
Q. CHEN
KODAI MATH. J.
20 (1997), 85—91

ON THE FIRST EIGENVALUE OF MINIMAL SUBMANIFOLDS

QING CHEN

§ 1. Let (M, gtJ) be a Riemannian manifold. Given a compact domain DczM
with Cx-boundary, the first eigenvalue of D of the Laplacian under the Dirichlet
boundary condition is defined to be the smallest positive number λx such that, for
some non identically zero function /, f\dM=O and Af-\-λ1f=O, where Δ is the
Laplacian of M and action of Δ on functions is defined by

The first eigenvalue of domain D is denoted by λι(D) in this paper. For
the first eigenvalue of minimal submanifolds in a space form, S. Y. Cheng, P. Li
and S. T. Yau [CLY] proved

Let M-+N(c) be a minimal immersed n-dimensional submanifold, N(c) is a
space form of constant curvature c=l, 0 or —1. Suppose D is a C2 compact
domain in M. If DcB(a), a geodesic ball of radiusa in N(c), if c=l then assume
a<π/2, otherwise α < + oo, then

where Ba(n, c) is a geodesic ball of radius a in an n-dimensional space form of
constant curvature c.

Motivating by a paper of V.G. Tkachev [T], we generalize above theorem
as following.

THEOREM 1. Let N be a Riemannian manifold with the sectional curvature
bounded from above by a constant c. Denote Ba(p) the geodesic ball of N of
center p and radius a, i{p) the injective radius of N at p.

Let M be an n-dimensional immersed minimal submanifold in N. Suppose D

is a compact domain with C1-boundary in M. If DdBa(p) for some p^M, assume

either a<i(p) when c<0 or a<min(i(p), π/2\Γc) when c>0. Then

n, c)),
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where Ba(n, c) is a geodesic ball of radius a in an n-dimensional space form of
constant curvature c.

When the domain D has C2-boundary, the theorem can be obtained easily
from the heat kernel comparison theorem of S. Markvorson [M], see the remark
in section 2.

Theorem 1 gives a lower bound of the first eigenvalue of minimal submani-
folds which only depends on the upper bound of sectional curvature of ambient
manifold. Recently Coghlanand and Itokawa [CI] obtained a lower bound of
injective radius of submanifolds which also depend on the upper bound of
sectional curvature of ambient manifold.
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Ochiai for his inspiring guidance and consistent encouragement. The author
would like to thank the refree for many useful suggestions, and informing me
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§ 2. Let M be an n-dimensional minimally immersed submanifold in N.
Denote the covariant derivative of N and M by D and V respectively. The
second fundamental form A of M is a symmetric linear map from TMξQTM
to the normal bundle of M, defined by

(1) A(X, Y)=-DXY+VXY, for X, YΪΞTM.

M is said to be minimal if tΓi4=0.
Denote r the distance function of N with respect to a fixed point p0. Sup-

pose the sectional curvature of JV is bounded from above by a constant c. For
any point p in cut locus of p0, r is smooth at p, and the Hessian comparison
theorem ([CE]) reads

(2) {Dh){X, X){p)^(^°r){p){\X\*-(X, Dr>*),

for any X^TPM. Where φc(t) is the solution of following

(3)
φe(ΰ)=O, pί(O)=l,

i.e.

1

(4)

- r— sinVTί, if c>0;

f, i fc=O;

1
/ 7— τsinhVk|ί, if c<0.

V \c\
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In t h e fol lowing, r\M is sti l l d e n o t e d b y r .

PROPOSITION. We have, in MnBi(Po)(po),

(5)

where Δ is the Laplacian of M.

Proof, For a point p<=Mr\Bι(Po)(po). Choose elf e2, ..., en, an orthonormal
basis of TPM, then

φe

This prove the proposition.

Before proceed further we recall some well known facts about eigenfunction
of space form. We denote Δc the Laplacian of n-dimensional space form Nn(c)
of constant curvature c, and p the distance function of Nn(c) with respect to a
fixed point. It is well known

(6) Acp=(n-l)&op9

ψc

Suppose / is a first eigenfunction of domain Ba(n, c)dNn(c). We can write
f=f(p) since / is rotationally symmetric. Then by (6), Δc/+Λ(i5α(n, c))/=0
and f\dBa(n,c)=0 imply that / satisfies

, , 3(a(n, c))φc(t)f=Q
(7) \

I /'(0)=/(α)=0,

and f(t)>0 for fe[0, α). (If there were fce[0, α) such that /(6)=0, then / would
be a first eigenfunction of 56(n, c ), contradicts with B6(n, c)>Ba(n, c)).

