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Abstract

O’Neill introduced a notion of Riemannian submersion [7]. In this paper we give a new
notion of semi-Riemannian submersion and want to investigate some geometric proper-
ties concerned with sectional and Ricci curvatures of this submersion.

1. Introduction

The theory of Riemannian submersion was firstly introduced by O’Neill ([7])
and its geometric properties have been studied by many differential geometers
(Besse [1], Escobales Jr. [2], [3], Gray [4], Magid [5], Nakagawa and Takagi [6],
and Takagi and Yorozu [11]). In this paper we introduce a new notion of a semi-
Riemannian submersion which is more general than the notion of Riemannian
submersion and want to investigate its geometric properties.

The main purpose of section 2 is to give the notion of semi-Riemannian
submersion which contains the concepts of both Riemannian and indefinite
Riemannian (or said to be pseudo-Riemannian) submersions and to construct
some fundamental formulas for this submersion.

In section 3 we will give a typical example of semi-Riemannian submersion
of pseudo-hyperbolic space H*".

Now in section 4 the sectional curvature of semi-Riemannian submersion
will be defined and the sufficient conditions for the horizontal distribution %, of
the minimal semi-Riemannian submersion to be totally geodesic and integrable
will be studied in terms of sectional curvature.

Finally, in section 5 we also define the notion of Ricci curvature of the semi-
Riemannian submersion and want to investigate some geometric properties for
the horizontal distribution %, of the minimal semi-Riemannian submersion to
be totally geodesic and integrable in terms of Ricci curvature. Moreover, we will
give another example of minimal semi-Riemannian submersion which is not
totally geodesic.
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2. Preliminaries

Let M be an (m + n)-dimensional connected semi-Riemannian manifold of
index 7 + s(0<r=m, 0=<s=n), which is denoted by M7%%" and let B be an n-
dimensional connected semi-Riemannian manifold of index s, which is denoted
by BY. A semi-Riemannian submersion t: M — B is a submersion of semi-
Riemannian manifolds M and B such that

(1) The fiber 7~1(b), b € B, are semi-Riemannian submanifolds of M.

(2) The differential dx of & preserves scalar products of vectors normal to
fibers.

For a semi-Riemannian submersion 7: M — B vectors tangent to fibers are said
to be vertical and those normal to fibers are said to be horizontal. Any vector
field X on M can be decomposed as

X=X+ X,

where X' (resp. X”) denotes a vertical (resp. horizontal) part of X. We define
two tensors T and A of type (1, 2) on M by

(2.1) {T(X, Y) = (WY) + (V. Y),
. A(X, Y) — (V)('Y” "4 (Vx”YI 1/’

for any vector fields X and Y on M, where V denotes the Levi-Civita connection
on M. They are called integrability tensors for the semi-Riemannian submersion
m: M — B. We choose a local field ey, ..., e,,, of orthonormal frames adapted
to the semi-Riemannian metric of M in such a way that, restricted to the fiber
Jt—l(b), b €EB, e, ..., ey is alocal field of orthonormal frames adapted to a
semi-Riemannian metric of 7~'(b) induced from that on the semi-Riemannian
manifold M. The following convention on the range of indices will be used
throughout this paper:

A B C,D EF ...=1,...,m+ n;
Lkl ...=1,...,m
o,fB,v.6,...=m+1, ...,m+ n,

where m denotes the dimension of fibers. The summation X is taken over all
repeated indices, unless otherwise stated. Then we have < ey, eg > = £4043,
where <, > denotes the scalar product on M. The dual coframe field is denoted

by {w,4}. The connection form w,p are characterized by the structure equations
of M:

de +Z€B(DAB A g = O,
2.2) {wAB + wga = 0,
2.3) {deB + D EecWac A Ocg = Qap.
: 1
Qup = — EZSCSDRABCD(UC A Op,

where 2,45 denotes the curvature form of M and R, gcp are components of the
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Riemannian curvature tensor R with respect to the semi-Riemannian metric.
The Levi-Civita connection Von M is given by

