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REMARK ON FOURIER COEFFICIENTS OF MODULAR FORMS
OF HALF INTEGRAL WEIGHT BELONGING TO
KOHNEN’S SPACES 1I

Hisasmn KojMA

Introduction

In [13], Waldspurger first found that the square of Fourier coefficients a(n) at
a square free integer n of modular forms f(z) =3 ,>, a(n)e[nz] of half integral
weight is essentially proportional to the central value of the zeta function at a
certain integer attached to the modular form F if f corresponds to F by the
Shimura correspondence ¥ and f is an eigen-function of Hecke operators.
Kohnen-Zagier [1], [3] determined explicitly the constant of the proportionality in
the case of modular forms belonging to Kohnen’s spaces S(ax41)/2(N, ) of weight
(2k +1)/2 and of square free level N with character y which is a subspace of
Sk+1)/2(4N, x1), where S(11)/2(4N, x;) means the space of modular cusp forms
of half integral weight given in [9]. Kohnen-Zagier [1] (resp. Kohnen [3]) treated
the case where N =1 (resp. N is an odd square free integer and y is the trivial
character of level N) (cf. Kojima [4] and [5]).

In [12], Shimura intended to generalize such formulas to the case of Hilbert
modular forms f of half integral weight and succeeded in obtaining many general
interesting formulas. Among these, some explicit and useful formulas about the
proportionality constant were formulated under assumptions that f satisfies the
multiplicity one theorem. For modular forms belonging to Kohnen’s spaces
S(2k+1)/2(N, %), Shimura [12] did not give the same explicit formula as that of
Kohnen and Zagier [1], [3].

In [6], we represented explicitly the ratio of the square of Fourier coefficients
a(n) at a fundamental discriminant »n of modular forms f(z) = Za(_l)knzoyl(4),n>0

a(n)elnz] of weight (2k 4+ 1)/2 belonging to the Kohnen’s space Spy.1y2(N,x) by
the central value of the zeta function of the modular form F which is the image
of f under the Shimura correspondence ¥, where y is any primitive character
modulo N and n is equal to 47 with a square free integer t satisfying 7 =
2,3(mod 4).

The purpose of this paper is to remove these conditions about y and # and to
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derive a generalization of results in [6] in the case where N is any odd integer, y is
an arbitrary primitive character modulo N and » is an arbitrary positive fun-
damental discriminant. Though the method of our proof is more complicated, it
is the same as that of [6]. To obtain our results we need to modify slightly its
method.

Section 0 is a preliminary section. In Section 1, we shall summarize some
results about Kohnen’s spaces, the Shimura correspondence, theta functions
and Hecke operators of Kohnen’s spaces. In Section 2, using these and the
assumption (1-12), we show that {(®(z,w;(z),g9(2w)> = C.L.(f)(z) + D.L.(f)|
U(4)(z) for a modular form f € S(at1y/2(N,x) with some constants C. and D,
where @(z,w;{z) is a theta function, g(w) is an element in Sy (N, x*) determined
by f under the Shimura correspondence ¥, U(4) is the operator given
by U(4) (X2, b(n)e[nz]) = 5.2, b(4n)e[nz] and L.(f)(z) = f(xz)t*. Moreover,
executing an explicit and complicate computation of the image W(f) of f under

the Shimura correspondence ¥, we shall verify that C; = a(n)é¢; and D, = a(n)é,
with a fundamental discriminant n, where ¢, and ¢, are explicitly calculable
constants. These computations are essential parts for our arguments and these
formulas play an important role for our later treatments. In Section 3, using
integral formulas of Section 2, the computation of the image of a product of
theta series and FEisenstein series by Shimura correspondence and the method of
the Rankin’s convolution, under some assumptions on f, we shall derive an
explicit connection between the square of Fourier coefficients a(n) at an arbitrary
positive fundamental discriminant # of a modular form f(z) = Eg(_l)kn50,1(4),n>0
a(n)e[nz] belonging to Kohnen’s spaces Si41)2(N,x) of half integral weight
(2k+1)/2 and of an odd level N with arbitrary character y and the central
value of zeta functions associated with the image W(f) of f by the Shimura
correspondence ‘P.

We mention that our results give a generalization of some results in Kohnen-
Zagier [1] and [3] and Kojima [4], [5] and [6] and our method can be applicable
to the case of Maass wave forms of half integral weight (cf. [7]).

