ON SECTIONAL AND RICCI CURVATURES OF SEMIRIEMANNIAN SUBMERSIONS*

Jung-Hwan Kwon and Young Jin Suh

Abstract

O'Neill introduced a notion of Riemannian submersion [7]. In this paper we give a new notion of semi-Riemannian submersion and want to investigate some geometric properties concerned with sectional and Ricci curvatures of this submersion.

1. Introduction

The theory of Riemannian submersion was firstly introduced by O'Neill ([7]) and its geometric properties have been studied by many differential geometers (Besse [1], Escobales Jr. [2], [3], Gray [4], Magid [5], Nakagawa and Takagi [6], and Takagi and Yorozu [11]). In this paper we introduce a new notion of a semiRiemannian submersion which is more general than the notion of Riemannian submersion and want to investigate its geometric properties.

The main purpose of section 2 is to give the notion of semi-Riemannian submersion which contains the concepts of both Riemannian and indefinite Riemannian (or said to be pseudo-Riemannian) submersions and to construct some fundamental formulas for this submersion.

In section 3 we will give a typical example of semi-Riemannian submersion of pseudo-hyperbolic space H_{n}^{m+n}.

Now in section 4 the sectional curvature of semi-Riemannian submersion will be defined and the sufficient conditions for the horizontal distribution \mathscr{D}_{H} of the minimal semi-Riemannian submersion to be totally geodesic and integrable will be studied in terms of sectional curvature.

Finally, in section 5 we also define the notion of Ricci curvature of the semiRiemannian submersion and want to investigate some geometric properties for the horizontal distribution \mathscr{D}_{H} of the minimal semi-Riemannian submersion to be totally geodesic and integrable in terms of Ricci curvature. Moreover, we will give another example of minimal semi-Riemannian submersion which is not totally geodesic.

[^0]
2. Preliminaries

Let M be an $(m+n)$-dimensional connected semi-Riemannian manifold of index $r+s(0 \leq r \leq m, 0 \leq s \leq n)$, which is denoted by M_{r+s}^{m+n} and let B be an n dimensional connected semi-Riemannian manifold of index s, which is denoted by B_{s}^{n}. A semi-Riemannian submersion $\pi: M \rightarrow B$ is a submersion of semiRiemannian manifolds M and B such that
(1) The fiber $\pi^{-1}(b), b \in B$, are semi-Riemannian submanifolds of M.
(2) The differential $d \pi$ of π preserves scalar products of vectors normal to fibers.
For a semi-Riemannian submersion $\pi: M \rightarrow B$ vectors tangent to fibers are said to be vertical and those normal to fibers are said to be horizontal. Any vector field X on M can be decomposed as

$$
X=X^{\prime}+X^{\prime \prime},
$$

where X^{\prime} (resp. $X^{\prime \prime}$) denotes a vertical (resp. horizontal) part of X. We define two tensors T and A of type $(1,2)$ on M by

$$
\left\{\begin{array}{l}
T(X, Y)=\left(\nabla_{x^{\prime}} Y^{\prime \prime}\right)^{\prime}+\left(\nabla_{x^{\prime}} Y^{\prime}\right)^{\prime \prime}, \tag{2.1}\\
A(X, Y)=\left(\nabla_{x^{\prime \prime}} Y^{\prime \prime}\right)^{\prime}+\left(\nabla_{x^{\prime \prime}}^{\prime} Y^{\prime}\right)^{\prime \prime},
\end{array}\right.
$$

for any vector fields X and Y on M, where ∇ denotes the Levi-Civita connection on M. They are called integrability tensors for the semi-Riemannian submersion $\pi: M \rightarrow B$. We choose a local field e_{1}, \ldots, e_{m+n} of orthonormal frames adapted to the semi-Riemannian metric of M in such a way that, restricted to the fiber $\pi^{-1}(b), b \in B, e_{1}, \ldots, e_{m}$ is a local field of orthonormal frames adapted to a semi-Riemannian metric of $\pi^{-1}(b)$ induced from that on the semi-Riemannian manifold M. The following convention on the range of indices will be used throughout this paper:

$$
\begin{gathered}
A, B, C, D, E, F, \ldots=1, \ldots, m+n \\
i, j, k, l, \ldots=1, \ldots, m \\
\alpha, \beta, \gamma, \delta, \ldots=m+1, \ldots, m+n
\end{gathered}
$$

where m denotes the dimension of fibers. The summation Σ is taken over all repeated indices, unless otherwise stated. Then we have $<e_{A}, e_{B}>=\varepsilon_{A} \delta_{A B}$, where $<,>$ denotes the scalar product on M. The dual coframe field is denoted by $\left\{\omega_{A}\right\}$. The connection form $\omega_{A B}$ are characterized by the structure equations of M :

$$
\begin{gather*}
\left\{\begin{array}{l}
d \omega_{A}+\sum \varepsilon_{B} \omega_{A B} \wedge \omega_{B}=0 \\
\omega_{A B}+\omega_{B A}=0
\end{array}\right. \tag{2.2}\\
\left\{\begin{array}{l}
d \omega_{A B}+\sum \varepsilon_{C} \omega_{A C} \wedge \omega_{C B}=\Omega_{A B} \\
\Omega_{A B}=-\frac{1}{2} \sum \varepsilon_{C} \varepsilon_{D} R_{A B C D} \omega_{C} \wedge \omega_{D}
\end{array}\right. \tag{2.3}
\end{gather*}
$$

where $\Omega_{A B}$ denotes the curvature form of M and $R_{A B C D}$ are components of the

Riemannian curvature tensor R with respect to the semi-Riemannian metric. The Levi-Civita connection ∇ on M is given by

$$
\begin{equation*}
\nabla_{e_{A}} e_{B}=\sum \varepsilon_{C} \omega_{C B}\left(e_{A}\right) e_{C} \tag{2.4}
\end{equation*}
$$

We define two tensors h and A_{0} of type $(1,2)$ on M by

$$
h(X, Y)=\left(\nabla_{Y^{\prime}} X^{\prime}\right)^{\prime \prime}, \quad A_{0}(X, Y)=-\left(\nabla_{Y^{\prime \prime}} X^{\prime \prime}\right)^{\prime}
$$

for any vector fields X and Y on M. They are also called integrability tensors for the semi-Riemannian submersion $\pi: M \rightarrow B$. The integrability tensor h restricted to a fiber means the second fundamental form of the fiber. It follows from (2.2) and (2.4) that

$$
h\left(e_{i}, e_{j}\right)=\sum \varepsilon_{\alpha} \omega_{\alpha i}\left(e_{j}\right) e_{\alpha}, \quad A_{0}\left(e_{\alpha}, e_{\beta}\right)=\sum \varepsilon_{j} \omega_{\alpha j}\left(e_{\beta}\right) e_{j}
$$

