NOTE ON $B P$-THEORY FOR EXTENSIONS OF CYCLIC GROUPS BY ELEMENTARY ABELIAN p-GROUPS

Nobuaki Yagita

Introduction

Let $B P^{*}(-)$ be the Brown-Peterson cohomology theory and $K(m)^{*}(-)$ the Morava K-theory. It is conjectured [K-Y], [H-K-R], [H] that $B P^{\text {odd }}(B G)=$ $K(m)^{\text {odd }}(B G)=0$ for finite groups and even compact Lie groups G. In this note we show that the conjecture is affirmative for the cases G are extensions

$$
\begin{equation*}
0 \longrightarrow(Z / p)^{n} \longrightarrow G \longrightarrow Z / p^{s} \longrightarrow 0 \tag{0.1}
\end{equation*}
$$

We first show $H^{\text {odd }}\left(B Z / p^{s} ; B P^{*}\left(B(Z / p)^{n}\right)=0\right.$ and hence $B P^{\text {odd }}(B G)=0$. Using a result of Tezuka-Yagita [T-Y], we next see $K(m)^{\text {odd }}(B G)=0$.

This note is motivated by the Kriz' study $K(m)^{*}(B G)$ for $p=3, n=4$ and $s=2$. (Recently he announced the similar result as above.) The author thank to Bjon Schuster and Geoffrey Falk for some arguments.

§ 1. $B P^{*}\left(B(Z / p)^{n}\right)$

It is well known [L], [J-W] that $B P^{*}\left(B(Z / p)^{n}\right) \cong \otimes^{n}{ }_{B P *} B P^{*}(B(Z / p))$ and $B P^{*}(B Z / p) \cong B P^{*}[[y]] /([p](y))$ where $[p](y)=y+{ }_{B P}+\cdots+{ }_{B P} y=p y+v_{1} y^{p}+\cdots$ is the p-th sum of the formal group law for $B P$-theory with the coefficient $B P^{*}$ $=Z_{(p)}\left[v_{1}, \ldots\right]$. We will study more detail in this section.

Recall the Milnor operation $Q_{0}=\beta, Q_{n}=Q_{n-1} \rho^{p^{n-1}}-\rho^{p^{n-1}} Q_{n-1}$ (for $p=2$, $\left.Q^{0}=S q^{1}, Q_{n}=Q_{n-1} S q^{2^{n}}-S q^{2^{n}} Q_{n-1}\right)$ and let us write $H^{*}(B Z / p ; Z / p) \cong Z /[y] \otimes$ $\Lambda(x), \beta x=y$ (for $p=2$, let $y=x^{2}$). Then $Q_{n} x=y^{p^{n}}$. Recall $P(i)^{*}(-)$ is the complex oriented cohomology theory with the coefficient $P(i)^{*}=B P^{*} /\left(p, \ldots, v_{n-1}\right)$ $=Z / p\left[v_{n}, \ldots\right]$ (see $[\mathrm{J}-\mathrm{W}]$ for details). In the spectral sequence

$$
E_{2}^{*} *=H^{*}\left(X ; P(i)^{*}\right) \Longrightarrow P(i)^{*}(X),
$$

the first non zero differential is $d_{2 p^{2}-1}(x)=v_{i} \otimes Q_{i}(x)$ for all $x \in H^{*}(X ; Z / p)$.
Consider Atiyah-Hirzebruch spectral sequences

$$
\begin{aligned}
& E_{2}^{*} *(X)=H^{*}\left(X ; B P^{*}\right) \Longrightarrow B P^{*}(X) \\
& E_{2}^{*} *(X \times B Z / p)=H^{*}\left(X \times B Z / p ; B P^{*}\right) \Longrightarrow B P^{*}(X \times B Z / p) .
\end{aligned}
$$

Received September 18, 1995; revised April 25, 1997.

Lemma 1.1. Assume that there is a filtration such that $\operatorname{gr} E_{\infty}^{*, *}(X)=$ $\oplus_{i=0}^{n-1} P(i+1) * Q_{0} \cdots Q_{i} G_{2}$ for some $G_{i} \subset H^{*}(X ; Z / p)$. Then there is a filtation such that

$$
\operatorname{gr} E_{\infty}^{* * *}(X \times B Z / p)=\oplus_{i=0}^{n} P(i+1)^{*} Q_{0} \cdots Q_{i} G_{i}^{\prime}
$$

with $G_{i}^{\prime}=G_{i} \otimes Z / p\left\{1, y, \ldots, y^{\left.p^{2+1-1}\right\}} \oplus G_{i-1} \otimes Z / p[y]\{x\}\right.$ here $Z / p\{a, \ldots\}$ means the free Z / p-module generated by a, \ldots.