Finally, the author is indebted to the referee suggesting some revisions of this

paper.

§0. Notation and preliminaries

We denote by Z, Q, R and C the ring of rational integers, the rational
number field, the real number field and the complex number field, respectively.
For ze C, we put e[z] = exp(27iz) and we define /z=z!/2 so that —zn/2 <
argz'/2 < n/2. Further, we set z¢/2 = (,/z)* for every ke Z. Let SL(2,R)
denote the group of all real matrices of degree 2 with determinant one and § the
complex upper half plane, i.e.,

SL(2,R) = {(‘c’ Z)

a,b,cand d € R and ad — bc = 1}
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and
H={z=x+iy|x,yeR and y > 0}.
Define an action of SL(2,R) on § by

az+b
Z—)y(z)=cz+d

For positive integers M and M’, put

To(M) = {(j 3) e SL(2,R)

b
for all y = (Z d) € SL(2,R) and for all ze .

a,b,c and d € Z and ¢ = 0(mod M)}

and

C[M, M'] = {(j Z) e To(M')

We introduce an automorphic factor jj(y,z) of I'o(4) determined by

b=0 (mod M)}.

o(:2) = (@)/30(2) for every y = () eTo(d) and
for every ze  with 9y(z) = i e[n?z] and §(z) = 9y(z/2).

§1. Shimura correspondences of modular forms of half integral weight and
theta functions

This section is devoted to summarizing several fundamental facts which we
need later. Let k be a positive integer. Let N denote a positive integer and
a Dirichlet character modulo 4N. We denote by S(5x41),2(4N, ) the set of all
cusp forms f on $ such that

() £ =)o, ') for every y= (47 ) eToam).

Throughout the rest of the paper we assume that N is an odd integer. Let y
be a Dirichlet character modulo N such that y(—1) =& Put y; = (¥)y. We
introduce a subspace Siki1y/2(N,x) of Saki1)/2(4N,x;) defined by

(1-2)

f(z)= Z a(n)e[nz]}.

Sek+1)2(N, x) = § f(2) € S@is1)2(4N, x1)
&(—1)*n =0,1(4),n>0

We call Sii1)2(N,x) the Kohnen’s space of weight (2k +1)/2 and of level N
with character y. We denote by Sy (M,w) the space of all cusp forms f' of
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weight 2k and of level M with character o satisfying

F'0(2) = o(d)(cz + d)* f'(z) for every y = (‘C’ f}) & To(M).

Here we recall the notation and results in Shimura [12]. Let b and b’
denote integral ideals of @ and y a Hecke character of @ whose conductor
divides 4bb’. Let #(p11)/2(b,b";%) (resp. F(ak+1)/2(b,b';%)) be the space of
modular forms (resp. modular cusp forms) of half integral weight (2k +1)/2
given in [12, p. 507]. Let ¢, be a Dirichlet character modulo 4N such that
Yo(—1) = 1. We choose the Hecke character y of Q such that

k
(1-3) H ¥ ,(a) = (_71) Yola)™" for every ae (Z/4NZ)>, ¥,(Zy) =1

plaAN

for every p 4N and y,(x) = (sgn(x))*(x € R).
For f' € #ks1y2(Z,NZ; V), put L(f')(z) = f'(2z). Then the following map-
ping is bijective (cf. [12, p. 523]).

(1-4) L: S okr1)2(Z,NZ; ) — S(ii1)2(4N,¥g).

Let ¢ denote a positive square free integer. Define a mapping ‘chﬁ") Y of
S(k+1)/2(4N, ) into Su(2N,¥¢) by

(15 wH (N L(Zwo (5 )()d" la(t(m/d)’ ))e[mz]
dim

for every f(z) =32, a(n)elnz] € Sii+1)/2(4N,¥,). The existence of this map-
ping was first shown by Shimura [9] and it was reformulated by Niwa [8].
Next we recall the definition of theta functions given in [12]. Put

V= {«:= (Z Z) e My(0)

FL(V)={n:V — C|nis alocally constant function in the sense of [12]}.

tré = 0} and

Let # be an element of (V). Define a theta function ®(z,w;#n) on § X H
by

(1-6) Oz, w; 1) = y'2(3w) " Y 5(&)[E, W] el2 7' R, z, ]

teV
for every (z,w) e  x 9, where
(& w] = [E, w,w], [, w,w] = (cww' +dw —aw’ —b) and

R[E,z,w] = (deté)z+%y3w"2|[é, w][z(f = (‘c’ Z) eV,y= sz>.
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Throughout the rest of the paper, we take a Dirichlet character y, with Yy (—1) =
1 and a positive square free integer t such that
(1-7) (z,N) =1.

