agp)=0.
Transvecting (6.39) with u‘«® and using (2.5), (2.8), (2.11),(2.12) and (2.13), we
can easily verify that
AU, UX(AgeAd’ —8aattattatva0atwawa) — | Acett’||* Aga
+(Ageu)(Age Ap'u?) —(Agoti®)(Age Ay u?) +2AU, W) aa—2AU, V)0 44
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Fva{ A +(Acer)0 4} +3va{ Aaev® +(Aceu)b,°}
Fwo{AgeW—(Acett®) P +3wa{ Agew® — (At =0,
from which, taking its symmetric and skew-symmetric part, we get respectively
{6.40) AU, U)Ag*Aea=A(U, U)(gaa—tatta—VaVa—WaWa) F | Acett®|* Age
—20a{Agev +(Acett)04 —20 4 { Agev®+(Aceut)0,°}
—2Wa {AgeW'—(Acett®)P 7t —2w { Age®—(Acett®)P o}
and
6.41)  va{Aeev +(Aceu )t —va{Aget®+(Aceti)047 +2A1, W)aq
Fwa{Agw —(Acett)Pa’t —Wa {Agew® —(Acet)Pa’t —2A(1, v)04a
—(Ageu)(Age A u”)+(Ageut)(Agc Apu)=0.
If we transvect (6.40) with u® and use (2.5), (2.12) and (2.13), then we have
AU, U) Az Asub=| Aceut®|? Ao’ —4 AU, V v —4 AU, W)w, .
Similarly using (2.5)~(2.13) and (6.39) implies
A(U, U)Age Ay u’=| Acert®||* Agot® —4 AU, V )y —4 AU, W)w,,
(6.24) AV, V) Au A" = At Aa®—4AWU, V Yyu,—4AV, Wiw,,
AW, W) Az Afw'=|| Acew®|| 2 Agow®—4 AU, W)u,—4AV, Wv,.

Multiplying A(U, U) to (6.41) and substituting the first equation of (6.42), we
have

AU, U){vy( Ao+ Acets®00°) —0o(Aae®+ Aceu®055)} +2AU, U)A(U, W)daa
+AU, U {w Agew® — Acei® o) —wa( Agew® — Acett*h o)}
—2AU, U)A(U, V)8 4o +4(Ageu®) {AU, V Yo+ AU, W)wg}
—4( Az u){ AU, VIvg+ AU, W)wg =0,
from which, transvecting ¢% and 0* respectively and using (2.5)~(2.13),
AU, UYA(U, V)=0, AU, UYA(U, W)=0,
and consequently
AU, U){(Agev®+ Aceu0,5)—(AV, V)— AU, U))yv,— AV, W)w,} =0,
AU, UY{(Agoew®— A i’ ) — AV, Wv,+(AU, U)— AW, W))w,} =0.
Therefore, (6.40) and (6.43) imply
(6.44) AU, U)AseAd"=AU, U)gaa—thaUha—VaVa—WaWe) + | Acett’||* Auq

(6.43)
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—4(A(V, V)—=AWU, U)wav, +4 AU, U)— AW, W) waw,
—4A(V, W)wqw,+wavy) .

On the other side, transvecting (6.39) with ¢% and taking account of (2.5)~
(2.13), we obtain

(6.45) (Am—1)(Ape@o’+ Aaeps’)=—0" {Asa(Ace Ap*)+ Aun( Ace Ac}
Vo {ApeW —(Acett*)Py"} — Vo { Aget0® —(Aceu) o’}
Fwa {Apev +(Acett)0} +wy {Agev*+(Aceu)0,}
from which, multiplying A(U, U) and substituting (6.44),
(6.46) 2(2m—1)A(U, U)X Apepo’+ Ane®s®)
=AU, U){(Aeev)wy—(Aeew)vp+(ApetIWo—(Ape)va}

—4{AU, U)— AW, W)} {(Agev®)wp+(Apev)wa}
—4{AWV, V)= AU, U} {(Agew)vp+(ApewIva}
+AWU, U){uag(Acett®)Po*+up( Acett®)pa’t —2AU, U) AV, W)(0avp—wow))
+ AU, UY{A(V, V)= AW, W)} (v wy+w,vs) .
Transvecting v®° to (6.46) and using (2.5)~(2.13) imply
AU, U)A(V, W)=0.
Thus transvecting u® to (6.46) gives
(4m—3)A(U, U)(Azeu™d,*=0,

and hence A(U, U){A,u*—A(U, U)u,} =0. Moreover, substituting this equa-
tion into (6.43), we also find

AU, UY{Ap*— AV, Vo3 =0, AU, U){Apw*— AW, W)w,} =0.
Accordingly (6.46) becomes
@m—D AU, U)X Aseda’+ Aaedo V=AU, U){AW, W)—AV, V)} (vswa+wova) ,
from which, transvecting v*w® we find
AU, UY{AW, W)—A(V,V)}=0,
and consequently
AU, UX Apetpo’+ Ages?)=0.
Similarly, using (6.39) and (6.42), we can derive

AU, UXAveda®+Aaes’)=0, AU, U){AV, V)—AW, W)} =0,
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647) AV, V)(Apeta®+Aachs)=0, AWV, V){AU, U)—A(W, W)} =0,
AW, W)(Apla'+ Aaely)=0, AW, W){AU, U)— AV, V)}=0.

