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ALMOST HERMITIAN MANIFOLDS AND THE BOCHNER

CURVATURE TENSOR

BY LIEVEN VANHECKE AND KENTARO YANO

In [2] S. Bochner defined the Bochner curvature tensor on a Kahler
manifold (see also [22]). This tensor is constructed formally by modifying
WeyΓs conformal curvature tensor. After this introduction many geometers
have been concerned with Bochner's tensor and in particular they studied
Kahler manifolds with vanishing Bochner curvature tensor. They give neces-
sary and sufficient conditions, look for the geometric meaning of this tensor
and obtain interesting theorems concerning submanifolds of such Kahler mani-
folds.

The first author of this paper has generalized the notion of the Bochner
curvature tensor to the class of almost Hermitian manifolds and he showed
[18] that some of the theorems for Kahler manifolds remain valid for a more
general class.

The main purpose of the present paper is to continue this work.

1. Let (M,g,J) be a C°° manifold which is almost Hermitian, that is, the
tangent bundle has an almost complex structure / and a Riemannian metric g
such that g(JX>JY)=g{X,Y) for all X,Ye=3C(M). X(M) denotes the Lie
algebra of C°° vector fields on M. If 7 is the Riemannian connection, then the
curvature tensor R is given by

R(X,Y)=ίFx,FY2-Pίx,yΊ.

In [2] S. Bochner introduced a Kahler analogue of the Weyl conformal
curvature tensor and in [18] this notion is extended by the following defini-
tion.

DEFINITION. Let (M2n,g,J) be an almost Hermitian manifold of complex
dimension n. If Q, resp. R, denotes the Ricci operator, resp. the scalar curva-
ture, then the Bochner curvature tensor B of type (1, 3) on vector fields X, Y, Z
of 2C(M) is given by

B(X, Y)Z=R(X, Y)Z~2n^H {g(Y' Z^X~^X> Z)Y+§(QY, Z)X
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ALMOST HERMITIAN MANIFOLDS 11

-g(X, Z)QY+g{JY, Z)QJX-g{QJX, Z)JY+g(QJY, Z)JX

-g(JX, Z)QJY-2g(JX, QY)JZ-2g{JX, Y)QJZ} (1)

-g(JX,Z)JY-2gUX,Y)JZ}.

For Kahler manifolds S. Tachibana [12] obtained an interesting expres-
sion for the Bochner curvature tensor and it is easy to prove the analogous
one in the more general case.

THEOREM 1. The expression (1) is equivalent to the following:

B(X, Y, Z, W)=R{X, Y, Z, W)+L(X, W)g(Y, Z)-L(X, Z)g(Y, W)

+L(Y, Z)g{X, W)-L(Y, W)g{X, Z)+L{JX, W)g{JY, Z)
(2)

-L{JX, Z)g(JY, W)+L{JY, Z)g(JX, W)-L{]Y, W)g(JX, Z)

-2L(JX, Y)g(JZ, W)-2L{JZ, W)g(JX, Y)

where

We notice that the Weyl conformal curvature tensor on a Riemannian
manifold Mp is defined by

, Y, Z, W)=R(X, Y, Z, W)+C(X, W)g{Y, Z)-C(X, Z)g(Y, W)

+C(Y, Z)g{X, W)-C(Y, W)g{X, Z),

C{X> Y^~lh8m> F ) + 2(/>lXf>2) 8iX' Y)

where

and X, Y, Z, W<Ξ3£(MP). If the dimension p>3 then Mp is conformally flat if
C(X, Y, Z, W)=Q for all X, Y, Z, WZΞ3C{MP).

2. Curvature identities are a key to understanding the geometry of some
classes of almost Hermitian manifolds [4], [5]. We consider here the following
identities:

(1) R(X, Y} Z} W)=R(X, YJZJW)
(2) R(X, Y, Z, W)=R(JX,JY, Z, W)+R(JX, Y, JZ, W)+R(JX, Yy ZJW)
(3) R(X, Y, Z, W)=R{JX, JY, JZ, JW).

For the class JIM of almost Hermitian manifolds, let JίSίx be the subclass of
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manifolds whose curvature operator satisfies (i). It is easy to see that

Note that JLMX means para-Kάhler [9] or F-space [10] and the manifolds of
the class JίSίz are also called RK-manifolds [16].