In fact, by the definition we get

$$
h\left(e_{i}, e_{j}\right)=\left(\sum \varepsilon_{C} \omega_{C i}\left(e_{j}\right) e_{C}\right)^{\prime \prime}=\sum \varepsilon_{\alpha} \omega_{\alpha i}\left(e_{j}\right) e_{\alpha}
$$

On the other hand, it is seen by Gray [4] that the integrability tensor A_{0} satisfies the following relation:

$$
\begin{equation*}
A_{0}\left(e_{\alpha}, e_{\beta}\right)=-A_{0}\left(e_{\beta}, e_{\alpha}\right)=-\frac{1}{2}\left[e_{\alpha}, e_{\beta}\right]^{\prime} \tag{2.5}
\end{equation*}
$$

and hence we get

$$
A_{0}\left(e_{\alpha}, e_{\beta}\right)=-\left(\sum \varepsilon_{C} \omega_{C \alpha}\left(e_{\beta}\right) e_{C}\right)^{\prime}=\sum \varepsilon_{j} \omega_{\alpha j}\left(e_{\beta}\right) e_{j}
$$

Thus the only components $h_{B C}^{A}$ (resp. $A_{C D}^{B}$) of h (resp. A_{0}) which may not vanish are

$$
h_{i j}^{\alpha}=\omega_{\alpha i}\left(e_{j}\right), \quad\left(\text { resp. } A_{\alpha \beta}^{2}=\omega_{\alpha i}\left(e_{\beta}\right)\right)
$$

Accordingly the connection form $\omega_{\alpha \iota}$ are given by

$$
\begin{equation*}
\omega_{\alpha t}=\sum \varepsilon_{j} h_{i j}^{\alpha} \omega_{j}+\sum \varepsilon_{\beta} A_{\alpha \beta}^{\iota} \omega_{\beta} . \tag{2.6}
\end{equation*}
$$

We may choose a suitable semi-Riemannian metric on the tangent bundle $T M$ of M and decompose $T M$ as a direct product of a vertical distribution \mathscr{D}_{V} and a horizontal one \mathscr{D}_{H}, where the vertical (resp. horizontal) distribution is defined by an assignment of any point x in M with a tangent space (resp. the orthonormal subspace) to a fiber through x. A distribution \mathscr{D} is said to be integrable if $[X, Y]$ belong to \mathscr{D} whenever vector fields X and Y belong to \mathscr{D}. Since the vertical distribution \mathscr{D}_{V} is defined by $\omega_{\alpha}=0$ and it is integrable, by Cartan's lemma we have

$$
\begin{equation*}
h_{i j}^{\alpha}=h_{j i}^{\alpha} . \tag{2.7}
\end{equation*}
$$

Since the integrability tensor A_{0} is also skew-symmetric, we get

$$
\begin{equation*}
A_{\alpha \beta}^{i}=A_{\beta \alpha}^{l} . \tag{2.8}
\end{equation*}
$$

The semi-Riemannian submersion $\pi: M \rightarrow B$ is said to be minimal if each fiber is minimal, i.e., if it satisfies $\Sigma_{\varepsilon_{j}} h_{j j}^{\alpha}=0$. The semi-Riemannian submersion
$\pi: M \rightarrow B$ is said to be totally geodesic if each fiber is totally geodesic, i.e., if it satisfies $h_{i j}^{\alpha}=0$. By (2.5) the horizontal distribution \mathscr{D}_{H} is integrable if and only if

$$
\begin{equation*}
A_{\alpha \beta}^{\prime}=0 \tag{2.9}
\end{equation*}
$$

Now, for a tensor field $T=\left(T_{B_{1} \cdots B_{s}}^{A_{1} \cdots A_{r}}\right)$ on M, we define the covariant derivative $T_{B_{1} \cdot}^{A_{1} \cdot A_{B_{s}} C} \cdot A_{r}$ by

$$
\begin{align*}
\sum \varepsilon_{C} T_{B_{1} \cdots B_{s} C}^{A_{1} \cdots A_{r}} \omega_{C}=d T_{B_{1} \cdots B_{s}}^{A_{1} \cdots A_{r}} & -\sum \varepsilon_{C} T_{B_{1} \cdots B_{s}}^{A_{1} \cdots A_{a-1} C A_{a+1} \cdots A_{r}} \omega_{C A_{a}} \tag{2.10}\\
& -\sum \varepsilon_{C} T_{B_{1} \cdots B_{b-1}}^{A_{1} \cdots A_{r}} C B_{b+1} \cdots B_{s} \omega_{C B_{b}} .
\end{align*}
$$

Then, from the definition of $\left(h_{B C D}^{A}\right),\left(A_{B C D}^{A}\right)$ and (2.6), it follows that

$$
\begin{gather*}
h_{i j k}^{l}=-\sum \varepsilon_{\alpha} h_{i j}^{\alpha} h_{l k}^{\alpha}, \quad h_{i j \alpha}^{l}=-\sum \varepsilon_{\beta} h_{i j}^{\beta} A_{\beta \alpha}^{l}, \\
h_{\beta i j}^{\alpha}=\sum \varepsilon_{k} h_{k i}^{\alpha} h_{k j}^{\beta}, \quad h_{\beta i \gamma}^{\alpha}=\sum \varepsilon_{k} h_{k i}^{\alpha} A_{\beta \gamma}^{k}, \\
h_{\beta \gamma C}^{A}=h_{\alpha C D}^{\prime}=h_{C \beta D}^{l}=0, \quad A_{j \alpha \beta}^{i}=-\sum \varepsilon_{\gamma} A_{\gamma \alpha}^{l} A_{\gamma \beta}^{J}, \\
A_{j \alpha k}^{l}=-\sum \varepsilon_{\beta} A_{\beta \alpha}^{l} h_{j k}^{\beta}, \quad A_{\alpha \beta j}^{\gamma}=\sum \varepsilon_{l} A_{\alpha \beta}^{l} h h_{j ;}^{\gamma} \\
A_{\alpha \beta \delta}^{\gamma}=\sum \varepsilon_{l} A_{\alpha \beta}^{l} A_{\gamma \delta,}^{l}, \quad A_{i j D}^{C}=A_{i C D}^{\alpha}=A_{C j D}^{\alpha}=0, \\
h_{i \beta j}^{\alpha}=\sum \varepsilon_{k} h_{i k}^{\alpha} h_{k j}^{\beta} \tag{2.11}\\
h_{i \beta \gamma}^{\alpha}=\sum \varepsilon_{k} h_{i k}^{\alpha} A_{\beta \gamma}^{k}, \tag{2.12}\\
A_{\alpha j \beta}^{L}=-\sum \varepsilon_{\gamma} A_{\alpha \gamma}^{l} A_{\gamma \beta}^{l} \tag{2.13}\\
A_{\alpha j k}^{l}=-\sum \varepsilon_{\beta} A_{\alpha \beta}^{l} h_{j k}^{\beta} . \tag{2.14}
\end{gather*}
$$