Proof. Consider the spectral sequence

$$
E E_{2}^{*}{ }^{*} *=H^{*}\left(B Z / p ; \operatorname{gr} E_{\infty}^{*} *(X)\right) \Longrightarrow \operatorname{gr} E_{\infty}^{* * *}(X \times B Z / p)
$$

The $E E_{2}$-term is a direct sum of $P(i+1)^{*} \otimes Q_{0} \cdots Q_{i} G_{i} \otimes Z / p[y] \otimes \Lambda(x)$. Since $d_{2 p^{2+1}-1} x=v_{i+1} \otimes Q_{\imath+1} x=v_{i+1} y^{p^{2+1}}$ in the above $P(i+1)^{*}$-module, we get

$$
\operatorname{gr} E_{\infty}^{* * *}(X \times B Z / p)=E E_{\infty}^{* * *}
$$

$$
=\oplus_{i=0}^{n}\left(P(i+1)^{*}\left\{1, \ldots, y^{p^{2+1-1}}\right\} \oplus P(i+2)^{*}[[y]]\left\{y^{p^{2+1}}=Q_{\imath+1} x\right\}\right) Q_{0} \cdots Q_{i} G_{\imath}
$$

Therefore taking G^{\prime} as stated in this lemma, we have

$$
\operatorname{gr} E_{\infty}^{* *} *=\oplus_{i=0}^{n} P(i+1)^{*} Q_{0} \cdots Q_{i} G_{i}^{\prime}
$$

Let us write $H^{*}\left(B(Z / p)^{n} ; Z / p\right)=S_{n} \otimes \Lambda_{n}$ with $S_{n}=Z / p\left[y_{1}, \ldots, y_{n}\right]$ and Λ_{n} $=\Lambda\left(x_{1}, \ldots, x_{n}\right)$ with $\beta x_{i}=y_{2}$.

Corollary 1.2. $\operatorname{gr~} B P^{*}\left(B(Z / p)^{n}\right) \cong \oplus_{i=0}^{n=1} P(i+1) *\left(\operatorname{Im} Q_{0} \cdots Q_{i} \cap S_{n}\right)$.
For non negative sequence $I=\left(i_{1}, \ldots, i_{n}\right)$, denote by y_{I} the element $y_{1}^{2_{1}} \cdots y_{n}^{\imath_{n}}$ in $H^{*}\left(B(Z / p)^{n} ; Z / p\right)$ or in $B P^{*}\left(B(Z / p)^{n}\right)$. Define length $l(I) \geqq m$ if there is a subsequence $\left(i_{s o}, \ldots, i_{s m}\right) \subset I$ such that $p^{k} \leqq i_{s k}$ for all $0 \leqq k \leqq m$. Since

$$
Q_{0} \cdots Q_{m}\left(x_{1} \cdots x_{m+1}\right)=y_{1} y_{2}^{p} \cdots y_{m+1}^{p^{m}} \text { module }\left\{y_{I} \mid l(I)<m\right\}
$$

we can easily prove

$$
\left\{y_{I} \mid l(I)=m\right\}=\operatorname{Im} Q_{0} \cdots Q_{m} \cap S_{n} \text { modulo }\left\{y_{I} \mid l(I)<m\right\} .
$$

Lemma 1.3. Taking filtration by $l(I)$, we have

$$
\operatorname{gr} B P^{*}\left(B(Z / p)^{n}\right)=\oplus_{i=0}^{n-1} P(i+1)^{*}\left\{y_{I} \mid l(I)=i\right\}
$$

§2. $B P^{*}(B G)$

We consider the spectral sequence

$$
\begin{equation*}
E_{2}^{* * *}=H^{*}\left(B\left(Z / p^{s}\right) ; B P^{*}\left(B(Z / p)^{n}\right)\right) \Longrightarrow B P^{*}(B G) \tag{2.1}
\end{equation*}
$$

induced from the extension (0.1). Let b be the generator of Z / p^{3}. The action of b on $(Z / p)^{n}$ is represented by an element in $U \subset G L_{n}(Z / p)$; upper triangular matrices with diagonal entry $=1$. Moreover changing basis in $(Z / p)^{n}$, the action b is represented as a Jordan's normal form, that is,

$$
\begin{equation*}
b y_{1}=y_{1}, \quad b y_{i}=y_{i}+{ }_{B P} \varepsilon_{2} y_{2-1} \quad \text { for } i \geqq 2 \text { and } \varepsilon_{i}=0 \text { or } 1 . \tag{2.2}
\end{equation*}
$$

