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ON THE FREQUENCY OF ZEROS OF

A FUNDAMENTAL SOLUTION SET OF

COMPLEX LINEAR DIFFERENTIAL EQUATIONS

SHUPEI WANG

Abstract

We give a complete characterization of those equations of the form (1.1)
which possess a fundamental solution set having few zeros. Some other
results are also obtained.

1. Introduction and Results

Consider a linear differential equation of the form

(1.1) / ( n ) +ί»- i (2)/ ( n - 1 ) + •- +PoW=O,

where n>2 and po(z), ..., pn-i(z) are polynomials with po(z)**0. It is well
known that every solution / of equation (1.1) is either a polynomial or a trans-
cendental entire function of positive rational order. Moreover, there are at
most n distinct positive rational numbers which form the set of all the possible
orders of transcendental solutions of equation (1.1). This list of rational num-
bers can be obtained either from the Newton-Puiseux diagram ([12], [13]), or
from a simple arithmetic, which was developed in [7], with the degrees of the
polynomial coefficients in (1.1). The interesting reader may refer to [7] for
more specific information about the possible orders of transcendental solutions
of an equation of the form (1.1).

In what follows, we denote the order of growth of an entire function /
by p{f), and the exponent of convergence of its zeros by λ(f). We assume
that the coefficients po(z), ..., pn-ι(z) in equation (1.1) are not all constants.

For equation (1.1), set dό—άQgpj{z) and

(1.2) r = l + max ^()
Oέjέπ-l 71— j

Then it is known [8, p. 127] that any solution / of (1.1) satisfies
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In [7], it was shown that there always exists a solution of equation (1.1)
that satisfies p(f)=γ, where γ is the constant in (1.2). In other words, the
upper bound γ in (1.3) is always reached. Specifically, set

(1.4) = maxa
n—m ozj^n-i n—j

Then we have the following result, which is an easy consequence of Theorem
2 in [7].

THEOREM A. // {flf f2, ..., /»} is a fundamental set of solutions of (1.1),
then there are at least n—q of them whose orders are γ.

Note that, from (1.4), 0<q<n—1. Hence, n—q^l. Therefore, it follows
from Theorem A that, among any fundamental solution set {flt f2, ..., fn\ of
(1.1), there must exist a least one of them whose order is γ. Here γ is the
constant in (1.2). There are examples in [7] which show that Theorem A is
sharp.

In this paper we use the above Theorem A to investigate the zeros of a
fundamental set of solutions of an equation of the form (1.1). Specifically, we
characterize those equations of the form (1.1) which possess a fundamental
solution set {flf f2, ..., fn\ with the property that λ(fk)<p{fk) for each k = l,
2, ..., n. (In literature, such a property of /* is called fk has a Borel excep-
tional value at zero.)

Brύggemann [3] and Steinmetz [9] proved the following result indepen-
dently.

THEOREM B. Suppose that the coefficients of equation (1.1) are not all con-
stants, and that the equation possesses a fundamental set of solutions {/Ί, /2, ...,
fn) with the property that λ(fk)<p(fk) for each l^Lkf^n. Then there exists a
nonlinear polynomial Q(z) such that

(1.5) fk(z)=gk(z)eQw, 6 = 1,2, ..., n,

where gk{z) is an entire function satisfying ρ(gk)<άegQ.

Theorem B was originally a conjecture of Frank [5] and Wittich [11]. In
[5] Frank proved Theorem B for the case when each fk has only finitely many
zeros. Both proofs of Theorem B in [3] and [9] are based on the theory of
asymptotic integration.

Thus, for an equation of the form (1.1) which admits a fundamental set of
solutions {fu /2, ..., fn} satisfying λ(fk)<ρ(fk) for each k=l, 2, ..., n, Theo-
rem B gives a characterization of all solutions in the fundamental set. But
then, what can be said about the equation? Our first result addresses this ques-
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tion. We obtain the following result.