Moreover, by the exterior derivatives of (2.6) and by means of (2.2), (2.3) and (2.10)-(2.14), we have

$$
\begin{gather*}
R_{\alpha i j k}=h_{i j k}^{\alpha}-h_{i k j}^{\alpha}+A_{\alpha j k}^{L}-A_{\alpha k}^{\iota}, \tag{2.15}\\
R_{\alpha i j \beta}=h_{i j \beta}^{\alpha}-h_{i \beta j}^{\alpha}+A_{\alpha j \beta}^{\iota}-A_{\alpha \beta j}^{\iota}, \tag{2.16}\\
R_{\alpha i \beta \gamma}=h_{i \beta \gamma}^{\alpha}-h_{i \gamma \beta}^{\alpha}+A_{\alpha \beta \gamma}^{\iota}-A_{\alpha \gamma \beta .}^{\iota} . \tag{2.17}
\end{gather*}
$$

Next, by virtue of (2.2), (2.3) and (2.10) we have the Ricci formulas for the second covariant derivatives of h as the following

$$
\begin{aligned}
& h_{B C D E}^{A}-h_{B C E D}^{A} \\
& =\sum \varepsilon_{F}\left(h_{B C}^{F} R_{A F D E}+h_{F C}^{A} R_{B F D E}+h_{B F}^{A} R_{C F D E}\right)
\end{aligned}
$$

3. Examples

In this section typical examples of semi-Riemannian submersion of an ($m+$ n)-dimensional pseudo-hyperbolic space H_{n}^{m+n} are considered.

Let \boldsymbol{C} or \boldsymbol{H} be the field consisting of complex numbers or quaternion numbers. They are simply denoted by K. In K^{n+1} with the standard basis, a
semi-Hermitian form F is defined by

$$
F(z, w)=-\sum_{i=1}^{r} z_{i} \bar{w}_{i}+\sum_{j=r+1}^{n+1} z_{j} \bar{w}_{j}
$$

where $z=\left(z_{1}, \ldots, z_{n+1}\right)$ and $w=\left(w_{1}, \ldots, w_{n+1}\right)$ are in K^{n+1}. The complex or quaternion semi-Euclidean space $\left(K^{n+1}, F\right)$ is simply denoted by K_{r}^{n+1}. The scalar product $g^{\prime}(z, w)$ is given by $\operatorname{ReF}(z, w)$ is a semi-Riemannian metric of index $d r$ in \boldsymbol{K}_{r}^{n+1}, where $d=2$ or $d=4$ according as $\boldsymbol{K}=\boldsymbol{C}$ or $\boldsymbol{K}=\boldsymbol{H}$. Let $H_{d r-1}^{d n+d-1}$ be a real hypersurface of $\boldsymbol{K}_{r}^{n+1}, r \geq 1$, defined by

$$
H_{d r-1}^{d n+d-1}=\left\{z \in K_{r}^{n+1}: F(z, z)=-1\right\}
$$

and let g be a semi-Riemannian metric of $H_{d r-1}^{d n+d-1}$ induced from the semiRiemann metric g^{\prime}. Then $\left(H_{d r-1}^{d n+d-1}, g\right)$ is the semi-Riemannian manifold of constant sectional curvature -1 and with index $d r-1$, which is called a unit pseudo-hyperbolic space. For the unit pseudo-hyperbolic space $H_{d r-1}^{d n+d-1}$ with index $d r-1$ the tangent space $T_{z}\left(H_{d r-1}^{d n+1-1}\right)$ at each point z can be identified (through the parallel displacement in K_{r}^{n+1}) with $\left\{w \in K_{r}^{n+1}: \operatorname{ReF}(z, w)=0\right\}$.

Let T_{z}^{\prime} be the orthogonal complement of the vector $i z$ in $T_{z}\left(H_{2 r}^{2 n+1}\right)$ or the vectors $i z, j z$ and $k z$ in $T_{z}\left(H_{4 r}^{4 n+3}\right)$, where we denote by i an imaginary unit in C and by $1, i, j$ and k a basis for \boldsymbol{H} so that they satisfy $i^{2}=j^{2}=k^{2}=-1, i j=-j i=$ $k, j k=-k j=i$ and $k i=-i k=j$. Let H_{d-1}^{d-1} be the multiplicative group of these numbers of absolute value 1 . Then $H_{d r}^{d n+d-1}$ can be considered a principal fiber bundle over a pseudo-hyperbolic K-space $H_{r-1}^{n} K$ with group H_{d-1}^{d-1} and the projection π. Furthermore there is a connection such that T_{z}^{\prime} is the horizontal subspace at z which is invariant under the H_{d-1}^{d-1} action. The metric g_{0} of constant holomorphic sectional curvature -4 is given by $g_{0_{b}}(X, Y)=g_{z}\left(X^{*}, Y^{*}\right)$ for any tangent vectors X and Y in $T_{b}\left(H_{r-1}^{n} K\right)$, where z is any point in the fiber $\pi^{-1}(b)$ and X^{*} and Y^{*} are vectors in T_{z}^{\prime} such that $d \pi X^{*}=X$ and $d \pi Y^{*}=Y$.

On the other hand, complex structures $I: w \mapsto i w, J: w \mapsto j w$ and $K: w \mapsto k w$ in T_{z}^{\prime} is compatible with the action of H_{d-1}^{d-1} and induce almost complex structures I, J and K on $H_{r-1}^{r} K$ such that $d \pi^{\circ} i=I^{\circ} d \pi, d \pi^{\circ} j=J \circ d \pi$ and $d \pi^{\circ} k=K \circ d \pi$. Thus $H_{r-1}^{n} K$ is a pseudo-hyperbolic space over K of constant holomorphic sectional curvature -4 and it is seen that the principal H_{d-1}^{d-1}-bundle $H_{d r}^{d n+d-1}$ over H_{r-1}^{n} K with projection π is a semi-Riemannian submersion with the fundamental tensors I, J and K. A distribution \mathscr{D} determined by the subspace spanned by $i z, j z$ and $k z$ at any point z is integrable. In fact, we have

$$
\begin{equation*}
\nabla_{i z}(j z)=j \nabla_{t z}(z)=j i z=-k z \tag{3.1}
\end{equation*}
$$

because j is parallel and $H_{d r-1}^{d n+d-1}$ is totally umbilic in K_{r}^{n+1}. This shows that [$i z$, $j z]=-2 k z$. Since the others hold similarly, it means that the distribution \mathscr{D} is integrable. On the other hand, (3.1) implies that the maximal integral submanifold of \mathscr{D} is totally geodesic. Thus the semi-Riemannian submersions have totally geodesic time-like fibers H_{d-1}^{d-1}.

$$
H_{d-1}^{d-1} \rightarrow \underset{\substack{H_{d r-1}^{d n} \\ \downarrow \\ H_{r-1}^{n} K}}{\substack{n+d-1}}
$$

In particular, we consider the case $r=1$. Then there exist totally geodesic spacelike submersions $\pi: H_{1}^{2 n+1} \rightarrow H^{n} C$ and $\pi: H_{3}^{4 n+3} \rightarrow H^{n} H$ whose basic manifold is Riemannian.