Put ¢ = e, with the Hecke character ¢, associated with the quadratic field
Q(+/7). For positive rational numbers « and S, put

ofuf) = {x= (2 1) e a0

X

ay€eZ,byeaZ,cy € fZ and der}.

Moreover, we put e = 2N. We consider an element 7 € (V) determined by
0 if x¢ole e,
(1-8)  n(x) = \ :
> te(1/20)z/2nz Pa(D)9 ((2t7))e[—bxt]  otherwise,

where ¢* is the ideal character associated with ¢ (cf. [12, p. 505]). Introduce a
mapping L. of L (au41)2(Z,NZ;y) into & y1y2(Z, Nt1Z;e;) defined by

(1-9) L(f)(z) = f(zrz)7* for every f(2) € ¥ s1)2(Z,NZ; ).

We put A(z) = L.(f)(z). The following lemma is proved by Shimura [12,
Propositions 1.4 and 1.5].

LeMMA 1.1. The notation being as above, the mapping L, gives a bijection of
L u+1)2(Z,NZ; ) onto the set

{h(z) = ia'(n)e[nzﬂ] € S k+1)2(Z,N1Z,ye;) |a'(n) = 0 if T*n}-
n=1

Moreover,

o f =7 FFD e, by,

where for given two cusp forms f, g of weight | with respect to T, their inner
product {f,g)> means

dxd
yzy (x =Rz, y = 32).

{f,g>=vol(T\$)™" J f(2)9(2)3z' dgz with dgz =
g

The following proposition is verified by Shimura [10] and [12] (cf. Niwa [8]).

ProPosITION 1.1. For f(z) =32, a(n)e[nz/2] € & as1)2(Z,NZ; ), put

h(z) = L.(f)(z). Suppose that \,, T and ¥ satisfy the condition (1-7) and n is the
function on V determined by (1-8). Then there exists the element

g = > (Z v (3) (3) dk-‘a(r<m/d)2>> el

m=1\ dlm
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belonging to Sy (2N,y?) such that

c'g.(w) = J h(z)®(z, w; ) y*+V/2 dgz with ¢/ = 22*kik4¢N.
2, 2N\
Next we describe basic results of Hecke operators of Kohnen’s space. Let y
denote a Dirichlet character modulo N. We denote by (Y.}, (p”) the Hecke
. . <, . VA1

operator on S(y41)/2(4N, ;) given in [9]. For a positive integer m, we define a
function f|U(m) on $ by

00

f1U(m)(2) = Y a(mn)e[nz]

n=0
for every function f(z) =) . ya(n)elnz] on $. We denote by T(oki1y/2,n,(P)
(p ¥ N) the Hecke operator on S(y41)/2(N,x) defined in [2, p. 42]. The fol-
lowing lemma was confirmed by Kohnen [2] (see also Remark in [2, p. 46]).

LeMMA 1.2. The notation being as above, for f(z) =En218(_1)kn50,1(4)

a(n)e[nz] € Spui1)/2(N, x), Fourier expansions of f|Tak11)2,n,,(P)(2) (P4 N) and
FlU(p*)(z) (p|N) are given as follows:

Nk
T aksny/2,n,2(P)(2) = > (a(pzn)+x(p) (8( b n) p*a(n)
n21;e(-1)*n=0,1(4) 14
+ xz(p)pz""‘a(n/pz)> elnz] (pN)
and
FlU(p*)(2) = > a(p’n)elnz] (p|N),

n21,6(-1)*n=0,1(4)
where a(n/p*) means 0 if p? fn.

Observe that T(y41)/2,n,,(p) coincides with the restriction of T3, » . (p%)

to S(ak+1)/2(N, x) for every odd prime p (p ¥ N). Now we impose the following
assumption.

(1-10) &= y(—1) satisfies (—1)¥e > 0,  is a Dirichlet character modulo N,

S € Sak+1)/2(N, x) is an eigenfunction of all Hecke operators
Tokrny2,n,,(P) (PAN) and U(p®) (p|N),ie.,
T arenyan  (P)(2) = o(p)f(2) (P4 N) and  flU(P*)(2) = w(p)f(2) (pIN)

and a(47¢) # 0 for some square free positive integer 7o such that 7o = 2,3(mod 4).
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Since S(+1)2(N,x) is contained in Siui1)2(4N, (%)y), we have the fol-
lowing diagram.