THEOREM 1. Given an equation of the form (1.1) where the coefficients are
not all constants. Let pk(z)=Akz

dk-\-- , k=0, 1, ... f n—1, where Ak is a non-
zero constant and dk is the degree of pk(z). For each k=0, 1, ..., n—1, set

(1.6) Λf=\ n — k osjϊn-i n—j

[ 0 otherwise.

Define a polynomial h(t) as follows:

n(1.7) h(t)=tn+nΣ Aftk.
k = 0

Then the equation (1.1) admits a fundamental solution set {fu f2, ..., fn) with
the property that λ(fk)<p(fk) for all k = l, 2, ..., n, if and only if h(t)=(t+b)n

for some constant bφO.

We remark that if h(t)=(f+b)n for some constant bφO, then each coefficient
in equation (1.1) takes a special form. Specifically, we have for / = 0 , 1, ...,
n - 1 ,

(1.8)

where a is a positive integer, and (nΛ is the binomial coefficient. In other

words, an equation of the form (1.1) which possesses a fundamental solution
set {fu f2, . .., fn} satisfying λ(fk)<p(fk) for each k = l, 2, ..., n, if and only
if there exist a nonzero constant b and a positive integer a such that the coef-
ficient pj(z) of the equation takes the form (1.8) for all / = 0 , 1, ..., n—1. Hence,
Theorem 1 gives a complete characterization for those equations which admit
an exceptional fundamental solution set in the sense of Borel.

As an application of Theorem 1, we look at a special type of equations of
the form (1.1), where we assume the degrees of the coefficients in equation
(1.1) satisfy

(1.9) -n^-J = ΊΓ> / = l > 2 , . . . , n - l .

Then it is known that in this case every solution / ^ 0 of (1.1) has the order
p(f)=l+do/n. (See [13, Chapter 5] or [7, Theorem 1]). Hence, from Theorem
1, if the polynomial h(t) defined in (1.7) has at least two distinct zeros, then
among any fundamental set of solutions {/Ί, / 2, ..., fn}, there is at least one
of them, say fk, that satisfies λ(fk)=zp(fk)=^-\-d0/n. In other words, we proved
the following result.

COROLLARY 2. Given an equation of the form (1.1) where the coefficients are
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not all constants and satisfy (1.9). Suppose that the polynomial h(f) in (1.7) has
at least two distinct zeros. Then, if {fu f2, ..., fn\ is a fundamental set of
solutions for (1.1), X(fk)—l-\-do/n for at least one k in the set {1, 2, ..., n\.

We remark that Corollary 2 improves Satz 2 in [1], where the same con-
clusion was obtained under the stronger assumption that h(t) has only simple
zeros.

Next, we investigate the quantity mox^^n {λ(f j)\. Here {fu f2, ..., /„} is
any fundamental solution set for an equation of the form (1.1). From Theorem
A we observe that maxi^ S n ip(fj)} =γ, where γ is the constant in (1.2). Thus,
it follows that maxi^ ^ W(/; )} <*γ. This relationship raises a natural question,
namely what if maxiί^n W(/i)} <f? The following result gives a complete
answer to this question.

THEOREM 3. Given an equation of the form (1.1) where the coefficients are
not all constants. Let γ be the constant in (1.2) and h(t) the polynomial in (1.7).
Then equation (1.1) admits a fundamental solution set {fu f2, ..., fn\ satisfying

^, if and only if h(t)=(t+b)n for some contant bφO.

From inspection of Theorem 1 and Theorem 3, we see that if {flf f2, ...,
fn} is a fundamental set of solutions of (1.1), then m a x i ^ n {λ(fj)} <γ if and
only if λ(fk)<p(fk) for all l^k£n.

Notice that if h{t)=(t-\-b)n for some constant bφΰ, then the coefficient pj(z)
in (1.1) takes the special form (1.8). From (1.8) we see that, in this case, the
degree d3 of the coefficient pj(z) satisfies dj/(n—j)=do/n for all / = 1 , 2, ...,
n—1. Thus, from Theorem 3, we obtain immediately the following result.