4. Sectional curvatures

Let $M=M_{r+s}^{m+n}$ be an ($m+n$)-dimensional semi-Riemannian manifold of index $r+s$ and $B=B_{s}^{n}$ be an n-dimensional semi-Riemannian manifold of index s. We denote by P_{D} and P_{I} the set of all definite plane sections and all nondegenerate plane sections, respectively. For any non-degenerate plane section P_{I} the sectional curvature is denoted by $K\left(P_{I}\right)$. Let $\pi: M \rightarrow B$ be a semi-Riemannian submersion. Then we have

$$
\begin{equation*}
R_{\alpha i j \beta}=h_{i j \beta}^{\alpha}-\sum \varepsilon_{k} h_{i k}^{\alpha} h_{k j}^{\beta}+\sum \varepsilon_{\gamma} A_{\alpha \gamma}^{\iota} A_{\beta \gamma}^{\prime}-A_{\alpha \beta j}^{\iota} \tag{4.1}
\end{equation*}
$$

by means of (2.8), (2.11), (2.13) and (2.16). Assume that the semi-Riemannian submersion $\pi: M \rightarrow B$ is minimal. Then it is easily seen that we have

$$
\sum \varepsilon_{j} h_{j j \beta}^{\alpha}=0
$$

from which the following

$$
\sum \varepsilon_{j} R_{\alpha j \beta \beta}=-\sum \varepsilon_{j} \varepsilon_{k} h_{j k}^{\alpha} h_{k j}^{\beta}+\sum \varepsilon_{j} \varepsilon_{\gamma} A_{\alpha \gamma}^{j} A_{\beta \gamma}^{\prime}-\sum \varepsilon_{j} A_{\alpha \beta j}^{\prime}
$$

is derived. Since the left hand side and the first two terms of the right hand side are symmetric with respect to indices α and β and the last one is skew-symmetric, we have

$$
\begin{equation*}
\sum \varepsilon_{j} R_{\alpha j j \beta}=-\sum \varepsilon_{j} \varepsilon_{k} h_{j k}^{\alpha} h_{k j}^{\beta}+\sum \varepsilon_{j} \varepsilon_{\gamma} A_{\alpha \gamma}^{j} A_{\beta \gamma}^{\prime} \tag{4.2}
\end{equation*}
$$

Theorem 4.1. Let $\pi: M_{m}^{m+n} \rightarrow B^{n}$ be a semi-Riemannian submersion. If $K\left(P_{I}\right) \geq 0$ and if the submersion is minimal, then it is totally geodesic and horizontal distribution is integrable.

Proof. By (4.2) we get

$$
\sum \varepsilon_{j} R_{\alpha j j \alpha}=-\sum \varepsilon_{j} \varepsilon_{k} h_{j k}^{\alpha} h_{k j}^{\alpha}+\sum \varepsilon_{j} \varepsilon_{\gamma} A_{\alpha \gamma}^{j} A_{\alpha \gamma}^{j} \leq 0,
$$

because of $\varepsilon_{j}=-1$ and $\varepsilon_{\gamma}=1$. By the assumption $K\left(P_{I}\right) \geq 0$ we get $\varepsilon_{j} \varepsilon_{\alpha} R_{\alpha j j \alpha} \geq$ 0 . Thus we get $h_{i j}^{\alpha}=0$ and $A_{\alpha \beta}^{i}=0$ for any indices.

Similarly, using (4.2) one can prove the following:
Corollary 4.2. Let $\pi: M_{n}^{m+n} \rightarrow B_{n}^{n}$ be a semi-Riemannian submersion. If $K\left(P_{I}\right) \leq 0$ and if the submersion is minimal, then it is totally geodesic and the horizontal distribution is integrable.

Certain semi-Riemannian submersions like those in Theorem 4.1 and Corollary 4.2 have simple geometric situation. The distribution \mathscr{D} is said to be parallel if the vector field $\nabla_{X} Y$ belong to \mathscr{D} whenever a vector field Y belongs to \mathscr{D}. Let $\pi: M \rightarrow B$ be a semi-Riemannian submersion with totally geodesic fibers. We assume that the horizontal distribution \mathscr{D}_{H} is integrable. Then by (2.4) and (2.6) we have

$$
\nabla_{e A} e_{\beta}=\sum \varepsilon_{\gamma} \omega_{\gamma \beta}\left(e_{A}\right) e_{\gamma},
$$

which means that the horizontal distribution is parallel. Thus the vertical distribution orthogonal to \mathscr{D}_{H} is also parallel and hence one finds the following:

Theorem 4.3. Let $\pi: M_{m}^{m+n} \rightarrow B^{n}$ be a semi-Riemannian submersion. If it is totally geodesic and if the horizontal distribution is integrable, then the total space M is locally decomposed into the product manifold $F \times B$.

Remark 1. Let $\pi: M_{m}^{m+n} \rightarrow B^{n}$ be a semi-Riemannian submersion. If it is totally geodesic, the mixed sectional curvature $K(U, X)$ is always non-positive, where U (resp. X) is a vertical vector (resp. a horizontal vector).

Now, an m-dimensional semi-Riemannian manifold of index r and of constant curvature c is called a semi-Riemannian space form, which is denoted by $M_{r}^{m}(c)$. Let $\pi: M_{m}^{m+n}(c) \rightarrow B^{n}$ be a minimal semi-Riemannian submersion. We denote by S the square of the length of the second fundamental form of the fiber, that is, $S=\Sigma \varepsilon_{i} \varepsilon_{j} \varepsilon_{\alpha} h_{i j}^{\alpha} h_{i j}^{\alpha}=\Sigma h_{i j}^{\alpha} h_{i j}^{\alpha}$, because of $\varepsilon_{i}=-1$ and $\varepsilon_{\alpha}=1$. Then by (4.2) we obtain

$$
S=\sum \varepsilon_{\alpha} \varepsilon_{\beta} \varepsilon_{j} A_{\alpha \beta}^{\prime} A_{\alpha \beta}^{\prime}-m n c
$$

From this equation we can conclude the following properties: For a minimal semi-Riemannian submersion $\pi: M_{m}^{m+n}(c) \rightarrow B^{n}$
(1) $c \geq 0$ implies that $c=0, h_{i j}^{\alpha}=0$ and $A_{\alpha \beta}^{\prime}=0$ for any indices i, j, α and β.
(2) $c<0$ implies $S \leq-m n c$, where the equality holds if and only if $A_{\alpha \beta}^{J}=0$ for all indices α, β and j.
Therefore we can state the following lemmas:
Lemma 4.4. Let $\pi: M_{m}^{m+n}(c) \rightarrow B^{n}$ be a semi-Riemannian submersion. If the submersion is minimal and if $c \geq 0$, then $c=0$. Moreover it is totally geodesic and the horizontal distribution is integrable.