(2.9 Ve.es =2 Ectca(ea)ec.
We define two tensors & and Aq of type (1, 2) on M by
h(X, Y) = (VyX')", Ao(X, Y) = —(Vy-X"),

for any vector fields X and Y on M. They are also called integrability tensors for
the semi-Riemannian submersion 7z: M — B. The integrability tensor & restricted to
a fiber means the second fundamental form of the fiber. It follows from (2.2)
and (2.4) that

h(ei; ej) = Zgafwafi(ej)ew AO(ew 8/3) = Egjwafj(eﬁ)ej’
In fact, by the definition we get

h(eb ej) = (ZECwCi(ej)eC)” = Zgawai(e])ew

On the other hand, it is seen by Gray [4] that the integrability tensor Ag
satisfies the following relation:

1
(25) AO(em eﬁ) = —AO(eﬁ» ear): - —2'[em eﬁ],7

and hence we get

Ao(ea p) = —(Cecocaleplec)’ = 2eiwqi(epe,.

Thus the only components hg¢ (resp. AZp) of h (resp. Ag) which may not vanish
are

hi = wa(e), (resp. A = w,iep)).
Accordingly the connection form w,, are given by
(2.6) Wy = DT + X egALpwp.

We may choose a suitable semi-Riemannian metric on the tangent bundle TM of
M and decompose TM as a direct product of a vertical distribution @y and a
horizontal one @4, where the vertical (resp. horizontal) distribution is defined
by an assignment of any point x in M with a tangent space (resp. the orthonormal
subspace) to a fiber through x. A distribution 9 is said to be integrable if [X, Y]
belong to 9 whenever vector fields X and Y belong to 9. Since the vertical
distribution %, is defined by w, =0 and it is integrable, by Cartan’s lemma we
have

2.7 hY = hg.
Since the integrability tensor Ag is also skew-symmetric, we get
2.8) Alg = A,

The semi-Riemannian submersion 7 ; M — B is said to be minimal if each fiber
is minimal, i.e., if it satisfies 28,~h,‘~}’= 0. The semi-Riemannian submersion
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m: M — B is said to be rotally geodesic if each fiber is totally geodesic, i.e., if it
satisfies Af= 0. By (2.5) the horizontal distribution 9 is integrable if and only if
2-9) o = 0.

Now for a tensor field T= (TAl B) on M, we define the covariant derivative
T§Y e by

(2.10) Zec 1 B ch = dTAl ZECT)%I /ga—lCAn-l‘ . 'AerA

s a

- zgcTBf-'-'-'B,,'_lcs,,ﬂu B,9cB,
Then, from the definition of (hfcp), (AAcp) and (2.6), it follows that
hie = — 2 eahfhfi  hija = — 3 eghfApa,
hﬁij = Esk/lﬁhgp hgiy = sz/lfﬂf;y,
hyc = Hocp = Hepp = 0, Ajog = — Sg,Atadllp,
Al = — DepApahfls Al = Sadopht,
AYgs = DeAlgAls, Afp = Afp = A&p = 0,

(2.11) h = > ehghs,
(2.12) hig, = EgkhikAﬁy,
(2.13) Ap = — 2e,AnAlp,
(2.14) Abjx = — 2 egAbghl

Moreover, by the exterior derivatives of (2.6) and by means of (2.2), (2.3)
and (2.10)—(2.14), we have

(2.15) Rajx = hij — hif, + Ayx — Ay
(2.16) Rajp = hijp — higi + Ap — Adg,
@.17) Ruigy = hS, — hig + Abgy — Al

Next, by virtue of (2.2), (2.3) and (2.10) we have the Ricci formulas for the
second covariant derivatives of h as the following
hfcpe — hfcep
= Yer(hBcRarpe + h#cRerpe + hBrRcrDE).

3. Examples

In this section typical examples of semi-Riemannian submersion of an (m +
n)-dimensional pseudo-hyperbolic space H;'*" are considered.