COROLLARY 4. Suppose that dj nφm^x^^n.λd jlin— j). Then any funda-
mental solution set \fu f2, ..., fn\ of (1.1) satisfies

max {λ(fj)}=γ=1+ max — 3 —τ
—J

Finally, we examine the product function E=f1f2-'fn, where {fu f2, ...,
/„} is a fundamental set of solutions for an equation of the form (1.1). It is
easily seen that λ(E) = max1£J&n{λ(fj)}. Hence, Corollary 2, Theorem 3 and
Corollary 4 also hold for E. However, for the order of E, we have in general
only that p(E)^maxι^j^n{ρ(fj)} Note that, from Theorem A, m a x W s ! l l {p(fj)\
—y where γ is the constant in (1.2). Hence, it follows that p(E)^γ. Our final
result in this paper shows that the situation ρ(E)<γ will not occur unless all
the coefficients of the equation are constants. We prove the following result.

THEOREM 5. Given an equation of the form (1.1) where the coefficients are
not all constants. Let {fu f2, ..., /„} be a fundamental set of solutions of (1.1),
and let E—fJ2 ••• / „ . Then
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p(E)=r=l+ max —
J
—.

' Or*jzn-1 n—J

Bank and Laine [2] studied intensively the product function E=f1f2, where
/i and f2 are two linearly independent solutions of

(1.10) f"+A(z)f=0,

where A(z) is an entire function. When A{z) in (1.10) is a polynomial, they
proved, among other things, that λ(E) = p(E)=l+(l/2)άegA. The proof of
this result is based on an identity satisfied by the function E, see [2]. Such
an identity, however, does not seem to exist for the general higher order equa-
tion like (1.1). Apparently, Theorem 3 and Theorem 5 generalize this result
of Bank and Laine. More than this, we provide a unified proof for all cases.

We also remark that a similar result to Theorem 5 was indicated in [9]
and [10].

Finally, we remark that all the results obtained in this paper are no longer
true without the assumption that the coefficients in (1.1) are not all constants.
Let cu c2, ... f cn be the n distinct roots of cn=l, and let fj(z)=exp(cjz) for
each y = l , 2, ..., n. Then {fu f2f ..., fn} forms a fundamental set of solutions
of the following equation

(1.11) /<*>_/=().

Furthermore, for this particular fundamental set, the function E=f1f2~ fn

==l.
It can be seen that all the results obtained are not valid for this fundamental
set of equation (1.11). Note that (1.11) is an equation of the form (1.1) but with
constant coefficients.

In § 2 we give a lemma which we will use in the proofs of Theorem 1 and
Theorem 3. We prove Theorem 1 in § 3. We prove the necessity part of
Theorem 1 by using Theorem A and Theorem B, and then we use Theorem 1
to prove Theorem 3 in § 4. Theorem 5 follows from Theorem 3, and the proof
will be given in § 5. In § 6 we give a remark on an improvement of Theorem 1.

2. An auxiliary result

We use the following lemma in the proofs of Theorem 1 and Theorem 3.

LEMMA. Let / ^ 0 be a solution of an equation of the form (1.1), and
be an entire function. Set

(2.1) u = fe~Q.

Then u satisfies the following equation

(2.2) K W + f t ^ φ a <»-i>+ ... +bo(z)u=O,

where the coefficients bo(z), . .., bn-i(z) may be expressed in the form
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bn-i=pn-ι+nQ',
(2 3) ,

for / = 0 , 1, ..., n—2. Here Hk-.X{Q') stands for a differential polynomial of total

degree <^k—l in Q' and its derivatives, with constant coefficients, and ( £ )

stands for the binomial coefficients. Moreover, we set pn(z)=l in (2.3).
Furthermore, suppose that the constant γ in (1.2) is an integer which is greater

than one, and that the function Q{z) in (2.1) is a polynomial of degree γ having
the form

(2.4) Q(z)=γCzr+ », cΦO.

Let h(t) be the polynomial defined in (1.7). Then the coefficients of equation (2.2)
are polynomials taking the form

h(j)(r)
(2.5) bj(z)= ^ 'g(»-J><r-i>+ ... , y=0, 1, ..., n-\.