The following theorems are proved in [18] :

THEOREM 2. Let M be an almost Hermitian manifold with vanishing Bochner
curvature tensor. Then, the Ricci operator is complex linear (i.e. QJ—JQ) if and
only if M^JLJζx.

THEOREM 3. Let Mp (p>3) be a conformally flat almost Hermitian manifold.
Then, the Ricci operator is complex linear if and only if Mp^JίM2.

Using (3) and (5) we have from these results:

THEOREM 4. Let M be an almost Hermitian manifold with vanishing
Bochner curvature tensor. Then M^JίM1 if and only if L' is complex linear,
where

L(X, Y)=g(L'X, Y)

for X, Y*Ξ3£(M).

THERREM 5. Let Mp (p>3) be a conformally flat almost Hermitian mani-
fold. Then MP<BJIJ{2 if and only if C is complex linear, where

C(X, Y)=g(C'X, Y)

for X, Y^DC(Mp).

We notice that Z/(resρ. C) is complex linear is equivalent to

L(X, Y)=L(JXJY) (resp. C(X, Y)=C(JX,JY))

for X, Y(ΞDC(M) and this means that L(resρ. C) is a hybrid (0, 2)-tensor [20].

3. Let N be a submanifold of M. Then we have

P , Y).

Here and in the sequel ~ refers always to the almost Hermitian manifold M.
VXY denotes the component of PXY tangent to N and X, Y<E3C(N). σ is a
symmetric tensor field of degree 2 with values in DC(N)1. We have further

PZN=-ANX+DZN,

,vhere N is a normal vector field. — ANX (resp. DXN) denotes the tangential
(resp. normal) component of PXN. We have further
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g(N, σ(X, Y))=g(ANX, Y)=g(X, ANY),

where g denotes also the induced metric, σ and A are called both the second
fundamental form.

If the second fundamental form σ vanishes identically, N is called a totally
geodesic submanifold and N is said to be totally umbilical if

σ(X,Y)=g(X,Y)H or equivalent^ AN=-y (trace AN)I, (6)

X, Y^2C(N). H-—-trace a is the mean curvature vector of N in M and p is

the dimension of N. The submanifold is minimal if H—0.
If R(X, Y) denotes the curvature transformation of N, then we have the

following equation of Gauss

R(X, Y, Z, W) = R(X, Y, Z, W)+g{σ(X, Z), σ(Y, W)} -g{σ(X, W), σ(Y, Z)} (7)

for X,Y,Z,
A subspace T' of TX(M), I G M , is holomorphic if JT'QT' and antiholomor-

phic (or totally real) if JT'^T'1 where T/L is the orthogonal space of V in
TX(M). A submanifold iV of M is a holomorphic (resp. antiholomorphic)
submanifold if each tangent space is holomorphic (resp. antiholomorphic).

A holomorphic submanifold Λ̂  is called a σ-submanifold if σ is complex
bilinear, i.e.

σ(JX, Y)=σ(X,JY)=Jσ(X, Y) (8)

for X, Y^DC(N) [17]. It is easy to check that a σ-manιfold is always minimal.

4. Schouten proved the following

LEMMA 6 [11]. Let Nv be a C°° Riemannian manifold of dimension p>3. Then
Np is conformally flat if and only if R(X, Y, Z, W)=Q for arbitrary orthogonal
X, Y,Z,, Y,Z,

R.S. Kulkarni has given another characterization of conformally flat mani-
folds using sectional curvatures:

LEMMA 7 [7]. Let Np,p^i,be a C°° Riemannian manifold. Then Np is
conformally flat if and only if

κ(x, Y)+κ(z, w)=κ(x, w)+κ(y, z) (9)

for every quadruple of orthonormal X, Y, Z, W<^2C(NP), K(X, Y) denoting the
sectional curvature of the 2-plane (X, Y).

Using Lemma 6 the first author proved in [18] the following generaliza-
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tion of a theorem of D. Blair [1], K. Yano and S. Sawaki [21], [23], [24], [25].

THEOREM 8. Let Np,p^4, be a totally umbilical antiholomorphic submani-
fold of an almost Hermitian manifold M2n with vanishing Bochner curvature
tensor B. Then Np is conformally flat.

