TWO REMARKS ON H.WEYL'S THEOREMS.
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This note consists of two independent
parts. In §1 we concern with the
paper: H.Weyl, .lmost periodic invariant
vector sets ir a metric vector space,
Amer., J, Lath., 71 (1049) (W. I)e In
this paper the whole theory was established
upon 4 axioms. First the Parseval equation
was »roved by agswilng Axiloms I,1II1,III and
then tre approximatlion theorem was proved
by assuwring a further Axlom IV. We shall
prove nere first the approximation theorem
without Axiom IV and then we shall obtailn
‘the Parseval equation. In §2 we shall
give s simple prcof of Lemma 2 of the
naper: H.Weyl, The method of orthogonal
prcjection in potentlal theory, Duke Math.
Jo, 7 (1940) (W.ZII),

8l. We start from the following
axioms:

Axiom I (W.I, p.178) Let 2. be a com-
plex vector space snd o ={s} be a group
of linear transformations on 3, : f— f'=
sfe

Axiom III (WeI, pe180) 2. is a Banach
apace w.r.ts the norm £l 4 and s € o
is amisometric transformation on 5, :
I£f1 = 1Isfl .

fe ), is caliled almost periodic (a.p.)
1f {sf; seo} 1s a totally Qounded sub-
set of 3 . We denote by 2. the
smallest invariant closéd subspace of S

which contains f. Clearly 3¢ 1s the
closare of all the elements * 2. (s, f)
(finite sum).

Let "3 s — A(s) = [w (s)] be
a matric representation of ¢ ° with

degree he We call @& = (g,,.4458,)
(g, € 2 ) an AL -row st *

(1) s(gl,..o,g‘)=(g1,...,g‘)ﬂ(s), seq

Especially ¢ 1is called a primitive row
if 2 1is a unitary irreducible represcn-
tation of o .

Theorem lo (Theorem of strong approxi-
mation, W.I, p.199) “Let £ € 5>, be a.p.
Tren £ can be approximated werete the norm
with arbitrary accuracy by finite sums of
the elements of primitive rows.

fie shall first notice that the function
Fye(s) = sf with domein ¢ and with range
in J 1is a.p. in the sense of Bochner-
Neumann [17 (B.H,) if and only if feJ.
is a.p. We denote 1ts mean value by

fsf. It is easily proved (W.I, p.182) that

‘every f'eZ; 13 also aspo If £ 15 m.pe

Now let f &, be a.p. and )" (s) ve
a unitary irreducible representation of o
with degree n, o We call 5:‘} defined by

A — A
(2) g —ftcg-i(t)(tf)

4
=J;w;(t“)(tf) (1,5 = 1,00.,n, )

the primitive expar}\sion coefficient
(Pe@ece) Of £o go belongs to >° .
Theorem 1 follows then from Lemma 1,”2:

Lemma 1. "Let £€3 be a.p. and g
be p.ecce of f. Then 7

A
(3)  go=1(gl, »eers8l, ) (1=1,.00pn,)
are primitive rows.’
Proof., Let F(s) and @(s) be a.pe
functions taking values in 5 and com-

plex numbers prespectively, We define
F X g(s) = z g(t)F(st =" ) =ft9’(t's)F(t).

We have then
A A -1 - A ¢
20 0= W: . =3
g5 =S oo N, < @i
Hence we have
A N -1
= W.. =R
S8} J; it) st 0)=F, x
= ftw%’(t'ls)(tf)
_ n, A -1 A
= Za_.,‘ff“’eﬂ‘t )(£2)) W (s)
- Ay PN A
- k:(g A wiJ (S),
Lemma 2. “Let £ €J, be a.p. Then f
can be approximated we.r.t., the norm with

arbitrary accuracy by finite sums of
DPe€eCe of £o”

A

f (S)

QeCele

Proof. By Theorem 22 of B.N. we can
find for any assigned & >0 a special
weight function ¢ = 2wl ()
such that [sf—F, x 9ls)| 2 ¢ Nsea).
If we put s=1, then F, x ¢(1)

I;—-Zm Fox wid)= 22-.1.; 8%
snce we have -~ >0
Ci_necdo ’:F Z 7"‘4 g)z’ < v ’



We add now

Lemma 3, “ The Pe€oCo g~ of sf is a
linear combination of the p.esc.

of f, {g“;}

Proof.