L]
(1-11)  Srt)2(N, ) < Sars1)2(4N, ) —— L okr1y2(Z,NZ; )
with ¢, = <4:§> X

By this relation, we may identify elements f(z) of Siiy1)/2(N,x) with those of
Lok+1)2(Z,NZ; ). In [6], we verified the following lemma.

Lemma 1.3. Let f(z):an1,g(_1)"nso,1(4)a(”)e[”z] be an element of

Sr+1)/2(N, x) satisfying the condition (1-10) and let T be an integer satisfying the
condition that (1-7) and v =2,3(mod 4). Then

0

1)) = Z(Z(%)x(d)d"“a(r(rn/df)) efrmv]
1

d|m

coincides with an element a(4t)g(2w) of Su(2N,x?), where g(w) = 3" | c(n)e[nw]
belongs to Sy (N,x?*) and

0

ZC("I)I’I_‘Y = H(l — w(p)p—s +Xz(p)p2k—l—2s)—l

n=1 V4

It is well known that f|U(4)(z) belongs to S(y41)/2(4N, x(%)) for every
f(2) € Sgis1)2(4N, %(%)). Here we impose the further condition on f in (1-10).

4¢
(1-12)  If f' € Sprsn)2 <4N,X<?>> and f’ |T(421Z+1 /2,x(%)(1’2) =aw(p)f’
for every prime p(pt4tN), then f'(z) equals

cf(z) + ¢ flU4)(2) .
for some constants ¢ and ¢ and, if f" € Sk+1)/2 (4M , X(f))

(M|N, M # N) satisfies f”|T2k+1)/2 &) (»®) = w(p)f" (p ¥ 4N7),

then f”(z) =0 moreover, 47|, (h~'4Nz,7) =1 and 8t} if 247, where w(p)
is the eigenvalue given in Lemma 1.3 and b is the conductor of ¢ = e, with
Y in (1-11). Moreover, we impose the condition that

(1-13) g(w) is a primitive form of Sy (N,x?) and f|U(4)(z)
is not a constant times f(z),

where f(z) and g(w) are the same elements given in Lemma 1.3. Furthermore,
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we consider the condition that
(1-14) If 2|7, then p,(1 +4x) = p,(1 +4x?) for every x € Z,,
where ¢, is the restriction of ¢ to Q5 and Z, (resp. Q,) means the ring of all 2-

adic integers (numbers).

§2. Some formulas of theta integrals

This section is devoted to confirming a key proposition concerning theta
integrals. For a positive integer a, we define elements (“4 and {,; of (V) by

(2-1) Cal(x) — {@a(bx)(p*((bxa-le)) if xe O[ae'l,e],
0 otherwise
and
¢ Z(x) _ {@a(bx)é*((bxa_le)) if xe o[ae‘l,e] and (bxa_le7 4N1) =1,
’ otherwise.

By the same method as that of Shimura [12, Lemma 5.7], we may derive the
following lemma (cf. [11]).

LeEMMA 2.1. Suppose that N is odd, t is a positive square free integer and the
conditions (1-7), (1-10), (1-12), (1-13) and (1-14) are satisfied. Let a be a positive
integer such that ab|4Nt and ord,(abh) = ord,(4Nt) for every p|t. Then there are
constants M and M' such that

(O(z,w; (%), g(2w)> = Mh(z) + M'h|U(4)(2)  with h(z) = L.(f)(2),

where g(w) is the same function given in Lemma 1.3, Y is the conductor of o(= ;)
and ord,(d) is the p-adic order of an integer d. Moreover, the above integral is
equal to 0 if 4z|l.c.m.(ah,4) and l.c.m.(abh,4) # 4N.

By virtue of Proposition 1.1, Lemma 1.3 and Lemma 2.1, we may conclude
the following proposition.