Lemma 4.5. Let $\pi: M_{m}^{m+n}(c) \rightarrow B^{n}$ be a semi-Riemannian submersion. If the submersion is minimal and if $c<0$, then $S \leq-m n c$, where the equality holds if and only if the horizontal distribution is integrable.

Thus we can prove the following:
Theorem 4.6. Let M be an $(m+n)$-dimensional semi-Riemannian space form $M_{m}^{m+n}(c)$ of index m and B be an n-dimensional Riemannian manifold. If $c>0$, then there are no minimal semi-Riemannian submersions $\pi: M \rightarrow B$.

Similarly, the following properties can be verified:
Lemma 4.7. Let $\pi: M_{n}^{m+n}(c) \rightarrow B_{n}^{n}$ be a semi-Riemannian submersion. If the submersion is minimal and if $c \leq 0$, then $c=0$. Moreover it is totally geodesic and the horizontal distribution is integrable.

Theorem 4.8. Let M be an $(m+n)$-dimensional semi-Riemannian space form $M_{n}^{m+n}(c)$ of index n and B be an n-dimensional semi-Riemannian manifold of index n. If $c<0$, then there are no minimal semi-Riemannian submersions $\pi: M \rightarrow B$.

5. Ricci curvatures

Let M be an $(m+n)$-dimensional semi-Riemannian manifold of index $r+s$ ($r, s \geq 0$) and B be an n-dimensional semi-Riemannian manifold of index s. Let $\pi: M \rightarrow B$ be a semi-Riemannian submersion. We choose a local field $\left\{e_{A}\right\}$ of orthonormal frames, restricted to the fiber $\pi^{-1}(b), b \in B,\left\{e_{j}\right\}$ is a local field of orthonormal frames of $\pi^{-1}(b)$. By means of the semi-Riemannian submersion, $\left\{e_{\alpha}^{\prime \prime}=d \pi\left(e_{\alpha}\right)\right\}$ is a local field of orthonormal frames on B. The dual coframe field is denoted by $\left\{\omega_{\alpha}^{\prime \prime}\right\}$ on B with respect to $\left\{e_{\alpha}^{\prime \prime}\right\}$. It is easily seen that we get

$$
\begin{equation*}
\omega_{\alpha}=\pi^{*} \omega_{\alpha}^{\prime \prime} . \tag{5.1}
\end{equation*}
$$

The connection forms $\left\{\omega_{\alpha \beta}^{\prime \prime}\right\}$ are characterized by the structure equations of B :

$$
\begin{gather*}
\left\{\begin{array}{l}
d \omega_{\alpha}^{\prime \prime}+\sum \varepsilon_{\beta} \omega_{\alpha \beta}^{\prime \prime} \wedge \omega_{\beta}^{\prime \prime} \\
\omega_{\alpha \beta}^{\prime \prime}+\omega_{\beta \alpha}^{\prime \prime}=0
\end{array}\right. \tag{5.2}\\
\left\{\begin{array}{l}
d \omega_{\alpha \beta}^{\prime \prime}+\sum \varepsilon_{\gamma} \omega_{\alpha \gamma}^{\prime \prime} \wedge \omega_{\gamma \beta}^{\prime \prime}=\Omega_{\alpha \beta}^{\prime \prime} \\
\Omega_{\alpha \beta}^{\prime \prime}=-\frac{1}{2} \sum \varepsilon_{\gamma} \varepsilon_{\delta} R_{\alpha \beta \gamma \delta}^{\prime \prime} \omega_{\gamma}^{\prime \prime} \wedge \omega_{\delta}^{\prime \prime},
\end{array}\right. \tag{5.3}
\end{gather*}
$$

where $\Omega_{\alpha \beta}^{\prime \prime}$ denotes the curvature form of B and $R_{\alpha \beta \gamma \delta}^{\prime \prime}$ are component of the Riemannian curvature tensor $R^{\prime \prime}$ of B. Differentiating (5.1) exteriorly we get $d \omega_{\alpha}=d\left(\pi^{*} \omega_{\alpha}^{\prime \prime}\right)=\pi^{*}\left(d \omega_{\alpha}^{\prime \prime}\right)$ and hence, using (2.2), (2.6), (2.7), (5.1) and (5.2) we get

$$
\begin{equation*}
\sum \varepsilon_{\beta}\left(\omega_{\alpha \beta}-\pi^{*} \omega_{\alpha \beta}^{\prime \prime}\right) \wedge \omega_{\beta}-\sum \varepsilon_{j} \varepsilon_{\beta} A_{\alpha \beta}^{\prime} \omega_{j} \wedge \omega_{\beta}=0 \tag{5.4}
\end{equation*}
$$

We put

$$
\begin{equation*}
\omega_{\alpha \beta}-\pi^{*} \omega_{\alpha \beta}^{\prime \prime}=\sum \varepsilon_{C} W_{\alpha \beta C} \omega_{C}, \quad \omega_{\alpha j}=\sum \varepsilon_{\mathrm{C}} W_{\alpha j C} \omega_{C} \tag{5.5}
\end{equation*}
$$

Then by (2.6), (5.4) and (5.5) we have

$$
\begin{cases}W_{\alpha \beta \gamma}=0, & W_{\alpha \beta j}=A_{\alpha \beta}^{j}, \tag{5.6}\\ W_{\alpha j i}=h_{i j}^{\alpha}, & W_{\alpha j \beta}=A_{\alpha \beta}^{j},\end{cases}
$$

where we have used the fact that $W_{\alpha \beta \gamma}$ is skew-symmetric with respect to α and β. A tensor W whose components are given by $W_{\alpha B C}$ is called the structure
tensor for the semi-Riemannian submersion $\pi: M \rightarrow B$. We denote by $W_{\alpha B C D}$ components of the covariant derivative of the structure tensor W with respect to the connection form $\pi^{*} \omega_{a \beta}^{\prime \prime}$. Then it is defined by

$$
\begin{align*}
\sum \varepsilon_{D} W_{\alpha B C D} \omega_{D}= & d W_{\alpha B C}-\sum \varepsilon_{\delta} W_{\delta B C} \pi^{*} \omega_{\delta \alpha}^{\prime \prime} \tag{5.7}\\
& -\sum \varepsilon_{D}\left(W_{\alpha D C} \omega_{D B}+W_{\alpha B D} \omega_{D C}\right)
\end{align*}
$$

Taking account of (2.6), (5.6) and (5.7) we can easily obtain

$$
\left\{\begin{array}{l}
W_{\alpha \beta \gamma \iota}=\sum \varepsilon_{i}\left(A_{\alpha \beta}^{\prime} h_{i}^{\gamma}+A_{\alpha \gamma}^{\prime} h_{j i}^{\beta}\right), \tag{5.8}\\
W_{\alpha \beta \gamma \delta}=\sum \varepsilon_{j}\left(A_{\alpha \beta}^{\prime} A_{\gamma \delta}^{\prime}+A_{\alpha \gamma}^{j} A_{\beta \delta}^{\prime}\right) .
\end{array}\right.
$$