A = A - = /\ &
g fe“’a @ esh)= [ whre)
w‘.g(%w‘; e th)
= Z u);\ﬂ (s)gzj ,

Since any f eZ can be approximated
by 2. 7,(s.f) we can prove the following
theorem from ‘Lemma 33

qe€ede

Theorem 2.  Any f 62 can be approxi-
mated with arbitrary accuracy by linear
combinations of pe.esces Of £,

Now we assume further

Axiom II (WeI, po179) With any two
fsg € 2. there 1s associated a complex
number (f,g) with the usual properties of
the inner product, and

and 1 f1=4/(FF) L Ifl

We don’t assume the completeness of
Z Weroto (1Y “.

(sf, sg)=(f,g),

Let ¢*~(g, -+, gh)end gFf
— *

= (gﬂ, : ,g{m ) be two primitive
rows, Then from the Schur’s lemma
follows tha.

) =0 for

A
(8. »8,, A

and

1

A
) - a:x(} S»}

(1,j = 1’...,nA).

A A
(go(‘; 8 PJ

(Cfo WoeI, p.194). Hence we can define
the inner product of two primitive rows

¥i, %
(4) (9}, g;)_—_—f["

We consider now the primitive rows 3({‘
in Lemma 1, and we define -

A My R
o B ={Z e}
=1 /\"
Let m, be the rank of g s, then
m_ < n, .« We can take then

P
/’\) N
T 2% G

in 13’\

such that
A A
(fﬂ ’ /7 )zgﬁfj

Theorem 3. (Wel, P.196) Let fc.%
be a.p. There are at most a countsable
infinite set of p.eeCe g =+ O irom
each % take ¢

j&z‘.(kgl, ) kﬂ)\n,\>

es above. Then the countable system

(k’j:]-: EERS N Y.

(k=1,00.,m,)

A
hk‘; (k=lyeausm, s J=1lya00,n,)
forms a orthonormal system of Z, s 1leeo
for any f’e Z: the Parseval equatlon

(6) 1 -/\2;3 [ w.,,é 4"

holdse

Proof. From trle ineq“al*’ ty of Bessel
follows ol = {1l py l(kﬁ; fOr*rz0
If &> 0, we cen apply Theorém 2 for {o
so that we can chcose a linear combination

AN A A AN
of Do€eCe £ = Z J"J g‘g :Z(E@ kﬁé with
| £’ =g | <y& . Hence we have «£lf=gl
=

= - g lr<d s which is & contradic-
tion, g.e.de

2

We shall consicder then the characteri-
zation of in W.I. In the following
we fix an irreducible unitary representa-
tion (2" with degree r = n, and omit the
index X ., We corresponc “now to every
primitive row ¢, a vector

(7) o, = (g, £, &y, .

O, is called a hidden row if «,
and ¢, 1is called upright if (g“ , ?5
4:)'

= 0 for every hidden row 7y (elype
We define
A
(&) 4 = {QJ: ngl,"'/gd‘!)}gnezf; Lo }

Clearly we have

(9) iZ,Ac @A

Lemma 4. “ A necessary and sufficient
condition for a primitive row 2. ke
hidden is t‘nat (8ge o £7) =0 (=, 1)
for every £’/ € Z{— .

Proofe.

o, =0



= (8«; 5£)=0, i=l,.40, T
= (g, »90)=(sTt g, 1)
= 2 0. (g IR0
= (g, »f')=0 for every r'e Z;
(1=l,0005 7T );5q0e0ds
Prox Lemma 4 follows immediately

“ A
Lemma Do ir € s then is
uprights” 7 q 2

{
Lemma 6, ' If 4 1is upright, then
» A

%('e t:)/\ N
Proof. If 9, & Ty

compose 9_( suct that

s We can de-

9«#: 7’; "'97, ‘7[&*0/ Q'aré 5/\
(4, 42 =0

Since ¢, and are upright, so is

Yy Hence a,+7% and so (gpy of)F
0'for some i. 'Now take Ig, [ = 1 and
1(gs. »£) 1> &> 0. By Theorem 1 we can
choose h = 7 7585 € B  so that
[f -h|<g s Then’

0< & < l(g‘;“{)l
£1Gy f-m + 1, W £ E18p: 1= E

which is a contradiction. Hence we have
A

1= 400y T &

From (9), Lemma 5, Lemma 6 we have
A
“heorem 4. “We can characterize
in Theorem 3 as R
the upright (2> ~Yows.”