Proof. From (2.1) we have f—ueq. Then, by induction, it can be proved
that for each p=l, 2, ..., n,

(2.6) f™

Substituting (2.6) into equation (1.1) we obtain (2.2) and (2.3).
To get (2.5), we make use of (2.3). By (1.6), we may rewrite pk(z) in the

following form

(2.7) pk(z)=Atz<»-k>«-ι>+ - ,

for all k=0, 1, ..., w — 1. Then, by inspection ot the leading term of bj(z) in
(2.3), we obtain (2.5) from (2.4), (2.7), and the definition of h(f) in (1.7). This
proves the lemma.

3. Proof of Theorem 1

Proof of Necessity. Suppose that the equation (1.1) possesses a fundamental
solution set {fly /2, ..., fn\ which satisfies λ(fk)<p(fk) for all k = l, 2, ..., n.
Then we show that h(t)=(f+b)n for some constant bφO.

From Theorem B, there exists a nonlinear polynomial Q(z) such that

(3.1) fk(z)=gk(z)e<*<'>, £ = 1,2, . . . , n,

where gk(z) is an entire function satisfying

(3.2) ρ(gk)<degQ(z), k=l, 2, ..., n.



FREQUENCY OF ZEROS OF A FUNDAMENTAL SOLUTION SET 149

Hence, it follows from (3.1) and (3.2) that /o(/*)=degQ for all l^k^n. Com-
bining this fact with Theorem A imply that άegQ=γ, where γ is the constant
in (1.2). Thus, γ is an integer which is greater than one.

Write

(3.3) C W = y

where cφO is a constant, and set

(3.4) f=geQ.

By substituting (3.4) into equation (1.1), we obtain from the lemma in § 2 that
g solves the following equation

(3.5) £ ( n ) +&n-i(z)£ ( n - 1 ) + - +bo(z)g=O,

where the coefficients bo(z), ..., bn-i(z) are polynomials having the form

(3.6) &/*)=^y|^Z<»->>«'-1>+ •- , y = 0, 1, ... , 72-1.

Here h(f) is the polynomial defined in (1.7) and γ is the contant in (1.2).
Since {/i/2, ..., fn) is a fundamental solution set for (1.1), it follows from

(3.1) and (3.4) that {gu g2, . .., gn] is a fundamental solution set for equation
(3.5). Moreover, from (3.2) and (3.3), we see that

(3.7) ptekXγ for all 6 = 1,2, ..., n.

Therefore, by Theorem A, we conclude from (3.6) that

(3.8) Λ<»(c)=0 for all ; = 0 , 1, ..., n - 1 .

Since otherwise, from (3.6), we would obtain for equation (3.5) that

1+ max
n-l Π—J

and then, from Theorem A, there would be at least one of the solutions in the
set {gΊ, g2, ..., gn\ which has order γ. But this contradicts (3.7).

Note that, by (1.7), h(f) is a polynomial of degree n. Therefore, from (3.8),
we obtain

where c is the constant in (3.3). By taking b= — c, and observing that c is a
nonzero constant, we obtain our result. This proves the necessity part of
Theorem 1.

Proof of Sufficiency. Let h(t) be the polynomial defined in (1.7), and suppose
that h(t)=(t+b)n for some constant bφO. Then, by the definition of hit) in
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(1.7), we see that the leading term of each coefficient in (1.1) takes a special
form, namely,

(3.9) pfc)=(J[)b*->z*<»-»+.», 7 = 0 , 1, ..., n - 1 ,

where a is a positive integer see also (1.8). Hence, the relation (1.9) is satisfied

with equality, and consequently, every solution / ^ 0 of (1.1) has the order

(3.10) p(f)=l+a.

Set

(3.11) f

Since / is a solution of (1.1), a substitution of (3.11) into (1.1) implies that u
satisfies the equation

(3.12) tt<n>+&n_1(s)κ<n-1>+ ••• +bo(z)u=O.