Now, we consider the following three cases. Let P be an arbitrarily fixed

point of M.

Case L A(U,U),=0 and A(V,V),#0.

Case I. A(U,U),=0, A(V,V),=0 and AW, W),=0.
Case III. A(U, U),=AV,V),=AW, W),=0.

In Case I, we have from (6.47)

(Avepa’+ Aaehs)p=0,
from which, transvecting u’u® and ¢.v® respectively,
AU, W)p=0 and AU, V)p=0.
Hence, from (6.42) we obtain (A,.u%)p=0.
In Case II, we can similarly prove that (A,u®)p=0 by using (6.24) and

(6.47I)r.1 case III, using (6.42), at the point P

| A,ouif|2 Apqu=4 AU, V )v,+4AU, W)w,,

[ Acev’ll* Apav*=4 AU, V Yuy +4AV, W)w,,

| Acew?l|? Apgw®*=4AU, W)u,+4AV, W)v, .

Suppose that A(U, V)p+#0. Then we have [[A..u’|’,=4 and ||A.v¢|*,=4, and
consequently

A=A, Vv, + AU, Wiw,, A=A, Vuy+ AV, W)w,,
[ Acerw?||* Apgw*=4 AU, W)up+4 AV, W)v,

at that point P. Substituting these relations into (6.41) and transvecting 6%,
we can easily see that 4m—1)A(U, V)p=0 because of | A..u|?,=4. In contra-
dicts the assumption A(U, V)p+0. Hence A(U, V)p=0 and similarly AU, W)p
=0 will be obtained.

Summing up the results obtained in these Cases [,II and IIIl, we can say
that if there exists a point PEM such that A(U, V)p=0, then (A,.u%)p=0. On
the other hand, (6.47) implies that at the point P satisfying A(U, U)p=0 at least
one of A(V,V) and AW, W), say A(V,V), is zero. Then (4,v%)pr=0. Trans-
vecting w®° to (6.45) and taking account of (A4,.4%)p=0 and (A, =0, we have
A(W, W)p=0 and consequently (A,,w®)p=0. Summing up, if we put S={Ps M|
(AvePa’+ Aeep?)p#0}, then we have

(6.48) Agut=0, A =0, Agew=0 on S,

since (6.47) implies A(U, U)=0 on S. As was proved in section 6, (6.34) with
2=0 implies (6.35) with A=0. Thus, (6.48) implies (6.35) with 1=0, that is,
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vbwa—'wbva—¢0a-AbeAadqsde:O on S,
from which, transvecting A.% we have
— % ApeAggALt=Acepy® on S.

Hence, from (6.45) we have A,.@.°+ Aq0,°=0 on S, and consequently the set
S should be void. Therefore, the equation A+ A.$,*=0 holds identically
in M. Similarly, using (6.42) and (6.47), we obtain

Abe¢ae+Aae¢be:O ’ Abe¢ae+ Aaegbbe:() ’ Abeaae"i_Aaeebe:O )

which completes the proof of Lemma 6.4.
Thus, joining Theorem 2, Lemmas 6.2, 6.3 and 6.4, we have

THEOREM 9. Let M be a real hypersurface of QP(m) and n: M—M the
submersion which 1s compatible with the Hopf fibration S*™*—QP(m). Then the
following conditions (1)~(5) are equiwvalent to each other:

(1) The second fundamental tensor of M 1s parallel.

(2) The induced almost contact 3-structure in M 1s normal.

(3) The induced almost contact 3-structure tensors {p, ¢, 0} n M commute
with its second fundamental tensor.

(4) The square of the length of the derwatwe of the second fundamental
tensor in M 1s equal to a constant 24(m—1).

(5) The global tensor field X, defined by (1.6) vanishes.