ProposITION 2.1. Suppose that the assumption in Lemma 2.1 is satisfied.
Then we have

Ach:(z) + B:h|U(4)(2) = <O(z, w; ), 9(2w)>
and

Crhr(z) + Drht| U(4)(Z) = <0(z,w; CZ)’ g(2W)>
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with
— .L.—(2k+l)/2+1
A; =a(4r)c VoI 2N\S)
(g@w), gw)Y{S' f1y = Lgw), g@wI o f'> o
DI Ny TR
T—(2k+1)/2+l
B =

adr)e’ vol(T[2,2N7\$)

Cgw), g@w)XXS, f> = Lg(@w), W)X f> o
N N I N
C. = u(h'4NT)p* (h7'4N7) (0, (—1)7(0)h '4NT) " 4, if T =2,3(4),
D. = u(b~'4N7)p* (b7 4N7)(p,(—1)y(p)b'4N7) "' B, if T =2,3(4),

A, =a(t)F;, B, = a(7)G, if T1=1(4)
FoD vol(T[2, 2eN\$) ! .
LIS T = LS

 (<r7r>(<atwnaen) - (5 )22 otz o2m))

- ( (e -273(3))

x Cg(w), g(2w)) — mzzk-%g(zw),g(zw»))

—(2k+1)/2+1

6T vol(T'[2,2tN)\$) ™" i
o <faf><f’af,>_<f’fl><flvf>

x (— S <<g(w), g2w)> — (%)m2"“<g(ZW),g(ZW)>)

+<.>( (o -2 (3) )

x Cg(w), g(2w)) — ;?(’22_>22"-'<g(2w>,g<2w)>))

—(2k+1)/2+1

C: = (b 4NT)p* (™ 4NT)(p,(~1)y(p)h4NT) "' 4, if T=1(4),

D. = u(h'4N7)p* (h7 4NT)(p,(~1)7(9)b'4NT) ' B, if T = 1(4),
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where 1 is the same element given in (1-8), h.(z) = L.(f)(2),h.(z) = h|U(4)(2),
f'=flU(4) and y(p) means the Gauss sum of ¢.

Proof. If 1 =2,3(mod 4), we can verify in a manner similar to that of [6].
So we may assume that 7= 1(mod 4). We see that

4N, by
(22) \P(Zkfl() /)z,t(f )(w)

_i(zx ()()dkl((m/d )e[mw]eSzk(ZNx)

1\ dim

T3 ()R (f) = w(p) ¥t (f) and

Tzzlilxz(l’)g =w(p)g for every prime p ((2N, p) = 1),

where T3V, 2( ) is Hecke operators on Sy (2N,x?). Since g is a primitive form

of Su(N,x %), there are constants ¢; and c; such that

(23) WO (W) = cig(w) + cag(2w).

Therefore we obtain

24) L <s —k+1,x G) G)) i a(tn®)n™ = (¢1 + ¢,27)L(s, g)

n=1

with L(s,g) = 502  c(n)n~5, where L(s,x()(%)) is the Dirichlet L-function
associated with x()(%). By Lemma 1.2 and the condition (1-10), we have

(2-5) L(s —k+ 1,)((%)) i a(tn®)n™*

n=1
r)H 1—o(p)p™ +x(p?)p* 7)™

(cf. [7, p. 452 and p. 453]). Comparing 2-factors of Dirichlet series (2-4) and
(2-5), we can check

(2-6)  (c1 + e227°)(1 — @(2)27° + x(22)2%-1-25) !

—a()(1- 2@ (3)2 ) (1 - w27 22,
which yields that

cp=a(r) and ¢ =-— (%)X(2)2k‘la(r).
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Therefore we may justify

(27) D, (N0 = a0ha0) ~ (3 )22t atr)a(2n)

Put f(z) = f|U(4)(z). Then we see

@8) ¥k U Z(Zx )(5) (5)a (4r(m/d>2>) el
m=1 \ dlm

So we can put

(2-9) \chfl(?/)z,r( £)(w) = c|g(w) + c,g(2w) for some constants ¢| and c}.

Next we shall determine explicitly ¢; and ¢j. For this purpose we need to
compute the Dirichlet series

(2-10) L(s= e+ 12(2) (2)) S atdrntyn,
n=1

Consider a power series H,(x) of x defined by

00
(2-11) H,(x) = Z a(r2XmDp2)xm,
m=0

By the definition of H,(x), we obtain

(2-12) f:a 722"n2)x™ — a(tn?)

m=0

— a(mn?) <1 —2k1y(2) G) x>

x (1 — w(2)x + 2(22)2% %)~ — a(n?)
for every n (2.4 n), which shows that

2) — 2k=1,(2)(Z) — y(22)22k-1
(2-13) H,,(x)=a(m2)w( )1 w(zifl(;zzz)g(zk-)lxz =

for every n (2 4 n).