Here the coefficients bo(z), ..., bn-ι(z) are polynomials taking the form

(3.13) btz)=Bjz*<*-»-1+ -., 7=0, 1, ..., 72-1,

where B3 is a constant, which may or may not be zero. Note that we obtain
the leading term of b}(z) in (3.13) by applying a similar argument as to (2.5)
in §2.

Hence, from (1.3) and (3.13), we obtain that the order of any solution of
(3.12) satisfies

(3.14) tfu)£l+ max - ^ £ 1 + max

Now, let {uu u2y ..., un\ be a fundamental solution set for (3.12). Then,
by choosing

(3.15) fk = ukexp(-j^z1+ή, k = l, 2, ..., n,

we obtain from (3.11) that {fu / 2, ..., /„} forms a fundamental set of solutions
for (1.1). For this particular solution set, we see from (3.15) and (3.14) that
λ(fk)^ρ(uk)<p(fk) holds for all k — l, 2, ..., n. This shows the existence of a
fundamental solution set for (1.1) that has the desired property. Hence, the
sufficiency part is proved.

4. Proof of Theorem 3

The sufficiency is covered by the corresponding part in Theorem 1. We
only prove the necessity.

We suppose that the equation (1.1) admits a fundamental solution set {fu
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fiy ..., fn) satisfying max^** {λ(fj)} <γ, where γ is the constant in (1.2). Since
γ is the order of at least one solution in this fundamental set (by Theorem A),
γ is an integer.

Again, let h(t) be the polynomial defined in (1.7). Then we will show that
h(f)=(t+b)n for some constant bΦO.

We choose a number coφ0 such that h(co)Φθ, and set

/=wexp( —(4.1)

Then, by substituting (4.1) into equation (1.1), we obtain from the lemma in §2
that u satisfies the equation

(4.2) u™+bn-i(z)u<»-ι> + ••• +bo(z)u=O,

where bo(z), ..., bn-i(z) are polynomials having the form

(4.3)

for all ; = 0 , 1, ..., n-L
Set

(4.4)

.

= l, 2, ..., n

is a fundamental set, so is {ulf u2,
wi, M2, ..., un} is a fundamental set of

un}. Specifically,
solutions of equa-

Since {fu f2, ..., /«
from (4.1) and (4.4),
tion (4.2).

Recall that the constant c0 is so chosen that h(co)Φθ. Hence, from (4.3)
we see that άegbo=n(γ—l) and (άegbj)/(n—j)<(άegbo)/n, y=l, 2, ..., n — 1.
Thus, it follows that every solution u^O of (4.2) has the order l+degbo/n=γ.
(See the paragraph before Corollary 2 in § 1). In particular, we have

(4.5) p(uk)=r,

On the other hand, from (4.4), we have λ{uk)—λ{fk) for each k = l, 2, ..., n.
Hence, by hypothesis, we obtain that max {λ(uj)}= max {λ(fj)\ <γ. Combining
this fact with (4.5) we conclude that the set {ulf u2, ..., un), which is a funda-
mental solution set for (4.2), has the property that λ{uk)<p{uk) for all k = l, 2,
..., n. Therefore, we may apply Theorem 1 to equation (4.2). Doing this
implies that there exists a nonzero constant b0 such that

(4.6)

holds for any complex number t. Here the left-hand side of (4.6) is the poly-
nomial in (1.7) with respect to equation (4.2).

By comparing likewise terms, we obtain from (4.6) that
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i.e.,

(4.0 h ( O - ( B _ Λ ! < > . , J υ, i, ...,n i .

Recall the definition of h(t) in (1.7), we obtain from (4.7) that

for all y=0, 1, ..., n —1.
Next, we will use the recurrence relation (4.8) to show that

(4.9) ΛJ

Observe that, once (4.9) has been established, then necessity part of Theorem 3
will follow immediately, because from (4.9) and (1.7), we obtain h(t)=(t+b0— co)

n.
Obviously, b0Φc0, since otherwise, by (4.9), all A* would be zero, which is im-
possible by the definition of A$ (see (1.6)). Hence, by taking b—bo—co, we
obtain the necessity part of Theorem 3.

