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ON THE tOJASIEWICZ EXPONENT AT INFINITY
FOR POLYNOMIAL FUNCTIONS

LAURENJIU PAUNESCU AND ALEXANDRU ZAHARIA

1. Introudction

1.1. For n, #eiV\{0} we consider the polynomial functions

f=fn.q: C*—>C, f(x, y, z)=fn,q(x, y, z):=x-3x*n

We will study some properties of these polynomials, related to their behaviour
at infinity, and we will prove that some results, obtained in [6] and [3], [4], [7]
for the case of polynomials in two variables, are not true in the case of poly-
nomials in m^3 variables. Also, our polynomials fn>q show that several classes
of polynomials, with "good" behaviour at infinity, considered in [8], [9], [14],
[10], are distinct.

The first remark on our polynomials is:

1.2. Remark. After a suitable polynomial change of coordinates in C3, one
can write f(X, y, Z)=X. Namely, taking Z :=z-?>x2n+ιy2ΐι-ι+2x*n+ιyZ(l-\ we
get: f(x, y, Z)=x+yZ. Next, we put X:=x+yZ and we obtain f(X, y, Z)=
X. Thus, there exists a polynomial automorphism P—(PU P2, P 3): C3-»C3 such
that / = Λ .

1.3. For a polynomial g: Cm->C, we consider grad g(x):=:(df/dx1(x)f ... ,

df/dxm(x)). If g has non-isolated singularities, the Lojasiewicz number at infinity,
Lj£), is defined by £«,(£) : = — <*>. When g has only isolated singularities, the
tojasiewicz number at infinity is the supremum of the set

{VΪΞR\3A>0, 3B>0, VxeCm, if \\x\\^B, then A\\x\\v^\\graάg(x)\\}.

Equivalent definition is (see for instance [6] or [5], proof of Proposition 1):

P, where p(r):= infj|grad^(x)||.

The following result is a reformulation of Theorem 10.2 from [4] :
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THEOREM. Let g: C2-> C be a polynomial function. Then there exists a
polynomial automorphism P = (PU P 2 ): C2-*C2 such that g=Pi if and only if g
has no critical values and Lβo(g)>—1.

1.4. In the next Section we will prove the following

PROPOSITION. £«,(/», «)= — — .

In particular, if n^q, then Loo(/Λlβ)^ί—-1. Using Remark 1.2, our Proposi-
tion shows that Theorem 1.3 can not be extended to the case of a polynomial
function g: Cm~^C, when m ^ 3 .

1.5. It is proved in [6] and [4] that a polynomial function g: C2—>C has
Loo(g)Φ — l. Proposition 1.4 shows this is no longer true for polynomial functions
Cm->C, when

1.6. If g: Cm-+C is a polynomial function, we call to^C a typical value
of g if there exists U^C, an open neigbourhood of t0, such that the restricition
g: g~1(U)—>U is a C°° trivial fibration. If t0 is not a typical value of g> then
t0 is called an atypical value of g. In general, the bifurcation set, Bg, of atypi-
cal values of g, contains, besides the set Σ * of critical values of g, some extra
values, the so-called "critical values coming from infinity". For example, if
g(Xf y)=x2y+x, then Σ*=0 and Bg={0}.

Several classes of polynomials without "critical values coming from infinity"
are considered in literature, see for instance [1], [8], [9], [13], [11]. We recall
now three of them. In the next Section we will use the polynomials fn>q to
show that these classes are distinct.

For a polynomial g: Cm-^C, we denote:

M(g):={χ(=Cm\3λ<EΞC such that graάg(x)=λ-x}.

Geometrically, a point x<=M(g) if and only if either x is a critical point of g,
or x is not a critical point of g, but the hypersurface g~Kg(x)) does not in-
tersect transversally, at x, the sphere {z^Cm\ ||£|| = ||jt||}.

A polynomial g: Cm-+C is called M-tame if for any sequence {zk} QM(g)
such that Γim*_*oo||z*|| = °o, we have lim*_>βo|g(2*)|=°o. See [12] for properties
of M-tame polynomials.

A polynomial g: Cm->C is called quasitame if for any sequence {zk) <=Cm

such that lim^_>oo||-2'fej|:= °° and limΛ^oograd^ (^*)=0, we have \\mk_oo\g(zk)—(zk,
grad£(**)>I =oo. Here, < , •> denotes the Hermitian product on Cm. See [8],
[9] for properties of quasitame polynomials.

Follwing [13], [14], we will say that a polynomial g: Cm-^C satisfies
Malgrange's condition for to<=C if, for \\x\\ large enough and for g{x) close to
t0, there exists δ>0 such that ||x!| ||gradg(x)||^>d. Equivalent formulation is:
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There exists no sequence {zk} QCm such that lim*_»oo||2feH = °o, \\mk-*oog(zk)=^t0

and \imk^\\zk\\.\\gmάg(zk)\\=Q.
The next result seems to be well-known, see [12], [10], [15]. Its proof can

be easily obtained, by contradiction.

1.7. PROPOSITION. For ra^2, let g: Cm->C be a polynomial function.
(a) // g is quasitame, then g satisfies Malgrange's condition for ang ί o ε C ,
(b) // g satisfies Mai grange's condition for any tQ<=C, then g is M-tame.