§2, We shall give here a simple proof
of the following Lemme of W.II, Let G
be an open set in 3-space, A function
¢(x) is called of class [, if @(x)
vanishes outside some compect subset G
of G and continuous with its derivatives
up to the second order,

Weyl s Lemma. “Let 7(x) be a mea-

surable function on G with [. 1% 0e[*<o0,
If 'q(x) satisfies the equatioﬁ

(10) fﬂy(x)AC(m =0

for every & (x) of class [, , then

there is a harmonic function "C‘(x:) which

is ”equal to Y (x) almost everywhere on
Ge

A or as the set of all

Proof. If M(x) is of class J*, i,e.
continuocus with 1lts derivatives up to the
second order, then An=0 follows from
(10) by the Green’s pormu,la.

low let ¢(x) be any measurable func-
tion which is integrable on every closed
sphere S(x,r) wit® centre x and with
radius r (S< G). Let G, be the set
of all the points x € G such that S(x,r)
< G, Then we defline

.
B Mg lfg 9Oty (15 l<5n2%)
N1 6% 5)

for xe€ Gy .« 1t is well known that if
@ (x) is measurable, then li_¢ is conti=
nuous; if P(x) is contiruous then li,
is of class C° anl *f  (@(x) is of clets
C" then N,¢9 Iz ~f class C%,

If B{(x)=0 on G = G* (G* Qompact)
take r < 9(G*, G°)a Since M(x +’y)
is measurable wer.te. two variables x,y
we can apply Fubini’s theorem:

{
* =Ta | * x)dxd
yéx Mr’l( VAL(R) dx ‘szlL\JM(;](f])A{() dy
i
= 'lef(fcf« N0<+y) A((f)dx‘)d]

=TSLJJ( f@*_, N85 Ce-)dx) dy = 0

Hence i, "(x) satisfies also the equa-
tion (11). Repeating tris process we
can conclude that

(12) 'Y]*(x) = Uyligke 7)(x)

also satisfles tre equation (11) in Gy g4,
Since 7M*(x) is of class C*¥, 7*(x) Is a
harmonic functicn on G »
YT+s+t

I(Iov)v we fix s and t, *Let us writs
N (x)=M N, n(x) and mi(x)=i, 7,(x),
By a weil known theorerr?xon thex 2érivative
of the indefinite integral we have

13 = 1 ,
(13) M, (<) zI}»T Mz’qz(f):lliz? "r’:(;c)
almost everywhere,

On the other hand the harmonic function
My (x) satisfies the relation

M, nF(x)= "]: (x) for every s> 0,



l.e. MM, 7,(x) =M, m,(x). Since Since ,{x) is continuous, %"(x)= 7(x)
everywhere on G Repeating this

M;M, '7(»x')=—1"—1— b method we have x+s+"‘fx3= N {x)=M,7(x) on
2)dyd | t +7
sk ’S;“S‘g, ]}(1 ,ﬂ(sv‘( I+ ) j 4 Gt‘*s"’t and "}*(x)*""‘](x) almost every-=
=M, M, n,(x) where on Gy s,. o Since we can take
‘ , x s 7 r+s+t arbitrarily small, lemma 2 is com=
follows from rfubini’s theorem, we have pletely proved,

M) = 1, m(x) = L M(x) = M ¥ (x)

for every r > 0, 8 > C, Hence we can
write M*(x) = % (x) witPQut index r

(*) Received June 4, 1949.

and of course m*{x)=1im vy (X)e S.Bochner-J, von Neumann (1731, Almost
Thus we have e periodic functions in a group II,

« Trans. Amer. lath. Soc., 37 (1935).
Nx) = ’V]L(x)

almcst everywhere on G v Tokyo Bunrika Daigaku.
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