To prove (4.9), we use induction on j . Consider j—n — 1. Then we obtain
from (4.8) that

Hence, it follows that At^1=n(b0—c0), which shows that (4.9) holds when —
7 2 - 1 .

For the induction step, we now assume that for some 0^m<n— 2, (4.9)
holds for all y = m + l , m+2, ..., n — 1, i.e.,

(4.10) ^ = ( y ) ( & o - 6 o ) n - ' , ; = m + l, m+2, ..., n-1.

Then we show that (4.9) holds for j=m.
Substituting (4.10) into (4.8) with j=m, we obtain

(72-m)! ° ' (tt-m-1)!

(n—f
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from which it follows that

However, (4.11) is (4.9) with j—m. Hence, this proves the induction step, and
therefore completes the proof of the necessity of Theorem 3.

5. Proof of Theorem 5

Let {fu f2, ... f fn) be a fundamental set of solutions of (1.1), and £ = / i / 2

'"fn. Recall that λ(E)=max^^n{λ(fj)} and that λ(E)£ρ(E)^γ, where γ is the
constant in (1.2). Hence, if m a x l g ^ n {λ(fj)} —γy then it follows immediately that
p(E)=r.

Thus, we need only to consider the case when m a x ^ ^ n {λ(fj)} <γ. In this
case, from the remark following Theorem 3, we see that the fundamental set
\fu ft, • ••> fn\ satisfies λ(fk)<p{fk) for all l<k<n. Hence, by Theorem B,
there exists a nonlinear polynomial Q(z) such that

(5.1) fk(z)=gk(z)eQ{z), k = l, 2, ..., n,

where gk{z) is an entire function satisfying

(5.2) p(gk)<άzgQ{z), * = 1, 2, ..., n.

Moreover, it follows from Theorem A that

Therefore, from (5.1) we obtain

(5.4) E=f1f2 -. fn=(gίg2 - gn)en*.

Then, by (5.2), (5.3), and (5.4), if follows immediately that p(E)=γ. This proves
Theorem 5.

6. A remark

We remark that Theorem 1 in § 1 can be improved in a certain sence. Spe-
cifically, let λNR(f) denote the exponent of convergence of nonreal zeros of /,
then we can characterize those equations of the form (1.1) which possess a
fundamental solution set having few nonreal zereos. Corresponing to Theorem
1, we have the following result.

THEOREM 6. Assume the hypotheses of Theorem 1. Then the equation (1.1)
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admits a fundamental solution set {fu f2, ..., fn) with the property that

(6.1) λNR(fk)<p{fk), £ = 1 , 2 , ..., 72,

if and only if h{t)—{t-\-b)n for some constant bφQ.

For the proof of Theorem 6, we may apply the same argument as in § 3.
Since λNR{f)<λ(f) holds trivially for any entire function /, the sufficiency part
of Theorem 6 follows immediately from that of Theorem 1. To prove the
necessity part of Theorem 6, we use a result of Brύggemann, see [4, Theorem
5]. As see from §3, the proof of the necessity of Theorem 1 depends heavily
on Theorem B in § 1. However, Brϋggemann [4] showed that the conclusion
of Theorem B still holds under the weaker assumption that the equation (1.1)
possesses a fundamental set of solutions {fu f2, ... f fn\ satisfying (6.1). Hence,
by using this result of Brύggemann instead, and applying the same argument
as in § 3, we obtain the necessity part of Theorem 6.

The following result follows easily from Theorem 6 and the fact discussed
in the paragraph before Corollary 2 in § 1.

COROLLARY 7. Let P(z) be a polynomial of degree d^l, and let {flt / 2, ...,
fn] be a fundamental set of solutions of

Then at least one of flf f2, ..., fn has the property that its sequence of nonreal
zeros has exponent of convergence equal to (n + d)/n.

We remark that Corollary 7 generalizes Theorem 1 in [6], where the same
result was obtained for the case w=2.
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