The E_{2}-term of the spectral sequence (2.1) is expressed as

$$
E_{2}^{\prime} * \cong \begin{cases}\operatorname{Ker}(1-b) & \text { for } j=0 \\ \operatorname{Ker}(1-b) / \operatorname{Im} N & \text { for } j=\text { even }>0 \\ \operatorname{Ker} N / \operatorname{Im}(1-b) & \text { for } j=\text { odd }>0\end{cases}
$$

where $N=1+b+\cdots+b^{p s-1}$. We will prove;
Lemma 2.3. $\operatorname{Ker} N / \operatorname{Im}(1-b)=0$.
For the proof, we prepare some notations. Given an element $x \in$ $B P^{*}\left(B(Z / p)^{n}\right)$, we can uniquely write it from Lemma 1.3 as

$$
\begin{equation*}
x=\Sigma a_{I} y_{I} \quad \text { with } 0 \neq a_{I} \in P(l(I)+1)^{*} . \tag{2.4}
\end{equation*}
$$

For each sequence $I=\left(i_{1}, \ldots, i_{n}\right)$, define the moment by $\|I\|=i_{1}+\cdots+i_{n}$ and define the lexicographic order $I>I^{\prime}$ if there is k so that $i_{k}>i_{k}^{\prime}$ and $i_{j}=i_{\rho}^{\prime}$ for all $j>k$. Let J be the maximal order in which moment $\|J\|$ are smallest of I in (2.4), namely,

$$
\begin{equation*}
x=a_{J} y_{J} \quad \text { modulo }(\mathrm{BMSO}) \tag{2.5}
\end{equation*}
$$

where $(\mathrm{BMSO})=($ bigger moment and smaller order elements $)=\left\{a_{K} y_{K} \mid\|K\|>\|J\|\right.$ or $(\|J\|=\|K\|$ and $J>K)\}$.

Proof of Lemma 2.3 for the case $n \leqq p, s=1$ and $\varepsilon_{i}=1$ for $2 \leqq i$. First note that

$$
b y_{\imath+1}=y_{\imath+1}+{ }_{B P} y_{i}=y_{\imath+1}+y_{2} \bmod \left\{a_{I} y_{I} \quad\| \| I \|>p\right\} .
$$

So it is immediate that

$$
(b-1) y_{i+1}^{j}=\left(y_{i+1}+y_{i}\right)^{j}-y_{i}^{j}=j y_{i+1}^{j-1} y_{\imath} \bmod \text { (BMSO). }
$$

By the definition of the order, we can easily show if $i_{2} \neq 0 \bmod p$, then

$$
\begin{equation*}
(b-1) y_{I}=i_{2} y_{I}\left(y_{1} / y_{2}\right) \bmod (\mathrm{BMSO}) . \tag{2.6}
\end{equation*}
$$

Suppose $x \in \operatorname{Ker} N$. By inductive assumption on n, we suppose $j_{1} \neq 0$. From (2.6), we can take adequate $X \in B P^{*}\left(B(Z / p)^{n}\right)$ such that

$$
\begin{equation*}
x-(b-1) X=a_{J} y_{J} \bmod (\mathrm{BMSO}), \quad \text { with } j_{2}=p-1 \bmod p . \tag{2.7}
\end{equation*}
$$

Suppose the above element is non zero, that is $0 \neq a_{J} \in P(l(J)+1)^{*}$. Let $y_{2}(p)=$ $\Pi_{i \in z / p} b^{2} y_{2}$ so that this element is invariant under b. Let $y_{J}{ }^{\prime}$ be element made from y_{I} exchanging factors y_{2}^{p} by $y_{2}(p)$, that is,

$$
y_{J}^{\prime}=y_{J}\left(y_{2}(p) / y_{2}^{p}\right)^{\left[\jmath_{2} / p\right]}=y_{1}^{\rho_{1}} y_{2}(p)^{\left[\rho_{2} / p\right]} y_{2}^{p-1} y_{3}^{\jmath_{3}} \cdots y_{n}^{\rho_{n} n} .
$$