§7. Characterizations of hypersurfaces M¢ (a,b) in QP(m)

Before we state our main results we should explain model subspaces which
will appear in our theorems. We denote by S*?**(a) the hypersphere of radius
a centered at the origin in Q?*'. If we identify Q?*?*? with the product space
QP*1x Q% then, taking spheres S*?*%(qa) in Q?*' and S*?™(b) in Q?*', we con-
sider the product space MY ,(a, b)=S*?*¥(a)x S*¢**(b), which is naturally consi-
dered as a submanifold in Q?*%*2, When a®+b®=1, MY ,(a, b) is a hypersurface
in S*PrerO(NCQP*I*E, Thus, if a*+b%=1, for any portion (p, ¢) of an integer
m—1 such that p+g=m—1, p=0, ¢=0, M¢ (a,b) may be considered as a real
hypersurface of S*"**(1)C@Q™"'. Considering the Hopf fibering #: S*"*(1)—
QP(m), we put M$ (a, b)=#(MS,,(a,b)), which gives an example for submani-
folds satisfying the commutative diagram shown in the previous section. We
are now going to prove

THEOREM 10. Let M be a complete real hypersurface of QP(m). Suppose
one of the following conditions (1), (2) and (3) which are equwalent to each other
is valid :

(1) The induced almost contact 3-structure in M 1s normal.

(2) The derwatwe of the second fundamental tensor in M has constant

norm 24(m—1).
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(3) The global tensor field ¥, defined by (1.6) vanmishes.
Then M=M$,, (a,b) for some portion (p,q) of m—1 and some a, b such that
a*+b°=1.

However in order to prove this theorem we need the following Lemmas
7.1 and 7.2.

LEMMA 7.1. Assume the relations
Abe¢ae+Aae¢be:O ’ Abe¢ae+Aae¢be:0 ’ Abeaae—]_Aaeebe:O

are valid. Then the second fundamental tensor A of M has exactly two
eigenvalues whose multiplicities are 4p+3 and 4q+3 respectwely, where p+qg=
m—ly P.Z_O, qg(l

Proof. As shown in Lemma 6.3 the assumption implies
(7.1) AﬁrAaT:/IAﬁa—}_gﬂa ’

where 1 is constant defined by A=A,,u"u® Denoting by p the eigenvalue
corresponding to an eigenvector of A,°, the equation (7.1) implies p*—2p—1
=0. Consequently A,° has exactly two eigenvalues p,=(A++/A*+4)/2 and
0:=(A—+/2*+4)/2. On the other hand, transvecting (7.1) with &% %% and ("
and using (6.23), we have respectively

Agur=2us+&s,  Agv’=Mstns,  Azw=Aws+{s,
from which, taking account of p,*=4p,+1,
Ao+ =p(o’+E7), Ao +n")=pi(p’+7P),
AL (pw +L")=pi(pswP 7).

Therefore p,u"+£&°, p,v°+7* and p,w*+{° which will be denoted by e e
and e," respectively, are eigenvectors of A, corresponding to p,, where e
¢, and ¢, are mutually orthogonal because of (6.25). Assume there exists
another eigenvector ¢, of A,? corresponding to p,. Suppose e,” is orthogonal
to ¢,% ¢," and ¢;°. Then we find

(7.2)  pi(ua+(€atsD=0,  p1i(vees)+(1.6,)=0,  pi(wae,)+(e)=0.
On the other side, taking account of (6.23) and A fe,*=p,e,% we get
(7.3) (Ul —0:1(640,)=0, (Va0 )—p1(7265)=0,  (Waes,*)—p:(L.,)=0.
Since p,*+1+0, (7.2) and (7.3) give
(7.4) Ugls " =V,0,5=Wae, =0,  £.0,=1,0,"=,,=0.
Moreover, by means of (6.25), (6.31) and

bLE=¢,"E?,, DLE=¢,"EP,, 0. E%=0,°E®, ,
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our assumption implies
Aﬁi’¢ar+‘4ar¢ﬁr:0 ’ Aﬁr¢aT+Aa7’¢ﬁr:0 ) Aﬁrear-i_Aara@r:O »
from which, taking account of skew-symmetry of ¢z, ¢s, and 8, we find
Arﬁ(¢are4a>:pl(¢aﬁe4a) ’ ATﬁ(gbare«la):tol(gbaﬁ&ia) s Ar19(0a784a):p1(0aﬁe4a) .