We give now a proof using Lemma 7.
Since Np is an antiholomorphic totally umbilical submanifold we obtain

from (2), (6) and (7) for a quadruple of orthonormal X, Y, Z, W^3C(NP):

K(X, Y)=-L(X, X)-L(Y, Y)+g(H, H),

K(Z, W)=-L(Z,Z)-L(W, W)+g(H,H)t

K{X, W)=-L(X, X)-L(W, W)+g(H, H),

K(Y, Z)=-L(Y, Y)-L(Z} Z)+g(H, H).

The theorem follows now at once using Lemma 7.

It follows from (2) and (7) for a quadruple of orthogonal X, Y, Z, W<EΞDC(NP) :

R(X, Y, Z, W)=g{σ(X, W), σ(Y, Z)} -g{σ(X, Z), σ(Y, W)} (10)

and using Lemma 6 we obtain

THEOREM 9. Let Np,p^i, be an antiholomorphic submanifold of an almost
Hermitian manifold M2n with vanishing Bochner curvature tensor. Then Np is
conformally flat if and only if for arbitrary orthogonal X, Y, Z,

g{σ(X, W), σ(Y, Z)} -g{σ(X, Z), σ(Y, W)} =0 . (11)

5. In what follows we give some other necessary and sufficient conditions
for B=0. First we generalize a result of K. Yano and B.-Y. Chen [3], [21].

THEOREM 10. Let M2n be an almost Hermitian manifold such that M2n^
JLMX. In order that the Bochner curvature tensor of M2n vanishes, it is neces-
sary and sufficient that there exists a (unique) hybrid quadratic from Q such that
the holomorphic sectional curvature H(σ) of the holomorphic plane σ is the
restriction of Q to a, i.e. H(σ)=trace Q/σ, the metric being also restricted to σ.

Proof. Suppose that the Bochner curvature tensor of M2n vanishes. Then
we get from (2) and Theorem 4 for the 2-plane σ defined by X and JX:

H(σ)=H(X)=R(XJX,JX, X)g(Xf Xy2=-8L(X, X)g(X, X)"1

and thus, if X is a unit vector:

H(σ)=Q(X,X)+QUX,JX)

with Q(X,X)=-4L(X,X). Hence H(σ) is the trace of the restriction of Q to
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σ.

Conversely, assume

H(σ)=-8L(X, X)g{X, X)'\ L{JXJY)=L{X} Y).

Then

R(X,JX,JX, X)=-8L(X, X)g(X, X). (12)

Now we substitute X by aX+bY with abφO. Using (12) we get, since M 2 n e

, Y, X, Y)=L(X, X)g(Y, Y)+L(Y, Y)g(X9 X)

-2L{Xy Y)g{Xy Y)+6L(X,JY)g(X,JY).

Linearizing and using the first Bianchi identity we obtain

R(X, Y, Z, W)=L{X, Z)g(Y, W)-L(X, W)g(Y, Z)+L(Y, W)g(X, Z)

-Uy, Z)g(X, W)-L(JX, W)g(JY, Z)+L(JX, Z)g(JY, W)
(13)

-L(JY, Z)g{JX, W)+L{JY, W)g{JY, Z)

+2L{JX, Y)g(JZ, W)+2L(JZ, W)g(JX, Y).

Now, we get from this result

g(QX, Y)=-(2n+i)L{X, F ) - Σ L(Et, Et)g{X, W) (14)

and this implies

{Ei} is an orthonormal frame field. Substituting this in (14) we have

g(QX, Y)=-(2n+4)L(X, γ)+-^JL^g(X, Y)

and thus

^ 8 { Q X F ) +

Using this expression in (12) we see from (2) that B=0.

With the help of this characterization we give now an extension of a result
of S. Yamaguchi and S. Sato [19]. This theorem includes also a result of K.
Yano and S. Sawaki [23] and the first author [18].

THEOREM 11. Let M2n be an almost Hermitian manifold of the class JLSix
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with vanishing Bochner curvature tensor B and let Mp be a σ-submanifold. Then
B=0 if Mp is totally geodesic.

Proof. First we notice that, since Mp is a σ-submanifold, (7) and (8)
implies MV^JLMX. Further, it follows also from (7)

H(σ)=H(σ).