Since
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Therefore we conclude that

(2-14)

PO N0 = o) (0 - 2712 (3) )aw) - 2222 g(2m)).
For a positive integer a, we put
I(a) = <O(z,w; (%), g(2w)>.

By [12, p. 539], (1-12) and Lemma 2.1, we have

(2-15) (®(z,w; {z),9(2w)> = u(h ' 4N<)p* (h~'4NT)I (™ 4N7)
= Ch.(z) + Dh,(z)

and

(®(z,w;n),g(2w)> = 9,(~1)y(0) (h™'4ND)I(h'4N7)

= Ah.(z) + Bh,(z)

for some constants 4, B, C and D. We shall determine explicitly these values.
By (2-7), we may check

(2'16) <ht(z)7 <®(Za w; '7)a g(2W)>>
= (Ahe he) + Blhg, b))

= vol(T[27,4N]\$H) ' vol(T[2,2eN|\$)

X J {J h.(2)O(z, w; ) Iz(2k+1)/2 dg,Z}g(ZW)SWdegw
T2t 4AN\$ | IT[2,2tN)\H

= vol(T'[2, 2tN]\$H) ' ’a(z) (Kg(w), g(2w)>

2
By (2-14), we may also justify that

_ (E) 2(2)25-1<g(2w), g(2w)>).

(217) Ay + B B = volT 2 26M\9) ') (0(2) 260 (5

(o), 9(2w)> — T2 (g(2w), g(2w>>).

Therefore, by (2-15), (2-16) and (2-17), we conclude our assertions.
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§3. Rankin’s convolution of theta series, Eisenstein series and final
calculation

Put
0 0
z)= ) eln’z/2] and Ly(s,0)=)» w*(nZ)n™*
n=-o0 n=1
for each Hecke character w of Q and for each positive integer M, where n runs
over all positive integers such that (n,M)=1 and w* is the ideal character
associated with w (cf. [12, p. 505]). Let g(w), f(z),h. and hl(z) be the same
functions in Lemma 2.1 and Proposition 2.1.
We consider integrals

31) L= J (3D CE T2 kg Dy* 2 dgz (2= x+iy)
ng

and

b= J WD CEF T2 kg Dy* 2 dsz (2= x+iy),
g

where I’ =T'[2,2tN], C(z,5:k,p,T) = Lan.(25,9)E(z,5 : k,9,T), C(z,5:k,p,T)
and E(z,s: k,p,T") means functions given in [12, (4-6) and (4-11)]. By the same
method as that of Shimura [12, p. 542], we may check that

(3-2)

T(s+k/2) ,_ (o .
4a(dr)Tk (—2(7n2—)s+/’<—/)22 @+ (25 + k, g) if =2,3(4),
L) =
I'(s+k/2) T k—15—(2s+k e
and
I'(s+k/2 .
L= 4a(4t).€k(2_(nrz)s_+/k/ZL(2s +k,g) if t=2,304),
T(s+k/2)
_ k
I, = 4a(7)t ——(27[‘[2)”/(/2

< ((c@-27%0)(3)) - x229 ) Les s kg i =100

where L(s,g) = 3.2, c(n)n™ and g(w) = 3,2, c(n)e[nw)].
Next we calculate an integral

(3-3) g2w)C(w,5+1/2: G)E(w,T+ 1/2: p)Iw*H dgw,

J T2c4N\$



112 HISASHI KOJIMA

where C(w,s : ) = C(w,s: k,$,I'[27,4N]) and E(w,t : ) = E(w,t : k,$,T'[27,4N))
are given in [12, (4-6) and (4-11)]. By a method similar to that of [12, p. 550],
we find

(3-4) J g2w)C(w,5+1/2: §)E(w,5 + 1/2,5)Iw™ dgw
I[27,4N\$
= A(s)Lan(2s + 1,9) "' L(2s + k, g)L(k, g, ),
where
A(s) = 2ep(@)b ' (4N) itk R () (NN T Y
{N/N'
1(0)p* (1)t (N /tN")(2m) 2224k~ (/D) (20) "2k rg(i-l(_k(/kZ/)z-)i-) (Fl(;cz))) ’