Let C or H be the field consisting of complex numbers or quaternion
numbers. They are simply denoted by K. In K**! with the standard basis, a
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semi-Hermitian form F is defined by
n+1

F(Z, W) - - 2 W + 2 Z]W],
Jj=r+1
where z=(zq, ..., Zp+1) and w=(wy, .. w,,+1) are in K"*1. The complex or

quaternion semi-Euclidean space (K n+l F) is simply denoted by K''*'. The
scalar product g'(z, w) is given by ReF(z, w) is a semi-Riemannian metric of
index dr in K*+1 where d =2 or d = 4 according as K= C or K=H. Let H{'*{~
be a real hypersurface of K'*!, r = 1, defined by

HO*1 = (7 € KM F(z, z) = —1},

and let g be a semi-Riemannian metric of H%*#~! induced from the semi-
Riemann metric g'. Then (H4*{~1, g) is the semi-Riemannian manifold of

constant sectional curvature —1 and with index dr — 1, which is called a unit
pseudo-hyperbolic space. For the unit pseudo-hyperbolic space H'*{~1 with
index dr—1 the tangent space T,(H%'*{~!) at each point z can be identified
(through the parallel displacement in K7'*') with {w € K"*': ReF(z, w)=0}.
Let T, be the orthogonal complement of the vector iz in T,(H3"*') or the

vectors iz, jz and kz in T,(Hj**3), where we denote by i an imaginary unit in C
and by 1, i, j and k a basis for H so that they satisfy i’ =j2=k>= —1, ij = —ji=
k, jk=—kj=i and ki= —ik =j. Let HiZ{ be the multiplicative group of these
numbers of absolute value 1. Then H*“~! can be considered a principal fiber
bundle over a pseudo-hyperbolic K-space H" ;K with group H4~} and the
projection &. Furthermore there is a connection such that T- is the horizontal
subspace at z which is invariant under the H¢%Z}-action. The metric g, of constant
holomorphic sectional curvature —4 is given by 8o, (X, V)= gé(X* Y*) for any
tangent vectors X and Y in Tb(H"_lK) where z is any point in the ﬁber ' (b)
and X* and Y* are vectors in T, such that d7X* =X and dnY* =

On the other hand, complex structures I: w —iw, J: w— jw and K we kw
in T, is compatible with the action of H4-} and induce almost complex structures
1, J and K on H}_; K such that drei = I°dm, dmwej = Jedr and dnek = K °dn. Thus
H _Kisa pseudo hyperbohc space over K of constant holomor?hlc sectional
curvature —4 and it is seen that the principal H4~}-bundle H%*¢~! over H* , K
with projection ris a semi-Riemannian submersion with the fundamental tensors /,
J and K. A distribution 9 determined by the subspace spanned by iz, jz and kz
at any point z is integrable. In fact, we have

(€RY) Vie(jz) = jVi(2) = jiz = —kz,
because j is parallel and H9"*{~! is totally umbilic in K7*!. This shows that liz,

jz] = —2kz. Since the others hold similarly, it means that the distribution & is
integrable. On the other hand, (3.1) implies that the maximal integral submanifold
of @ is totally geodesic. Thus the semi-Riemannian submersions have totally
geodesic time-like fibers H4-1
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Hd~% — HZn-f-ld—l
Z A
1
H;_K
In particular, we consider the case » = 1. Then there exist totally geodesic space-

like submersions 7: H3"*1 — H"C and x: HY"*3> — H"H whose basic manifold is
Riemannian.

4. Sectional curvatures

Let M =M7" be an (m+ n)-dimensional semi-Riemannian manifold of
index r + s and B = B} be an n-dimensional semi-Riemannian manifold of index
s. We denote by P, and P, the set of all definite plane sections and all non-
degenerate plane sections, respectively. For any non-degenerate plane section P,
the sectional curvature is denoted by K(P;). Let &: M — B be a semi-Riemannian
submersion. Then we have

(4.1) Rujp = hip — SehGht, + XAl Apy — Al
by means of (2.8), (2.11), (2.13) and (2.16). Assume that the semi-Riemannian
submersion 7: M — B is minimal. Then it is easily seen that we have
2ghip = 0,
from which the following
25Rajs = ~Zeahiihly + 2 Al ALy — ey
is derived. Since the left hand side and the first two terms of the right hand side

are symmetric with respect to indices wand S and the last one is skew-symmetric, we
have

4.2) SeRaip = ~Seahinly + Zee,AuAby.