Suppose B=0. Then using Theorem 10, we get

H(σ)=-8Σ(X,X),

for a unit vector X and this proves the theorem.

6. Now we prove a theorem which generalizes results of K. Yano and S.
Sawaki [23], T. Kashiwada [6], N. Ogitsu and K. Iwasaki [8].

THEOREM 12. Let M2n, n^4, be an almost Hermihan manifold of the class
<JlJClm Then the following statements are equivalent:

( i ) B=0;
(ii) H(X) + H(Y)=8K(X, Y) where X and Y form an arbitrary antiholomor-

phic orthonormal pair)
(iii) K(X, Y)=K(XJY) where X and Y are as in (ii)
(iv) R(X, Y, Z, W)=0 for any antiholomorphic 4-plane spanned by the

orthogonal X} Y,Z,W;
(v) for every orthonormal Xy Y,Z, W spanning an antiholomorphic 4-plane

K(X, Y)+K(Z, W)=K(X, W)+K{Y, Z)

(vi) for each holomorphic 8-plane <VQTx(M2n), K(X,Y)+K(Z,W) is inde-
pendent of the orthonormal basis {X, Y,Z, WJXJYJZJW) of CU.

We prove the equivalence of (i) and (iv). For the other characterizations
we refer to [6], [8] because the proofs in these papers are still valid in our
case since M2nGJUClm

Assume X, Y, Z and W are orthogonal and span an antiholomorphic 4-
plane. If B=0, then (2) implies at once R(X, Y, Z, W)=0.

Conversely, suppose

R(X, Z, Y, W)=0

for orthogonal X, Y, Z, W spanning an antiholomorphic 4-plane. Replacing Z
resp. W by aZ+bW resp. — bZ+aW with abΦO, we get

R(Z, X, Z, Y)=R(W, X, W, Y)
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and with W=JZ we have

R(Z,X,Z,Y)=RVZ,X,JZ,Y).

Now, we replace X resp. Y by aX+bY resp. — bX+aY. This gives

R(Zy X, Z, X)-R(Z, Y, Z, Y)=R(JZ, XJZy X)-R(JZy YJZ, Y).

Thus, since M%n^JlM1\

R(Z,JX, Z,JX)-R{Zy Y, Z, Y)=R(Z, Xy Z, X)-R(JZy Y,JZy Y).

These two expressions give

R(Z,Y,Z,Y)=R(JZ,Y,JZ,Y)

where Y and Z are orthogonal and span an antiholomorphic 2-plane.

Now we replace Z by aZ-\-bY and Y by —bZ+aY. A straightforward
calculation, using M2n^JίMly gives

R(ZyJZ,JZy Z)+R(YyJYyJYy Y)=SR(Yy Z, Z, Y). (15)

Let {EiyJEi} be a local orthonormal frame field. Then (15) implies

n n

Σ
iR(F TF ΪF F}-\-R(F JF TF FW—8 V R(F F F FΛ

or

Thus
n

H{.E})^^K{EUE})

= 4 Σ {K(EU EJ+KiEtJEJ-WEt)} .

Now

g(QEt, E,)= Σ {K{EU E})+K(Et, /£,)}

and so we have
71

This implies
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R=(n+ΐ) ΈH(Ei)

and thus

We obtain thus for a unit vector X:

and since Q is complex linear the theorem follows at once from Theorem 10.

7. Finally we give some other properties for the Bochner curvature tensor
and some of them show again that this tensor seems to be the complex analo-
gue of the Weyl conformal curvature tensor.

The following definition is well-known.

DEFINITION.

a. A tensor T of type (0, 4) on a Riemannian manifold (M, g) is a curvature-
like tensor if for any X, Y, Z, ί fGl(M) we have

( i ) T(X, Y, Z, W)=-T(Y, X, Z, W)
(ii) T(X, Y, Zy W)=T(Z, W, X, Y)
(iii) T(X, Y, Z, W)+T(Y, Z, X, W)+T(Z, X, Y, W)=0.
b. // (M,g,J) is an almost Hermitian manifold, then the (0, 4)-tensor T is

a K-curvature-like tensor if it is a curvature-like tensor and if for any X, Y, Z, W
e l ( M ) we have

T{X, Y, Z, W)=T(X, YJZJW).