Then we have

$$
\begin{aligned}
N y_{J}^{\prime} & =\left(y_{J}^{\prime} / y_{2}^{p-1}\right)\left(y_{2}^{p-1}+\left(y_{2}+y_{1}\right)^{p-1}+\cdots+\left(y_{2}+(p-1) y_{1}\right)^{p-1}\right) \\
& =\left(y_{J} / y_{2}^{p-1}\right)\left(-y_{1}^{p-1}\right) \bmod (\mathrm{BOMS}) .
\end{aligned}
$$

Since $l\left(y_{J}\left(y_{1} / y_{2}\right)^{p-1}\right) \leqq l\left(y_{J}\right)$, we know

$$
N \Sigma a_{I} y_{I}=a_{J} y_{J}\left(y_{1} / y_{2}\right)^{p-1} \neq 0 \quad \bmod (\mathrm{BMSO}) .
$$

This is a contradiction to $x \in \operatorname{Ker} N$. q.e.d.

Proof of Lemma 2.3 for the case $p+1 \leqq n \leqq p^{2}, s=2$ and $\varepsilon_{i}=1$ for $2 \leqq i$. Also suppose $x \in \operatorname{Ker} N$ and $j_{1} \neq 0$. Notice that $\left(b^{p}-1\right) y_{p+1}=y_{1} \bmod (\mathrm{BM})$ and $\left(b^{p}-1\right) y_{2}$ $=0$ for $i<p+1$. Hence we can take X and X^{\prime} so that $j_{2}=j_{p+1}=p-1 \bmod p$ and

$$
x-(b-1) X-\left(b^{p}-1\right) X^{\prime}=a_{J} y_{J}^{\prime} \quad \bmod (\mathrm{BMSO})
$$

where $y_{J}{ }^{\prime}=y_{J}\left(y_{p+1}(p) / y_{p+1}\right)^{\left[\rho_{p+1} / p\right]}\left(y_{2}(p) / y_{2}^{p-1}\right)^{\left[\rho_{2} / p\right]}$ and $y_{p+1}(p)=\prod_{i \in z / p} b^{2 p} y_{p+1}$.
Let us write $N^{\prime}=1+b+\cdots+b^{p-1}$. Then $N=\left(1+b^{p}+\cdots+b^{p(p-1)}\right) N^{\prime}$. By the arguments similar to the proof for the case $n \leqq p$, we see

$$
N^{\prime} y_{J^{\prime}}=y_{J}^{\prime}\left(-y_{2} / y_{1}\right)^{p-1} \bmod (\mathrm{BMSO}) .
$$

So we have

$$
\begin{aligned}
N y_{J}^{\prime} & =-\left(1+b^{p}+\cdots+b^{p(p-1)}\right) y_{J}^{\prime}\left(y_{1} / y_{2}\right)^{p-1} \\
& =y_{J}\left(y_{1}^{2} / y_{2} y_{p+1}\right)^{p-1} \bmod (\mathrm{BMSO}) .
\end{aligned}
$$

The length l of the above term is smaller or equal to $l\left(y_{J}\right)$, we also have $N x \neq 0$ and this is a contradiction.
q.e.d.

Proof of Lemma 2.3. The case $p^{m}+1 \leqq n \leqq p^{m+1}, s=m+1$ and $\varepsilon_{i}=1$ for $i \geqq 2$ are proved by the similar arguments. Taking X so that $j_{p^{t+1}}=-1 \bmod p$ for $0 \leqq t \leqq m$ and

$$
x-(b-1) X=a_{J} y_{J}{ }^{\prime} \bmod (\mathrm{BMSO})
$$

with $y_{J}{ }^{\prime}=y_{J} \Pi_{t=0}^{m}\left(y_{p t+1}(p) / y_{p}^{p} t_{+1}\right)^{\left[i p^{t} t_{+1} / p\right]}$ and $y_{p t_{+1}}(p)=\Pi_{i \in z / p} b^{2 p^{t}} y_{p t_{+1}}$. Then we can prove

$$
N y_{J}^{\prime}=y_{J}\left(y_{1}^{m+1} / y_{2} \cdots y_{p^{n}+1}\right)^{p-1} \neq 0 \quad \bmod (\mathrm{BMSO}) .
$$

So we see Lemma 2.3 for these cases. The cases with some $\varepsilon_{i}=0$ are proved more easily by using induction on n.
q.e.d.