Differentiating (5.5) exteriorly we get

$$
d\left(\omega_{\alpha \beta}-\pi^{*} \omega_{\alpha \beta}^{\prime \prime}\right)=\sum \varepsilon_{C} d\left(W_{\alpha \beta C} \omega_{C}\right)
$$

Accordingly, making use of the structure equations (2.2), (2.3) for M and the structure equations (5.1), (5.2) and (5.3) for B together with (5.5) and (5.7), we can directly obtained the following Ricci formula:

$$
\begin{equation*}
W_{\alpha \beta C D}-W_{\alpha \beta D C}=R_{\alpha \beta C D}-\delta_{C \gamma} \delta_{D \delta} R_{\alpha \beta \gamma \delta}^{\prime \prime} . \tag{5.9}
\end{equation*}
$$

Thus, from (5.8) and (5.9) we have for the semi-Riemannian submersion $\pi: M$ $\rightarrow B$

$$
\begin{gather*}
R_{\alpha \beta \gamma \delta}-R_{\alpha \beta \gamma \delta}^{\prime \prime}=\sum \varepsilon_{j}\left(2 A_{\alpha \beta}^{j} A_{\gamma \delta}^{J}+A_{\alpha \gamma}^{J} A_{\beta \delta}^{\prime}-A_{\alpha \delta}^{\prime} A_{\beta \gamma}^{\prime}\right) \tag{5.10}\\
R_{\alpha \beta \beta \alpha}-R_{\alpha \beta \beta \alpha}^{\prime \prime}=-3 \sum \varepsilon_{j} A_{\alpha \beta}^{\prime} A_{\alpha \beta}^{\prime} . \tag{5.11}
\end{gather*}
$$

Remark 1. The above equations (5.10) and (5.11) in the Riemannian submersion are already obtained by Besse [1], Escobales Jr. [3], Gray [4], and O'Neill [7].

For the non-degenerate plane spanned by vectors u and v at any point on the semi-Riemannian manifold B the sectional curvature of the plane section is denoted by $K^{\prime \prime}(u, v)$.

Lemma 5.1. For a semi-Riemannian submersion $\pi: M_{m}^{m+n} \rightarrow B^{n}(n \geq 2)$, we have

$$
K\left(e_{\alpha}, e_{\beta}\right) \geq K^{\prime \prime}\left(d \pi e_{\alpha}, d \pi e_{\beta}\right) \circ \pi
$$

where the equality holds if and only if $A_{\alpha \beta}^{J}=0$ for any index j.
Proof. By the assumption of the semi-Riemannian submersion we have $\varepsilon_{j}=-1$, which implies that (5.11) is equivalent to

$$
R_{\alpha \beta \beta \alpha}-R_{\alpha \beta \beta \alpha}^{\prime \prime}=-3 \sum \varepsilon_{j} A_{\alpha \beta}^{\prime} A_{\alpha \beta}^{\prime} \geq 0
$$

Since the sectional curvature of the plane section spanned by e_{α} and e_{β} (resp. $d \pi e_{\alpha}$ and $d \pi e_{\beta}$) is given by

$$
K\left(e_{\alpha}, e_{\beta}\right)=R_{\alpha \beta \beta \alpha}, K^{\prime \prime}\left(d \pi e_{\alpha}, d \pi e_{\beta}\right)=R_{\alpha \beta \beta \alpha}^{\prime \prime}
$$

we get $K\left(e_{\alpha}, e_{\beta}\right) \geq K^{\prime \prime}\left(d \pi e_{\alpha}, d \pi e_{\beta}\right) \circ \pi$, where the equality holds if and only if $A_{\alpha \beta}^{J}=0$ for any index j.

Theorem 5.2. For a semi-Riemannian submersion $\pi: M_{m}^{m+n} \rightarrow B^{n}(n \geq 2)$ if $K\left(P_{D}\right) \leq 0$, then there exists at least one plane $P^{\prime \prime}$ in $T_{b} B, b \in B$, such that $K^{\prime \prime}\left(P^{\prime \prime}\right)$ <0 or B is locally flat and the horizontal distribution is integrable.

Proof. Suppose that there does not exist a plane section $P^{\prime \prime}$ such that $K^{\prime \prime}\left(P^{\prime \prime}\right)<0$. Then, for any point $b \in B$ and for any plane section $P^{\prime \prime}$ in $T_{b} B$ we have $K^{\prime \prime}\left(P^{\prime \prime}\right) \geq 0$. Accordingly Lemma 5.1 means that

$$
K\left(e_{\alpha}, e_{\beta}\right) \geq K^{\prime \prime}\left(d \pi e_{\alpha}, d \pi e_{\beta}\right) \bullet \pi \geq 0
$$

for any indices α and β. Since the plane section spanned by e_{α} and e_{β} is definite, by the assumption we get $K\left(e_{\alpha}, e_{\beta}\right) \leq 0$ for any indices α and β, which means that B is locally flat and $A_{\alpha \beta}^{j}=0$ for any indices.

From now on we assume that the semi-Riemannian submersion $\pi: M \rightarrow B$ is minimal. Then we have the formula (4.2) given in section 4. By virtue of this formula we can prove

Theorem 5.3. Let M_{1}^{m+1} be a Lorentzian manifold satisfying the strongly energy condition and $\pi: M_{1}^{m+1} \rightarrow \mathrm{~B}_{1}^{1}$ be a semi-Riemannian submersion of codimension one and with space-like fibers. If it is minimal, then it is totally geodesic.

Proof. By the assumption of codimension we have $\operatorname{dim} B=1$ and each fiber is a space-like hypersurface, which implies that B is time-like. The assumption for the strongly energy condition means that the Ricci tensor $\operatorname{Ric}\left(e_{\alpha}\right)=\operatorname{Ric}\left(e_{\alpha}\right.$, e_{α}) in the direction of the time-like vector e_{α} of M satisfies $\operatorname{Ric}\left(e_{\alpha}\right)=R_{\alpha \alpha} \geq 0$, where $\alpha=m+1$.

On the other hand, (4.2) is reformed as $R_{\alpha \alpha}=-\sum h_{j k}^{\alpha} h_{j k}^{\alpha}-\sum A_{\alpha \gamma}^{J} A_{\alpha \gamma}^{J} \leq 0$, because of $\varepsilon_{j}=1$ and $\varepsilon_{\alpha}=-1$. Thus, by the strongly energy condition, the equality holds and hence we have $h_{i j}^{\alpha}=0$ for any indices.

Remark 2. Let M be a compact Riemannian manifold whose Ricci curvature is positive semi-definite. It is proved by Oshikiri [9] that if a foliation (M, g, \mathscr{F}) of codimension one is minimal, then \mathscr{F} is totally geodesic and the metric g is bundle-like.