Considering the Bochner curvature tensor on an almost Hermitian manifold
it is easy to prove

THEOREM 13. The Bochner curvature tensor on an almost Hermitian mani-

fold M is a curvature-like tensor if and only if L is a hybrid tensor of type (0,

2).

THEOREM 14. The Bochner curvature tensor on an almost Hermitian mani-
fold M is a K-curvature-like tensor if and only if L is a hybrid tensor of type
(0,2) and M<^JLMX.

Notice that M^.JίM1 means that R is a /ί-curvature-like tensor.
If B is a curvature-like tensor, then we can consider the corresponding

sectional curvature KB(σ) for the 2-ρlane σ defined by X and Y. We have

B(X, Y, Y, X)
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If B is a iί-curvature-like tensor, then we have also the holomorphic sectional
curvature HB(X) and the holomorphic bisectional curvature HB(X, Y):

HB(X)=B(X, JX, JX, X)g(X, Z)- 2 ,

HB(X, Y)=B{X,JX,JY, Y)g(X, XYW, YY\

Then we have the following theorem which is a special case of a more general
result [13].

THEOREM 15. // B is a K-curvature-like tensor with pointwise constant asso-
ciated holomorphic sectional curvature and if the manifold M2n (n>l) is con-
nected, then the holomorphic sectional curvature is a global constant a and

B{X, Y, Z, w)=-^{g(X, W)g{Y, Z)-g{X, Z)g(Y, W)

-g{X,JZ)g{Y,]W)+g{X,JW)g{Y,JZ)-2g{X, JY)g(ZJW)} .

The following theorems and corollary are analogous results as those for the
Weyl conformal curvature tensor [7]. Therefore we notice that if B is a
curvature-like tensor, we may consider the corresponding Ricci curvature
structure RicB and scalar curvature RB. Then it is easy to check

THEOREM 16. // B is a curvature-like tensor, then RιcB=0.

COROLLARY 17. // B is a curvature-like tensor, then RB=0.

Further we have

THEOREM 18. Let B be a K-curvature-like tensor with pointwise constant
holomorphic sectional curvature. Then B—0.

Proof. Suppose HB(X)=a where a is a function on the manifold M2n with
dimension 2n. Then B is given by (16) and this implies

RB=n(n+ΐ)a.

So, Corrollary 17 implies α=0 and this proves the theorem.

Let {Ei}JEi, f=l, m m,n} be a local frame field of the almost Hermitian mani-
fold M2n which belongs to the class JlMx. Further let σt be the holomorphic
2-planes defined by Et and let B be a X-curvature-like tensor. Then we obtain
after some calculations

"»v»- n+2

or
n—2 ττ. . 8(w—1) , v . R



20 LIEVEN VANHECKE AND KENTARO YANO

where p(σλ) is the mean curvature for the holomorphic 2-ρlane σx [13], [14].
Now suppose n>2 and B=0. Then

(n-2)H(σ1)=S(n-l)p(σ1)- R

n+1 '
This means that, if n>2, the holomorphic mean curvature is pointwise constant
if and only if the holomorphic sectional curvature is pointwise constant. This
is a special case of a theorem for manifolds of JLMX [15] which is a generali-
zation of well-known theorems for Kahler manifolds [13], [14]. Further it is
also known that a manifold of the class JLSCX with nonvanishing pointwise
constant holomorphic sectional curvature is a complex space form [19]. Hence
we have

THEOREM 15. Let M2n, n>2, be a manifold of the class JlMι with vanishing
Bochner curvature tensor. Then the holomorphic sectional curvature is pointwise
constant if and only if the mean curvature for holomorphic 2-planes is (point-
wise) constant. In this case, if the sectional curvature is nonzero, M2n is a com-
plex space form.

From the general theorem it is known that B=0 may be dropped as hypothe-
sis. Then, it is a consequence from the theorem itself.

It follows from (17) and Theorem 18:

THEOREM 16. Let M4 be an almost Hermitian manifold with K-curvature-
like Bocher curvature tensor B. Then, B=0 if and only if the holomorphic mean
curvature for 2-planes is (pointwise) constant.
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