LEMMA 1 (Corollary 1 of Theorem 4 of [SY]). Given any compact domain
D in M with C1-boundary, for any positive C2 function f defined on D,

7~)
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Proof of Theorem 1. Let / be the solution of (7) and put F—f°r. Then
F is a smooth function on the domain DdBa(p) and F is positive in interior of
D. We have

(8) AF=fΌrAr+f"°r\Vr\\

We shall show in next section (Theorem 2) that / ' and frψ'c—ff/ψc are both
negative in (0, a). Submitting (5) into (8) we obtain

(9)
φc

+ / + ( | | ) (

= - λ ( B β ( n , c ))F,

where the last inequality is followed by | V r | 8 ^ | £ r | 2 = l . Thus the theorem is
followed by the Lemma 1.

Remark. 1. When D is of C2-boundary, Theorem 1 is an easy corollary of
a result of Markvorson [M], we show this as follow:

Let p(t, x, y) and p(t, x, y) be the heat kernels of D and the corresponding
domain in the space form respectively. Then by the result of Markvorson [M],
we have

P(t, x, y)^P(t, x, y).

Let φί be the first eigenfunction of D, and λtf φιy the i-th eigenvalue and z-th
eigenfunction of the corresponding domain in the space form. Then

2£p(tf x, x)

<P(t, 0)

If ΛKlx, then

^ 1 2 — > 0

as ί-^+oo, it contradicts to the fact that φi(x)Φθ in the interior of D. So

2. By Hopf's maximal principle, Lemma 1 holds when D is a compact
domain with piecewise smooth boundary. Hence Theorem 1 is still valid in
this case.
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§3. Consider following equation with two parameters λ, μ.

I ψc(t)r(f)+μφVf)r(f)+2φe(t)f(f)=09 fe=[O, a),

(10) /(O)=€o>O, / /(0)=0,

I μ>0.

Let / be the solution of (10), we have

LEMMA 2. // / is positive in (0, a) and λ>0, then f is negative in (0, a).

Proof. Since y>ί(0)=l and φc(t)/t-*l as f->0, by (10)

i.e.

(11) /"(0)=-

Thus f(t) is strictly decreasing in some neighbourhood of origin, since f'(0)=0.
If / take a local minimum at fo^(O, a), then /'(fo)=0 and by (10) f"(to)=-λf(to)
<0, a contradiction. So / is non-increasing function in (0, α), i.e. / ' ^ 0 in (0, α).

To prove the lemma we suppose there is a U^φ, a) such that / /(ίi)=0, then
ίi is a local maximum of fit) which implies / / /(ίi)=0. Using equation (10) again
we get /(ίO^O, contradiction. This proves the lemma.

LEMMA 3. // f(t) is a solution of (10), then fι(t)=f'(f)/φc(t) is a solution of
(10) with two new parameters μ^μ+2, λ=λ—c(μ+ϊ) and

, /ί(0)=0.

Proof. As in the proof of Lemma 2

Differentiation of equation (10) yields

(12) ψcfm+(μ+l)φej

Divide (12) by t and put f->0, since

h m — - — — c h m — 1
t-0 t t-0 t

and φ'c(0)=l, //(0)=0, we get
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=(μ+2)f(0),
i.e.

(13) /"'(0)=0.

On the other hand we compute directly that

f,m_ -ψc(t)f"(t)+φ'c(t)f'(t)

(14)

So that

φ\(

_ „ . ψΊ{t)f'{t)+ψ'0{t)f"(f)-r"{t)φc{t)-f"{t)ψ'c{t)
ί-o 2ψc(t)ψ'c(t)

and

φcf'{+(μ+2)φ'cfί+(λ-c(μ+l))φcfι

^f+f)+f+(μ+)^

where the last equality is followed by equation (10) and φ'c'+c<pc=0. This com-
plete the proof of the lemma.

Combining with Lemma 2 and Lemma 3 we have

THEOREM 2. Let f be a solution of (10) with μ=n-l and λ=λι(Ba(n, c)),
and f is positive in [0, a). If c>0 we assume a<π/2^/Ύ. Then f and —φcf"
•\-φ'cf' we both negative in (0, a).
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Proof. The negativity of / ' is followed from Lemma 2. By Lemma 3,
fι=—ff/ψc is a solution of (10) with μ=n+l and λ=λι(Ba(n, c))—cn, and fx

is positive in [0, a). Notice λι(Ba{n, c))—cn>0, since when c>0 by assumption
(cf. [Ch]),

λ1(Ba(n> c^yλ^BπJn, c))=cn.
2ΊC

So by Lemma 2 again we see {d/dt)fλ<Q in (0, a), which implies —φcf"+φ'cf'
< 0 in (0, a), we complete the proof.
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