THEOREM 4.1. Let m: Mj;*" — B” be a semi-Riemannian submersion. If
K(P;) = 0 and if the submersion is minimal, then it is totally geodesic and
horizontal distribution is integrable.

Proof. By (4.2) we get
SeRuja = —DgEhihy, + Dge AL AL, <0,

because of &= —1 and g, = 1. By the assumption K(P;) = 0 we get g€,Ryjja =
0. Thus we get =0 and A%z =0 for any indices. o

Similarly, using (4.2) one can prove the following:

COROLLARY 4.2. Let m: M7*" — B be a semi-Riemannian submersion.
If K(P;) = 0 and if the submersion is minimal, then it is totally geodesic and
the horizontal distribution is integrable.
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Certain semi-Riemannian submersions like those in Theorem 4.1 and Corollary
4.2 have simple geometric situation. The distribution & is said to be parallel if
the vector field VY belong to & whenever a vector field Y belongs to &. Let
m: M — B be a semi-Riemannian submersion with totally geodesic fibers. We
assume that the horizontal distribution %@ is integrable. Then by (2.4) and (2.6)
we have

VeAeB = 2 8YwYI3(eA )ey’

which means that the horizontal distribution is parallel. Thus the vertical distri-
bution orthogonal to @ is also parallel and hence one finds the following:

THEOREM 4.3. Let w: M;,*" — B" be a semi-Riemannian submersion. If it is
totally geodesic and if the horizontal distribution is integrable, then the total space
M is locally decomposed into the product manifold F X B.

Remark 1. Let w: Mj2*" — B" be a semi-Riemannian submersion. If it is
totally geodesic, the mixed sectional curvature K(U, X) is always non-positive,
where U (resp. X) is a vertical vector (resp. a horizontal vector).

Now, an m-dimensional semi-Riemannian manifold of index r and of constant
curvature c is called a semi-Riemannian space form, which is denoted by M7"(c).
Let mw: M2*"(c) — B" be a minimal semi-Riemannian submersion. We denote
by S the square of the length of the second fundamental form of the fiber, that
is, $=2Zgeehihi=2Zhih], because of g= -1 and & =1. Then by (4.2) we
obtain

S = e, epiALpAls — mnc.
From this equation we can conclude the following properties: For a minimal
semi-Riemannian submersion x: Mjy*"(c) — B"

(1) ¢ = 0 implies that ¢ =0, hf=0 and A’z =0 for any indices i, j, « and .

(2) ¢ < 0 implies S = —mnc, where the equality holds if and only if A.z=0
for all indices «, f and j.

Therefore we can state the following lemmas:

LeMMA 4.4. Let w: M7 (c) — B" be a semi-Riemannian submersion. If the
submersion is minimal and if ¢ = 0, then ¢ =0. Moreover it is totally geodesic and
the horizontal distribution is integrable.

LemMa 4.5. Let w: M7+ (c) — B" be a semi-Riemannian submersion. If the
submersion is minimal and if ¢ < 0, then S = —mnc, where the equality holds if
and only if the horizontal distribution is integrable.

Thus we can prove the following:

THEOREM 4.6. Let M be an (m + n)-dimensional semi-Riemannian space
form M™*"(c) of index m and B be an n-dimensional Riemannian manifold. If
¢ > 0, then there are no minimal semi-Riemannian submersions w: M — B.
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Similarly, the following properties can be verified:

Lemma 4.7.  Let m: M*"(c) — B}, be a semi-Riemannian submersion. If the
submersion is minimal and if ¢ = 0, then ¢ = 0. Moreover it is totally geodesic and
the horizontal distribution is integrable.

THEOREM 4.8. Let M be an (m+ n)-dimensional semi-Riemannian space
form M**"(c) of index n and B be an n-dimensional semi-Riemannian manifold

of index n. If ¢ < 0, then there are no minimal semi-Riemannian submersions
x: M— B.

