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ON THE LOJASIEWICZ EXPONENT AT INFINITY
FOR POLYNOMIAL FUNCTIONS

LAURENTIU PAUNESCU AND ALEXANDRU ZAHARIA

1. Introudction
1.1. For n, g=N\{0} we consider the polynomial functions
f=fna: CP:—>C, f(x,9,2)=fndx, v, 2):=x—3x" 1y"42x30*1 %4 yz,

We will study some properties of these polynomials, related to their behaviour
at infinity, and we will prove that some results, obtained in [6] and [3], [4], [7]
for the case of polynomials in two variables, are not true in the case of poly-
nomials in m=>=3 variables. Also, our polynomials f, , show that several classes
of polynomials, with “good” behaviour at infinity, considered in [8], [9], [14],
[10], are distinct.

The first remark on our polynomials is:

1.2. Remark. After a suitable polynomial change of coordinates in C?, one
can write f(X, y, Z)=X. Namely, taking Z :=z—3x2"*1y2-142x3n*1y3-1 e
get: f(x, v, Z)=x+yZ. Next, we put X:=x+yZ and we obtain f(X, y, Z)=
X. Thus, there exists a polynomial automorphism P=(P,, P,, P,): C*—C? such
that f=P;.

1.3. For a polynomial g: C™—C, we consider grad g(x):=(0f/0x,(x), ...,
df /dx»(x)). If g has non-isolated singularities, the Zojasiewicz number at infinity,
L.(g), is defined by L.(g):=—c. When g has only isolated singularities, the
Lojasiewicz number at infinity is the supremum of the set

veR|3IA>0, IB>0, Yx=C™, if ||x||=B, then A|x||*<|grad g(x)]}.
Equivalent definition is (see for instance [6] or [5], proof of Proposition 1):

log o(r)

L‘,‘.(g):-——lrxp‘r,x° logr where go(r):=ﬂ;rn1=fr|]gradg(x)||.

The following result is a reformulation of Theorem 10.2 from [4]:
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THEOREM. Let g: C*— C be a polynomial function. Then there exists a
polynomial automorphism P=(P,, P,): C*—C*® such that g=P, if and only if g
has no critical values and L.(g)>—1.

1.4. In the next Section we will prove the following

PROPOSITION.  Loo(fpn q)=— —;5.

In particular, if n=¢q, then Lu(f, o=—1. Using Remark 1.2, our Proposi-
tion shows that Theorem 1.3 can not be extended to the case of a polynomial
function g: C™—C, when m=3,

1.5. It is proved in [6] and [4] that a polynomial function g:C?—C has
L.(g)#—1. Proposition 1.4 shows this is no longer true for polynomial functions
C™—C, when m=3.

1.6. If g: C™—C is a polynomial function, we call {t,C a typical value
of g if there exists USC, an open neigbourhood of %, such that the restricition
g: g} U)—U is a C= trivial fibration. If ¢, is not a typical value of g, then
to is called an atypical value of g. In general, the bifurcation set, B,, of atypi-
cal values of g, contains, besides the set 3}, of critical values of g, some extra
values, the so-called “critical values coming from infinity”. For example, if
g(x, y)=x%*y+=x, then 3},=0 and B,={0}.

Several classes of polynomials without “critical values coming from infinity”
are considered in literature, see for instance [1], [8], [9], [13], [11]. We recall
now three of them. In the next Section we will use the polynomials f, , to
show that these classes are distinct.

For a polynomial g: C™—C, we denote:

M(g):={xeC™|34=C such that grad g(x)=4-x}.

Geometrically, a point x&M(g) if and only if either x is a critical point of g,
or x is not a critical point of g, but the hypersurface g '(g(x)) does not in-
tersect transversally, at x, the sphere {zC™||z|=|x|}.

A polynomial g: C™—C is called M-tame if for any sequence {z*} SM(g)
such that lim,_ .|z*||=oc, we have lim,..|g(z*)|=c. See [12] for properties
of M-tame polynomials.

A polynomial g: C™—C is called quasitame if for any sequence {z*}<SC™
such that lim;..]z*]|=c and lim,.. grad g(z*)=0, we have lim,_..|g(z*)—<z¥,
grad g(z*))| =o. Here, <:, -> denotes the Hermitian product on C™. See [8],
[9] for properties of quasitame polynomials.

Follwing [13], [14], we will say that a polynomial g: C™— C satisfies
Malgrange’s condition for t,eC if, for | x| large enough and for g(x) close to
t,, there exists 0>0 such that ||x|-|lgrad g(x)|=d. Equivalent formulation is:
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There exists no sequence {z*} SC™ such that lim.«|z*||=c0, lim;.. g(z*)=t,
and lim,..|z¥]-|lgrad g(z*)||=0.

The next result seems to be well-known, see [12], [10], [15]. Its proof can
be easily obtained, by contradiction.

1.7. PROPOSITION. For m=2, let g: C™—C be a polynomial function.
(a) If g is quasitame, then g satisfies Malgrange’s condition for ang t,=C.
(b) If g satisfies Malgrange’s condition for any t,&C, then g is M-tame.