We will show that these implications can not be reversed, if m^3(for (a),
see also [2]). More precisely, we have:

1.8. PROPOSITION, (a) For any n, q(=N\{0}, the polynomial fn,qis M-tame,
but not quasitame.

(b) The polynomial fn>q satisfies Mai grange's condition for any to^C, if and
only if n^q.

Thus, if f—fn>q for some n>q, then, by [14], the family / of projective
closures of fibres of / has nontrivial vanishing cycles, despite Remark 1.2.
Also, such an / is not ί-regular at infinity, in the sense of [15], since by [14],
the ί-regularity at infinity is equivalent to Malgrange's condition for any tQ^
C.

2. Proofs

2.1. Let g : Cm-*C be a polynomial function with only isolated singularities.
For an analytic curve p: (0, ε)~^Cm such that limc_*0II/>(ί)II = °°, we consider
the expansions in Laurent series:

(1) p(t)=ata+a1t
a+1+ •••, with α < 0 and aφQ

(2) gradg(p(t))=btP+b1tt
+1+ •••, wi th /3^0 and

and we denote L(g p) :=ord(gradg(p(f)))/ord(p(t))=β/a. Here, ord denotes the
order of series. It follows, for example from (the proof of) Proposition 1 in
[5], that

τ(σ /Λ Pι (°' ε ) ~ > c ' m i s a n analytic curveL{g, p) s u c h t h a t ( 1 ) a n d ( 2 ) a r e f u l f i l l e d

2.2. Proof of Proposition 1.4. Consider the curve Ψ: (0, l)-^Cm defined by :
:=(r*, r , 0). Then L(fn,q; Ψ)=-(n/q\ hence LUfn.q)£-(n/q)<0.
Let now consider an arbitrary analytic curve p : (0, ε)-»Cm, p{t)—{x{t), y{t),

z(f)\ such that lim^ollKOIN0 0.
If Htn^ollgrad/n,q(ί(f))||^0, then ord(grad/n,Q(/)(0))^0. Hence, L(fn>q;p)

n,q; Ψ).
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Suppose now that limt-»o||grad/n,β(/>(ί))||=0. Then lim^0y(t)=Q and

(4) lim(x(t))n-(y(t))q is a root of the equation l-(6n+3)T2+(6n+2)T3=0.

Hence

(5) y(t)ΈβO, lim y(t)=O and lim||;c(0ll = «>.
ί-*0 t->0

Therefore, we have:

(6) ord(;y(0)^ord(grad/Λ>g(Kί)))>0 and orά(p(t))£ord(x(t))<0

It follows, using (4) and (6), that

ord(y(Q) n
ord(/>(0) ~ ord(j&(0) ~ ord(jc(ί)) q '

Proposition 1.4 is proved. •

2.3. Proof of Proposition 1.8. Part (b) follows from (the proof of) Proposi-
tion 1.4.

If n, q<ΞN\{0} are fixed, then the curve Ψ(t):=(t-q, tn, 0) can be used to
show that fntq is not quasitame.

Suppose now that f=fn,q is not M-tame. Using Curve Selection Lemma
at infinity, see [12], one can find an analytic curve p: (0, ε)—>M(f), p{t)~
(x(t), y(t), z(t)\ such that l im^ 0 /QK0)eC. This implies that lim^0 grad f(p(t))
=0, hence relations (4) and (5) hold. The condition p{t)^M{f) means that

), y(t), z{t))

for some suitable analytic curve λ: (0, e)—>C. It follows that none of the com-
ponents of p(t) or of grad f(p(t)) is identically zero.

If A :=ord(x(0), B :=ord(y(t)) and C :=oτd((df/dx)(p(t))), then A<0, B>0,
C>0, and relations (4) and (7) give us

(8) ord(Ji(0)=C-i4, nA+qB=0 and

Since f=y(df/dy)+xa+(6q-3)x2ny2*-(6q-2)x*nyz<ι), it is easy to see that

\imt^(x(t))n (y(t))q is a root of the equation l+(6q-3)T2-(6q-2)Ts=0.

Thus, using (4), it follows that Yιmt^0(x(t))n-(y(t))Q=l. Hence we can assume
that

x(t)=tA, y(t)=tB+tB+D-p(t), with D>0 and p(0)=£0

(since (x(t))n-(y(t))q==l implies that (βf/dx)(p(t))=0). By a direct computation,
we find that
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terms,

hence, by (8), D=C. Next, the second component in (7) gives us

= -6q2-p{O)':tA^B+D-^h'igheT t e rms.

Hence, by (8), we have B = C=ΣK Finally, the third component in (7) gives us

^^ terms..-

Comparing the ledings coefficients, we obtain

which is impossible. Thus, Proposition 1.8 is proved. Π

2.4. Remark, ( i ) If n^q, it is possible to prove that fn>q is M-tame just

looking at the order of various Laurent expansions.

(ii) It is not difficult to see that for the polynomials fn>q, the Newton

nondegeneracy condition fails on a face of dimension 1. Using this, one can

construct other similar examples.
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