5. Ricci curvatures

Let M be an (m + n)-dimensional semi-Riemannian manifold of index r +s
(r, s = 0) and B be an n-dimensional semi-Riemannian manifold of index s. Let
m: M — B be a semi-Riemannian submersion. We choose a local field {e,} of
orthonormal frames, restricted to the fiber 7~ (), b € B, {¢;} is a local field of
orthonormal frames of 7~ '(b). By means of the semi-Riemannian submersion,
{e,=dm(ey)} is a local field of orthonormal frames on B. The dual coframe field
is denoted by {w),} on B with respect to {e,}. It is easily seen that we get
5.1) Wy = X0}
The connection forms {w)s} are characterized by the structure equations of B:
(5.2) { da, + 2eap A 0,
Cl)wﬁ + Cl)ﬁa, =V,
Al + 26,0k, A Wlg = g,
(53) 4 " 1" Ui
Qarﬁ = ‘E EsygéRaﬁyéwy A @,

where 4 denotes the curvature form of B and R;s,s are component of the
Riemannian curvature tensor R” of B. Differentiating (5.1) exteriorly we get
dw, = d(7* o) = 7*(dw],) and hence, using (2.2), (2.6), (2.7), (5.1) and (5.2) we
get

(5.4) Sep(wap — TFWip) A wWp — D EEgALgw; A wp = 0.
We put
(5.5 Wap — W g = 2EcWapcc, aj = X ecWajctc-

Then by (2.6), (5.4) and (5.5) we have
{Waﬁy =0, Wegj = Aug,
Waji = h,'j, Wagﬂ = A 'y
where-we have used the fact that W g, is skew-symmetric with respect to o and
B. A tensor W whose components are given by W,zc is called the structure

(5.6)
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tensor for the semi-Riemannian submersion 7w :M — B. We denote by W, gcp
components of the covariant derivative of the structure tensor W with respect to
the connection form 7*w/g. Then it is defined by

(5.7) 2epWapcpwp = dWage — 2esWopc* W
— 2&p(Wapcwps + Wappwpc)-
Taking account of (2.6), (5.6) and (5.7) we can easily obtain
(5.8) { Woam = ZeAighf + o),
Wapys = 36(AbpAls + AwyAps)-
Differentiating (5.5) exteriorly we get
d(waﬁ - * w(cltﬁ) = Zscd(Waﬁcwc)-
Accordingly, making use of the structure equations (2.2), (2.3) for M and the
structure equations (5.1), (5.2) and (5.3) for B together with (5.5) and (5.7), we
can directly obtained the following Ricci formula:
(5.9 Wascp — Wagpe = Ragep — ScyOpsRagys-
Thus, from (5.8) and (5.9) we have for the semi-Riemannian submersion = : M
— B
(5.10) Ragys — Rigys = 26(2ALsAYs + AbyAbs — AlsAby),
(5.11) Roppa — Rigpa = =3 25iAlpAlp.
Remark 1. The above equations (5.10) and (5.11) in the Riemannian sub-

mersion are already obtained by Besse [1], Escobales Jr. [3], Gray [4], and
O'Neill [7].

For the non-degenerate plane spanned by vectors u and v at any point on
the semi-Riemannian manifold B the sectional curvature of the plane section is
denoted by K"(u, v).

LeEMMA 5.1.  For a semi-Riemannian submersion n:M72+" — B" (n = 2), we
have
K(ean eﬁ) = K"(dnea'r dﬂeﬁ) ° T,
where the equality holds if and only if Alg=0 for any index j.

Proof. By the assumption of the semi-Riemannian submersion we have
g = —1, which implies that (5.11) is equivalent to

Ragpa — Rippa = —326AupA0p = 0.
Since the sectional curvature of the plane section spanned by e, and eg (resp.
dme, and drmeg) is given by
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K(em 6,3) = Raﬂﬁw K”(dn:ea, d.n'eﬁ) = Rlz’xﬁﬁw

we get K(e,, eg) = K"(dme,, dmeg) ° 7, where the equality holds if and only if
Alg=0 for any index j. o

THEOREM 5.2.  For a semi-Riemannian submersion n: Mjy*" — B" (n = 2) if
K(Pp) < 0, then there exists at least one plane P" in T,B, b € B, such that K"(P")
< 0 or B is locally flat and the horizontal distribution is integrable.