We will show that these implications can not be reversed, if m=3 (for (a),
see also [2]). More precisely, we have:

1.8. PROPOSITION. (a) For any n, gN\{0}, the polynomial f, ,is M-tame,
but not quasitame.

(b) The polynomial f, o satisfies Malgrange’s condition for any t,€C, if and
only if n<q.

Thus, if f=f,, for some n>q, then, by [14], the family 7 of projective
closures of fibres of f has nontrivial vanishing cycles, despite Remark 1.2.
Also, such an f is not ¢-regular at infinity, in the sense of [15], since by [14],
the t-regularity at infinity is equivalent to Malgrange’s condition for any t¢,&
C.

2. Proofs

2.1. Let g: C™—C be a polynomial function with only isolated singularities.
For an analytic curve p: (0, &)— C™ such that lim,.o||p(t)|=c, we consider
the expansions in Laurent series:

1 pt)y=at*+at*+ -, with <0 and a=+0
(2) grad g(p())=0btB+b,tP 1+ -, with 0 and b+0

and we denote L(g; p):=ord(grad g(p(?)))/ord(p(¢))=p/a. Here, ord denotes the
order of series. It follows, for example from (the proof of) Proposition 1 in
[5], that

. . p: (0, e)—»C™ is an analytic curve
©) Lm(g)—mf{ Lig; p) such that (1) and (2) are fulfilled }

2.2. Proof of Proposition 1.4. Consider the curve ¥ : (0, 1)>C™ defined by :
U(t):=(t"s, t", 0). Then L(fn.q; T)=—(n/q), hence Lu(fn.o<—(n/q)<O0.

Let now consider an arbitrary analytic curve p: (0, &)=>C™, p(t)=(x(t), v(¢),
z(1)), such that lim,.e[ p(t)||=co.

If lim,.olgrad fn ((p@)II#0, then ord(grad f. ((p@))<0. Hence, L(f5 q; p)
20> L(fn.q; v).
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Suppose now that lim,.|grad f, «(p@)|=0. Then lim,., y(#)=0 and
4) ltizrs(x(t))"-(y(t))‘l is a root of the equation 1—(6n+3)T2+(6n+2)T3=0.
Hence
® y®#0, limy®=0 and lim[x(®)]=co.
Therefore, we have:
©) ord(y())=ord(grad fa,o(p(#))>0 and ord(p(t))<ord(x(#))<0
It follows, using (4) and (6), that
ord(grad fa,o(p(®)) . ord(y(®)) _ ord(y(®)) _ n

L =770ty = ord(p() = ordx@®) ¢

Proposition 1.4 is proved. 0

2.3. Proof of Proposition 1.8. Part (b) follows from (the proof of) Proposi-
tion 1.4,

If n, g=N\{0} are fixed, then the curve ¥'(t):=("9 t*, 0) can be used to
show that f, , is not quasitame.

Suppose now that f=f,,, is not M-tame. Using Curve Selection Lemma
at infinity, see [12], one can find an analytic curve p: (0, &) — M(f), p(t)=
(x(8), ¥(t), (1)), such that lim,., f(p(t))eC. This implies that lim,., grad f(p(t))
=0, hence relations (4) and (5) hold. The condition p(¥)eM(f) means that

@ Lo, o, Low)=10-xw, 30, 20

for some suitable analytic curve A: (0, e)—C. It follows that none of the com-
ponents of p(¢) or of grad f(p(¢)) is identically zero.

If A:=ord(x()), B:=ord(y(t)) and C :=ord((@f/dx)(p())), then A<0, B>0,
C>0, and relations (4) and (7) give us

(8) ord(A@#)=C—A, nA+¢qB=0 and ord(z(t))=B+A—C.
Since f=v(0f/0y)+x(1+(6g—3)x*"y2—(6g—2)x3"9%), it is easy to see that
limLo(x @)™ (y(t))* is a root of the equation 1+4(6¢—3)7T%—(6¢g—2)T*=0.

Thus, using (4), it follows that lim,.«(x(#))"-(v(¢)?=1. Hence we can assume
that

x@)=t4, yO)=tB+t8*2.p@#), with D>0 and p(0)=0

(since (x@))"-(y(1))*=1 implies that (3f/dx)(p(#))=0). By a direct computation,
we find that



LOJASIEWICZ EXPONENT 273

L or
x(@) 0x

hence, by (8), D=C. Next, the second component in (7) gives us
2(H)=6gx()*"* y()* (L—x@)"y®))+ABy (@)
=—6¢%- p(0) -t4-B+D L higher terms.

At)= (p(®) =6nq~;(F)-fD‘A+higher terms,

Hence, by (8), we have B=C=D. Finally, the third component in (7) gives us
184 1B*D 5D =6ng- p(0)-1P~4-(—6q"- 0(0)-14-2*P) t higher terms. .
Comparing. the ledings coefficients, we obtain
1=—36ng" | p(0)!*,
which is impossible. Thus, Proposition 1.8 is proved. O

2.4. Remark. (i) If n=<gq, it is possible to prove that f, , is M-tame just
looking at the order of various Laurent expansions.

(ii) It is not difficult to see that for the polynomials f, , the Newton
nondegeneracy condition fails on a face of dimension 1. Using this, one can
construct other similar examples.
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