Since $E_{1}{ }^{\text {odd, }} *=0$, the spectral sequence (2.1) collapses. Thus we get
Corollary 2.8. For groups G in $(0.1), B P^{\text {odd }}(B G)=0$ and $B P^{\text {even }}(B G)$ is multiplicatively generated by elements induced from $B P^{*}\left(B(Z / p)^{n}\right)^{Z / p^{s}}$ and $y_{b} \in$ $B P^{2}\left(B Z / p^{s}\right)$.

§ 3. $K(m)^{*}(B G)$

At first we consider the cohomology theory $\widetilde{P}(m)^{*}(-)$ with the coefficient $\widetilde{P}(m)^{*}=B P^{*} /\left(v_{1}, \ldots, v_{m-1}\right)=Z_{(p)}\left[v_{m}, \ldots\right]$. Note that $\tilde{P}(m)^{*} /(p)=P(m)^{*}$ and $\tilde{P}(1)^{*}$ $=B P^{*}$. We can easily prove the $\widetilde{P}(m)^{*}$-version of Lemma 1.1 and Lemma 1.3. The arguments in $\S 2$ also work for $\tilde{P}(m)^{*}$-theory. Hence we can prove $E_{2}{ }^{\text {odd, },} *(\widetilde{P}(m))=0$ for the spectral sequence

$$
E_{2}^{*} * *(\tilde{P}(m))=H^{*}\left(B Z / p^{s} ; \tilde{P}(m)^{*}\left(B(Z / p)^{n}\right) \Longrightarrow \tilde{P}(m)^{*}(B G) .\right.
$$

Using fact that $\tilde{P}(m)^{*}(G)$ is torsion free if $E_{2}^{\text {odd. } *(\tilde{P}(m))=0 \text {, we get the follow- }}$ ing;

Theorem 3.1 (Tezuka-Yagita, Theorem 2.6 in [T-Y]). Suppose that there is an extension

$$
1 \longrightarrow G^{\prime} \longrightarrow G \longrightarrow Z / p^{s} \longrightarrow 0
$$

such that $\tilde{P}(m)^{*}\left(B G^{\prime}\right) \cong \tilde{P}(m)^{*} \bigotimes_{B P *} B P^{*}\left(B G^{\prime}\right)$ and $H^{\text {odd }}\left(B Z / p^{s} ; \tilde{P}(m)^{*}\left(B G^{\prime}\right)\right) \cong 0$ for all $m \geqq 1$. Then $P(m)^{*}(B G) \cong P(m)^{*} \bigotimes_{B P *} B P^{*}(B G)$ and $K(m)^{*}(B G)=K(m)^{*}$ $\otimes_{B P^{*}} B P^{*}(B G)$ for all $m \geqq 1$.

Thus we get
Theorem 3.2. For groups G in (0.1), there are isomorphisms

$$
B P^{\text {odd }}(B G) \cong 0, \quad P(m)^{*}(B G) \cong P(m)^{*} \bigotimes_{B P *} B P^{*}(B G)
$$

and

$$
K(m)^{*}(B G) \cong K(m)^{*} \bigotimes_{B P *} B P^{*}(B G)
$$

for all $m \geqq 1$.

References

[H-K-R] h. Hopkins, N. Kuhn and D. Ravenel, Generalized group characters and complex oriented cohomology theories, to appear.
[H] J. Hunton, The Morava K-theories of wreath products, Math. Proc. Cambridge Philos. Soc., 107 (1990), 309-318.
[J-W] D. Johnson and W.S. Wilson, BP-operations and Morava's extraordinary K theories, Math. Z., 144 (1975), 55-75.
[K-Y] A. Kono and N. Yagita, Brown-Peterson and ordinary cohomology theories of classifying spaces for compact Lie groups, Trans. Amer. Math. Soc., 339 (1993), 781-798.
[L] P. LANDWEBER, Coherence, flatness and cobordism of classifying spaces, Proc. Advanced Study Inst. on Algebraic Topology, Math. Inst. Aarhus Univ., Aarhus, 1970, 256-269.
[T-Y] M. Tezuka and N. Yagita, Cohomology of finite groups and the BrownPeterson cohomology II, Lecture Notes in Math., 1418, Springer-Verlag, 1990, 57-69.

Faculty of Education
Ibaraki University
Mito, Ibaraki
JAPAN