Proof. Suppose that there does not exist a plane section P’ such that
K"(P") < 0. Then, for any point b € B and for any plane section P’ in T,B we
have K"(P") = 0. Accordingly Lemma 5.1 means that

K(eq, eg) = K"(dme,, dmeg) e =0

for any indices a and . Since the plane section spanned by e, and eg is definite,
by the assumption we get K(e,, eg) = 0 for any indices a and B, which means
that B is locally flat and A’z =0 for any indices. O

From now on we assume that the semi-Riemannian submersion z: M — B is
minimal. Then we have the formula (4.2) given in section 4. By virtue of this
formula we can prove

THEOREM 5.3. Let M7+ be a Lorentzian manifold satisfying the strongly
energy condition and m: M7 — B} be a semi-Riemannian submersion of
codimension one and with space-like fibers. If it is minimal, then it is totally
geodesic.

Proof. By the assumption of codimension we have dim B=1 and each
fiber is a space-like hypersurface, which implies that B is time-like. The assumption
for the strongly energy condition means that the Ricci tensor Ric(e,) = Ric(e,,
e,) in the direction of the time-like vector e, of M satisfies Ric(e,) = R, = 0,
where a=m+ 1.

On the other hand, (4.2) is reformed as Ry, = — > A —>.AkAL, = 0,
because of g=1 and ¢,=—1. Thus, by the strongly energy condition, the
equality holds and hence we have kj=0 for any indices. o

Remark?2. Let M be acompact Riemannian manifold whose Ricci curvature
is positive semi-definite. It is proved by Oshikiri [9] that if a foliation (M, g, F)
of codimension one is minimal, then & is totally geodesic and the metric g is
bundle-like.

Next we study the Ricci curvature and the Einstein condition for the semi-
Riemannian submersions. Since the fibers are submanifolds of the total space M,
the Riemannian curvature tensor R’ satisfies the Gauss equation

(5.12) Rijir = Rijig + 2 ea(hih$c — hih),
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where Rjj, are components of the Riemannian curvature tensor R’ of the fiber.
We denote by R4p (resp. Rj; and Ryg) the components of the Ricci curvature
tensor of M (resp. the fiber and B). Because of

Ry =2 eRup + 3 esRpip
we obtain by (2.8), (4.1) and the Gauss equation (5.12)

(5.13) R = R} + X eshfs — > ereghtihl + X epe,A%,Ab,.
Similarly we get
(5.14) Ros = Rig — 23 g5, Ay A, — S eicihiht

+ EE;hZfﬁ _EsiAlaﬁia
where we have used (4.1) and (5.10). On the other hand, we have
(5.15) Rip = Sk = h) + 2 SeueihfAlly + Sealip,

by (2.12) (2.14), (2.15) and (2.17). Now we denote by Ric (resp. Ric’ and Ric”)
the Ricci curvature tensor of M (resp. the fiber and B). The Ricci curvature in
the direction of e, of M is denoted by Ric(e;) =Ric(e;, €;). From (5.13) one finds
the following:

THEOREM 5.4. For a minimal semi-Riemannian submersion x : M7*" — B"
or w: MP*" — Bl if
. .
Ric’(ej) = Ric(e))

for any index j, then the horizontal distribution is integrable.

Proof. By the assumption and (5.13) we have
0 = Ric(e;) — Ric'(¢)) = Deghlp + > ee,Ah,Ab, 228,3h5,3,
where the equality holds if and only if A, =0 for any indices.
On the other hand, we have > ¢eghfis =0, which implies
>&i{Ric(e;) — Ric'(ej)} = 0.
Thus we get Ric(e;) —Ric’(e;) =0 for any index j. a

We say the horizontal distribution 9@ satisfies the Yang-Mills condition if it
satisfies

SepApap = DenephiiAcs
for any indices i and a. It is important for Einstein Riemannian submersions (cf.
pp. 243 Besse [1]). From the formula between Ricci curvatures we get the
following:

PROPOSITION 5.5. Let w: M7™*" — B" (resp. m: My*" — B}) be a semi-
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Riemannian submersion with time-like (resp. space-like) totally geodesic fibers.
Then M is Einstein if and only if the horizontal distribution @ p; satisfies the Yang-
Mills condition and the Ricci curvatures of the fibers and the base manifold B

satisfy
(1) Rjj= A0 — D eaE5ApANg,
(2) Rg = Agadop + ZEsisyAfwAby,
for a constant A.
Next we assume that the semi-Riemannian submersion v: M — B is minimal

and we denote by r (resp. r' or ") the scalar curvature of M (resp. the fiber or
B). Then by the definition we get

r—r = ZsarRmx +E€jRjj ‘Efa ’c’mf-
Then by (5.13) and (5.14) it is reformed as
(5.16) r—r =7 = = SeeapAlphip — Deatichihs,
where ' =X &R}; and 7" =Y ¢,R},. Thus we have the followings:
THEOREM 5.6. For a minimal Riemannian submersion w: M™*" — B" we

have

rr +7r,
where the equality holds if and only if it is totally geodesic and the horizontal
distribution is integrable.

CoOROLLARY 5.7. For a Riemannian submersion w: M™*" — B" if there is a
point x € M such that r(x) > r'(x) + r'(x), then it is not minimal.

Remark 3. The following results are proved by Watson [10]. Let M be a
compact Riemannian manifold whose Ricci tensor is positive semi-definite and B
be a Riemannian manifold whose Ricci tensor is negative semi-definite. If there
is a point on M at which the Ricci tensor is positive definite, then there are no
minimal submersions 7: M — B. In particular, if B is of negative curvature,
there are no minimal submersions 7: M — B.

From (5.13) and (5.16) we have
Deaf{Ric(ea) — Ric"(dmes)} = 2(r — r' — 1) + 2 e.e8hEhE.
Thus we prove the following:
LemMA 5.8. Let w: Mj;*" — B" be a semi-Riemannian submersion. If it is
minimal, then
> ef{Ric(e,) — Ric'(dmey)} = 2(r — r' — ),
where the equality holds if and only if it is totally geodesic.
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As a direct consequence of (5.16) and Lemma 5.8 we get

THEOREM 5.9. Let w:My+t" — B”" be a semi-Riemannian submersion. If it is
minimal and if Ric(e,) = Ric"(dme,) and r — ¥ — r' = 0, then it is totally
geodesic and the horizontal distribution is integrable.

Example. An example of minimal semi-Riemannian submersion 7 : My, *"
— B” which is not totally geodesic is here constructed.

Let {f4} be the set of smooth positive functions on R". Let Mj;*" (resp.
M+ be an (m + n)-dimensional semi-Riemannian manifold of index m (resp.
index n) defined by

M = Mt (resp. Mt™)
= {(x, y) ER™ X R": g = (848)> 8a5(%, ¥) = €afa’(¥)0u5}
where g=—1, g, =1 (resp. g =1, g, = —1). Also, let B= B” (resp. B}) be an n-
dimensional Riemannian (resp. semi-Riemannian) manifold defined by
B ={y ER":8" = (8p); 8ap = £afo’(¥)0p)}-

Then, for the natural projection 7: M — B, it is a semi-Riemannian submersion
whose fibers are defined by a fixed point y € R". For the natural coordinate
system {x,4} the natural basis {3/0x,} satisfies

{ 8(70%,’ ?i}) = ¢&f, z25ij’

8= %) =0,

8( ai,’ 3%,) = 8«fa'26aﬁ-

Accordingly an orthonormal basis {e4} is given by
o=22 -t 2
Lofiox,) Y fyox,

Thus, calculating V.e; we can get

_& 9% 4
ffodxa

hij =
Consequently we have

1 02
Zt:jh;}=—ic—v§wlog Hf,

This shows that if the functions fi, ..., f,, satisfy the condition ]_[f, = constant,
then the submersion is minimal, but in general not totally geodesic.
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