Next we study the Ricci curvature and the Einstein condition for the semiRiemannian submersions. Since the fibers are submanifolds of the total space M, the Riemannian curvature tensor R^{\prime} satisfies the Gauss equation

$$
\begin{equation*}
R_{i j k l}^{\prime}=R_{i j k l}+\sum \varepsilon_{\alpha}\left(h_{i l}^{\alpha} h_{j k}^{\alpha}-h_{i k}^{\alpha} h_{j i}^{\alpha}\right) \tag{5.12}
\end{equation*}
$$

where $R_{i j k l}^{\prime}$ are components of the Riemannian curvature tensor R^{\prime} of the fiber. We denote by $R_{A B}$ (resp. $R_{i j}^{\prime}$ and $R_{\alpha \beta}^{\prime \prime}$) the components of the Ricci curvature tensor of M (resp. the fiber and B). Because of

$$
R_{i j}=\sum \varepsilon_{k} R_{k i j k}+\sum \varepsilon_{\beta} R_{\beta i j \beta},
$$

we obtain by (2.8), (4.1) and the Gauss equation (5.12)

$$
\begin{equation*}
R_{i j}=R_{i j}^{\prime}+\sum \varepsilon_{\beta} h_{i j \beta}^{\beta}-\sum \varepsilon_{k} \varepsilon_{\beta} h_{k k}^{\beta} h_{i j}^{\beta}+\sum \varepsilon_{\beta} \varepsilon_{\gamma} A_{\beta \gamma}^{\prime} A_{\beta \gamma}^{\prime} . \tag{5.13}
\end{equation*}
$$

Similarly we get

$$
\begin{align*}
R_{\alpha \beta}=R_{\alpha \beta}^{\prime \prime} & -2 \sum_{j} \varepsilon_{j} \varepsilon_{\gamma} A_{\alpha \gamma}^{J} A_{\beta \gamma}^{J}-\sum \varepsilon_{i} \varepsilon_{j} h_{i j}^{\alpha} h_{i j}^{\beta} \tag{5.14}\\
& +\sum \varepsilon_{i} h_{i \beta}^{\alpha}-\sum \varepsilon_{i} A_{\alpha \beta i}^{\prime}
\end{align*}
$$

where we have used (4.1) and (5.10). On the other hand, we have

$$
\begin{equation*}
R_{i \beta}=\sum \varepsilon_{j}\left(h_{j i j}^{\beta}-h_{i j j}^{\beta}\right)+2 \sum \varepsilon_{\alpha} \varepsilon_{k} h_{i k}^{\alpha} A_{\beta \alpha}^{k}+\sum \varepsilon_{\alpha} A_{\alpha \beta \alpha}^{L} \tag{5.15}
\end{equation*}
$$

by (2.12) (2.14), (2.15) and (2.17). Now we denote by Ric (resp. Ric' and Ric") the Ricci curvature tensor of M (resp. the fiber and B). The Ricci curvature in the direction of e_{\jmath} of M is denoted by $\operatorname{Ric}\left(e_{j}\right)=\operatorname{Ric}\left(e_{j}, e_{j}\right)$. From (5.13) one finds the following:

Theorem 5.4. For a minimal semi-Riemannian submersion $\pi: M_{m}^{m+n} \rightarrow B^{n}$ or $\pi: M_{n}^{m+n} \rightarrow B_{n}^{n}$ if

$$
\operatorname{Ric}^{\prime}\left(e_{j}\right) \geq \operatorname{Ric}\left(e_{j}\right)
$$

for any index j, then the horizontal distribution is integrable.
Proof. By the assumption and (5.13) we have

$$
0 \geq \operatorname{Ric}\left(e_{j}\right)-\operatorname{Ric}^{\prime}\left(e_{j}\right)=\sum \varepsilon_{\beta} h_{j \beta}^{\beta}+\sum \varepsilon_{\beta} \varepsilon_{\gamma} A_{\beta \gamma}^{\prime} A_{\beta \gamma}^{\prime} \geq \sum \varepsilon_{\beta} h_{j j \beta}^{\beta},
$$

where the equality holds if and only if $A_{\beta_{\gamma}}^{J_{\gamma}}=0$ for any indices.
On the other hand, we have $\sum \varepsilon_{j} \varepsilon_{\beta} h_{j j \beta}^{\beta}=0$, which implies

$$
\sum \varepsilon_{j}\left\{\operatorname{Ric}\left(e_{j}\right)-\operatorname{Ric}^{\prime}\left(e_{j}\right)\right\}=0
$$

Thus we get $\operatorname{Ric}\left(e_{j}\right)-\operatorname{Ric}^{\prime}\left(e_{j}\right)=0$ for any index j.

We say the horizontal distribution \mathscr{D}_{H} satisfies the Yang-Mills condition if it satisfies

$$
\sum \varepsilon_{\beta} A_{\beta \alpha \beta}^{\prime}=\sum \varepsilon_{k} \varepsilon_{\beta} h_{i k}^{\beta} A_{\alpha \beta}^{k}
$$

for any indices i and α. It is important for Einstein Riemannian submersions (cf. pp. 243 Besse [1]). From the formula between Ricci curvatures we get the following:

Proposition 5.5. Let $\pi: M_{m}^{m+n} \rightarrow B^{n}$ (resp. $\pi: M_{n}^{m+n} \rightarrow B_{n}^{n}$) be a semi-

Riemannian submersion with time-like (resp. space-like) totally geodesic fibers. Then M is Einstein if and only if the horizontal distribution \mathscr{D}_{H} satisfies the YangMills condition and the Ricci curvatures of the fibers and the base manifold B satisfy
(1) $R_{i j}^{\prime}=\lambda \varepsilon_{i} \delta_{i j}-\sum \varepsilon_{\alpha} \varepsilon_{\beta} A_{\alpha \beta}^{l} A_{\alpha \beta}^{J}$,
(2) $R_{\alpha \beta}^{\prime \prime}=\lambda \varepsilon_{\alpha} \delta_{\alpha \beta}+2 \sum \varepsilon_{i} \varepsilon_{\gamma} A_{\alpha \gamma}^{l} A_{\beta \gamma}^{l}$,
for a constant λ.
Next we assume that the semi-Riemannian submersion $\pi: M \rightarrow B$ is minimal and we denote by r (resp. r^{\prime} or $r^{\prime \prime}$) the scalar curvature of M (resp. the fiber or $B)$. Then by the definition we get

$$
r-r^{\prime \prime}=\sum \varepsilon_{\alpha} R_{\alpha \alpha}+\sum \varepsilon_{j} R_{j j}-\sum \varepsilon_{\alpha} R_{\alpha \alpha}^{\prime \prime}
$$

Then by (5.13) and (5.14) it is reformed as

$$
\begin{equation*}
r-r^{\prime}-r^{\prime \prime}=-\sum \varepsilon_{j} \varepsilon_{\alpha} \varepsilon_{\beta} A_{\alpha \beta}^{\prime} A_{\alpha \beta}^{J}-\sum \varepsilon_{\alpha} \varepsilon_{i} \varepsilon_{j} h_{i j}^{\alpha} h_{i j}^{\alpha} \tag{5.16}
\end{equation*}
$$

where $r^{\prime}=\sum \varepsilon_{i} R_{i i}^{\prime}$ and $r^{\prime \prime}=\sum \varepsilon_{\alpha} R_{\alpha \alpha}^{\prime \prime}$. Thus we have the followings:
Theorem 5.6. For a minimal Riemannian submersion $\pi: M^{m+n} \rightarrow B^{n}$, we have

$$
r \leq r^{\prime}+r^{\prime \prime}
$$

where the equality holds if and only if it is totally geodesic and the horizontal distribution is integrable.