where § = 4tN'(N'|N).
Exchanging the order of integration, we have

(3-5) j (O(z, w;(2), g(2w) Y8 CE,5 + 172 K, 5, T2, 2eN]) y /2 dg 2
T2, 2:N\$

= J vol(I‘[2t,4N]\$5)_1{ J o(z,w; CZ)g(Zw)Swzkdg,w}
I[2,2tN\$ I2c4N\$

x 3(2)C(z,5+ 1/2: k,$,T[2,2tN]) y D2 dg 2

= vol(r2e 4N\9) " | { | 82)0(z wilz)
T2, AN\H I[2,2:N\$

x C(z,54+1/2 : k,p) y@+D/2 dgz }g(Zw)Ska dgw

= <M,(Wa j): g(2W)>
with

M (w,5) = J 9(2)0(z, w;Lz)Clz, 5+ 1/2 : k, p, T2, 2eN]) y2+D/2 d .
I[2,2tN\$

For further computation, we need the following formula in [12, (7.9a) and (7.13)]

(3-6) M'(w,s) = B(s)Lan:(2s + 1,p)(=1)*
ge2NZ/ANZ

@N)*LC(w, s + (1/2); D) E(w, s + (1/2); 9) |7
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with

25+(/2+(1/2) ko1 10
B(s)=2mr<”§+§) and ’qz(q 1)’

where p|;2(z) means p(a(2))(cz+d)™" for a function p(z) on $ and a a=
(“ ©) e SL(2,R). Employing (3-13) and (3-18), we have
(3-7)  (M'(w,5),9(2w)> = 2(=1)"B(5)(2N)*"" 4(s) vol(T 2z, 4N]\$) '

x L(2s + k,g)L(k, g, ).
Combining Proposition 2.1 with (3-5), (3-7), we may derive that

(3-8) C:h(2)8(2)C(z,5 + 1/2 : k, §, T[2,2tN]) y*+D/2 dg 7

J 2, 2tN\$

4 J D.h!(2)8(z)C(z,5 + 1/2 : k,p,T[2,2tN]) y V2 dg 7
['[2,2tN\$

= 2(=1)*BE)(2N) = A(s) vol(['[27,4N\$) ' L(2s + k, g) L(k, g, ).

Applying the formulas (3-2) and (3-8), we multiply both sides of (3-8) by
L(2s + k, g)_l. Moreover, by Proposition 2.1, (3.2) and (3.8), putting 2s + k = 0,
we may deduce that

2¢u(h”'4N7)p*(h'4NT)E
9.(—1)7(p)b 4N

= D2V 4N iRy ()2 2R (ke — 1)

(3-9)  la(47)|

vol(I'[2,2N7]\9)
vol(T'[27,4N]\9)

x (N/NYE S (™ ()t e(N/tN")L(k,9,5) if = =2,3(4)
tIN/N'

and
4la(t)|**u(y 4NT) " (h™'4NT)) (0 (—1)(9)b'4NT) ™!

x <F,<1 - G) x(z)zk—l) + G,(<c(2) — 2k 12 G)) - 1(22)2%-1))

212 - v _
= (-1)255202N) " 20 (@)b T (4N i

x (2m) FHN/NYTE ST w(t)er () e(N /N (2m)
{{N/N'

x 2712(20)k27*(k — 1)Ivol(['[27, 4N]\$) "' L(k, g, p) if = = 1(4)
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Cg@w), g@w)(f' S = ', 1) + <g(w), g@w)> (S, f> = <S5 D)

IS D =L XS
where F, (resp. G,) is the quantity given in Proposition 2.1 and f'(z) = f|U(4)(z2).
Consequently, by (3-9), we conclude the following theorem.

THEOREM. Let the notation be as above. Suppose that N is odd, t is a
positive square free integer and the conditions (1-7), (1-10), (1-12), (1-13) and (1-14)
are satisfied. Then we have

la(47)2E = 2~/
x 7K+ 2=k =2} 1)!W(”(b_14NT)(p*(b‘14N,))—1 (_1)k

X @ (=D)(N/N')E D u(t)p* ()))1* (N /tN") L(k, 9, ) if ©=2,3(4)

{N/N'

(£ (1 - ()x2+)
+6((«@-240)(3) ) -x2))

= k2522 k Nh (@) (N/N") *(u(b~'4N7)p* (h~'4N7))) ™

X 0, (—1)p(@)b'4NT Y u(t)e* (1) e(N/IN')

t{IN/N'

and

x (k — 1)vol(['[27,4N\$) ' L(k,9,5) if = 1(4)

where Yy is the conductor of p(= Ye.), h = 4tN' and u(n) is the Mobius function
of n.
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