Thus ¢,%¢,% ¢.%¢,* and 0,¢,” are also eigenvectors of A,° corresponding to p,
which are mutually orthogonal and also orthogonal to ¢,9 ¢,% ¢, and ¢, be-
cause of (7.4). Hence multiplicity of the eigenvalue p, is necessarily 4p+3 for
some integer p. Similarly we can prove that multiplicity of p, is 4¢3, where
g=m+1—p.
By means of Lemma 7.1 and F,A4,°=0 the eigenspaces corresponding to p, and
0. define respectively (4p43)- and (4¢g+3)-dimensional distributions D,, and
D,, over M which are both integrable and parallel. Moreover each integral
manifold of D, is totally geodesic in M and so is each integral manifold of
DP

Let {F, G H} be the natural quaternionic Kaehlerian structure of ™!
whose numer1ca1 components (F B, G AL H A2} are given by (3. 9) Denoting by
B,* and B,* the differentials of the isometric immersions 1,: M(CS*™*)cC Q™+
and i,: : S Q™ in terms of local coordinates respectively, we can see that
B, A=B,B.*. Accordingly the vector N*=N*B.4 and the position vector N4
of S*™** can be chosen as unit normals for the immersion :; and then (6.21)
implies

FABgaA:¢aﬁ§ﬁﬁ+uaﬁB+EaNB:
(7.5) G 2B A= LB P40, NP +7,N®,
A ,2B,A=0,PB#+w NP+ N®.
and
Fo' (o NP+ N?)=—(ou+89B.*,  Fy'(00"+N")=—(oau+£9B,%,
(76) Gut(p, NP+ N?)=—(p™+7)BA,  Cp(pulVP+ N®)=—(pw "+ 9B 4,
A0, NP+ N?)=—(p,w"+()Bo",  Hy*(0.No+N?)=—(p,w*+ LB,
In this case the equations of Gauss and Weingarten are given by
7ﬁ§aA=AﬁaﬁA+gﬁaN“,

(7.7) _ . ~ _ ~
VﬁNA:__AﬂOBaA’ VﬂNA:—BﬁA.

If we put qA-q”’ﬁ 4 for an eigenvector ¢* of A%, then the direct sums

{34]¢* eDol}@{plN“—l—N“}* and {q | g% erz}ea{pzNA—l—NA}* are both invariant

under the actions of F, G and H because of (7.5) and (7.6), where {plN“‘ + N4} *

is the linear closure of the set {p,N“+N“} Moreover we can verify from
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(7.7) that q°¥ (p,N4+N4)=0, ¢“D,, and PV (0. N4+N4)=0, p*€D, because
p1p:=—1. Therefore the maximal integral manifolds M, of D, and M,, of
D,, can be considered as real hypersurfaces in Q**' and in Q?*' respectively.
Now we can easily prove

LEMMA 7.2. The M, and M,, are both totally umbilical in Q™.

Proof of Theorem 10. Combining Theorem 9, Lemma 7.1 and Lemma 7.2
implies immediately the theorem.
We shall next prove

THEOREM 11. Let M be a complete real hypersurface in QP(m) whose second
fundamental tensor Ay, 1S of the form

(7.8) Abazﬂgba—(ubua+Ubva+wbwa) ’
@ being a differentiable function. Then M:M%_m(:/l?, :/1—7)

Proof. First by using (2.3)~(2.13) we can easily verify that (7.8) gives
Abe¢ae+Aae¢be:O ’ Abe¢ae+ Aaegbbe:O ) Abeﬁae'}'Aaeﬁbe:O .

Since =1 which is a consequence of Theorem 4 and c¢=4, A,/ has exactly
two eigenvalues 1 and —1 whose multiplicities are 4m—1 and 3 respectively
because of Lemma 6.1. Thus by the same way as in the proof of Theorem 10
we can complete the proof.

Combining Theorem 6 and Theorem 11, we have

THEOREM 12. Let M be a compact real hypersurface in QP(m). If the
second fundamental tensor A, is semi-definite and the mean curvature B con-

stant and if Ay A =4m—1), then M=M$_,4(<f, —=).
Combining Theorem 7 and Theorem 11, we have

THEROEM 13. Let M be a compact real hypersurface in QP(m). If the
second fundamental tensor Ay, 1s semi-definite. the mean curvature B constant

and BS(m—47, then M=M3 (5 5).-

Combining Theorem 8 and Theorem 10, we have

THEOREM 14. Let M be a compact and orientable real hypersurface in

QP(m). If
fM{12(M~1)+B(A(U, U)+ AV, V)+AW, W))—3A4,. A} 4120,

then M=M$ (a,b) for some portion (p,q) of m—1 and some a,b such that
a*+-b*=1.
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COROLLARY 15. Let M be a compact and orientable real hypersurface 1n

QP(m). If
12(m—1)+B(AU, U)+AV, V)+AW, W))—3A4,, A**=0
at each point of M. then M=MS$, (a,b), p+q=m—1, p=0,¢=0 and a*+b*=1.

COROLLARY 16. (See also Lawson [6]). Let M be a compact and orientable
mimmal real hypersurface in QP(m). If A, A" <4(m—1) at each pownt of M,
then M=MS$ (a,b), p+q=m—1, p=0,9=0 and a*+b*=1.
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