Corollary 5.7. For a Riemannian submersion $\pi: M^{m+n} \rightarrow B^{n}$ if there is a point $x \in M$ such that $r(x)>r^{\prime}(x)+r^{\prime \prime}(x)$, then it is not minimal.

Remark 3. The following results are proved by Watson [10]. Let M be a compact Riemannian manifold whose Ricci tensor is positive semi-definite and B be a Riemannian manifold whose Ricci tensor is negative semi-definite. If there is a point on M at which the Ricci tensor is positive definite, then there are no minimal submersions $\bar{\pi}: M \rightarrow B$. In particular, if B is of negative curvature, there are no minimal submersions $\pi: M \rightarrow B$.

From (5.13) and (5.16) we have

$$
\sum \varepsilon_{\alpha}\left\{\operatorname{Ric}\left(e_{\alpha}\right)-\operatorname{Ric}^{\prime \prime}\left(d \pi e_{\alpha}\right)\right\}=2\left(r-r^{\prime}-r^{\prime \prime}\right)+\sum \varepsilon_{\alpha} \varepsilon_{i} \varepsilon_{j} h_{i j}^{\alpha} h_{i j}^{\alpha} .
$$

Thus we prove the following:
Lemma 5.8. Let $\pi: M_{m}^{m+n} \rightarrow B^{n}$ be a semi-Riemannian submersion. If it is minimal, then

$$
\sum \varepsilon_{\alpha}\left\{\operatorname{Ric}\left(e_{\alpha}\right)-\operatorname{Ric}^{\prime \prime}\left(d \pi e_{\alpha}\right)\right\} \geq 2\left(r-r^{\prime}-r^{\prime \prime}\right)
$$

where the equality holds if and only if it is totally geodesic.

As a direct consequence of (5.16) and Lemma 5.8 we get
Theorem 5.9. Let $\pi: M_{m}^{m+n} \rightarrow B^{n}$ be a semi-Riemannian submersion. If it is minimal and if $\operatorname{Ric}\left(e_{\alpha}\right) \leq \operatorname{Ric}^{\prime \prime}\left(d \pi e_{\alpha}\right)$ and $r-r^{\prime \prime}-r^{\prime \prime} \geq 0$, then it is totally geodesic and the horizontal distribution is integrable.

Example. An example of minimal semi-Riemannian submersion $\pi: M_{m}^{m+n}$ $\rightarrow B^{n}$ which is not totally geodesic is here constructed.

Let $\left\{f_{A}\right\}$ be the set of smooth positive functions on \boldsymbol{R}^{n}. Let M_{m}^{m+n} (resp. M_{n}^{m+n}) be an $(m+n)$-dimensional semi-Riemannian manifold of index m (resp. index n) defined by

$$
\begin{aligned}
M & =M_{m}^{m+n}\left(\operatorname{resp.} M_{n}^{m+n}\right) \\
& =\left\{(x, y) \in R^{m} \times R^{n}: g=\left(g_{A B}\right), g_{A B}(x, y)=\varepsilon_{A} f_{A}^{2}(y) \delta_{A B}\right\},
\end{aligned}
$$

where $\varepsilon_{j}=-1, \varepsilon_{\alpha}=1$ (resp. $\varepsilon_{j}=1, \varepsilon_{\alpha}=-1$). Also, let $B=B^{n}$ (resp. B_{n}^{n}) be an n dimensional Riemannian (resp. semi-Riemannian) manifold defined by

$$
B=\left\{y \in \boldsymbol{R}^{n}: g^{\prime \prime}=\left(g_{\alpha \beta}^{\prime \prime}\right), g_{\alpha \beta}^{\prime \prime}=\varepsilon_{\alpha \alpha} f_{\alpha}^{2}(y) \delta_{\alpha \beta}\right\}
$$

Then, for the natural projection $\pi: M \rightarrow B$, it is a semi-Riemannian submersion whose fibers are defined by a fixed point $y \in \boldsymbol{R}^{n}$. For the natural coordinate system $\left\{x_{A}\right\}$ the natural basis $\left\{\partial / \partial x_{A}\right\}$ satisfies

$$
\left\{\begin{array}{l}
g\left(\frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{x}}\right)=\varepsilon_{i} f_{l}^{2} \delta_{i j}, \\
g\left(\frac{\partial}{\partial x_{\alpha}}, \frac{\partial}{\partial x_{j}}\right)=0, \\
g\left(\frac{\partial}{\partial x_{\alpha}}, \frac{\partial}{\partial x_{\beta}}\right)=\varepsilon_{\alpha} f_{\alpha}^{2} \delta_{\alpha \beta}
\end{array}\right.
$$

Accordingly an orthonormal basis $\left\{e_{A}\right\}$ is given by

$$
e_{i}=\frac{1}{f_{i}} \frac{\partial}{\partial x_{i}}, e_{\alpha}=\frac{1}{f_{\alpha}} \frac{\partial}{\partial x_{\alpha}} .
$$

Thus, calculating $\nabla_{e i} e_{j}$ we can get

$$
h_{i j}^{\alpha}=-\frac{\varepsilon_{i}}{f_{j} f_{\alpha}} \frac{\partial f_{i}}{\partial x_{\alpha}} \delta_{i j} .
$$

Consequently we have

$$
\sum \varepsilon_{j} h_{j j}^{\alpha}=-\frac{1}{f_{\alpha}} \frac{\partial}{\partial x_{\alpha}} \log \Pi f_{J}
$$

This shows that if the functions f_{1}, \ldots, f_{m} satisfy the condition $\prod f_{j}=$ constant, then the submersion is minimal, but in general not totally geodesic.

References

[1] A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin-New York, 1987.
[2] R. H. Escobales Jr., Riemannian submersions with totally geodesic fibers, J. Differential Geom., 10 (1975), 253-276.
[3] R. H. Escobales Jr., Riemannian foliations of the rank one symmetric spaces, Proc. Amer. Math. Soc., 95 (1985), 495-498.
[4] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 10 (1967), 715-737.
[5] M. A. Magid, Submersions from anti-de Sitter space with totally geodesic fibers, J. Differential Geom., 16 (1981), 323-331.
[6] H. Nakagawa and R. Takagi, Harmonic foliations on a compact Riemannian manifold of non-negative constant curvature, Tôhoku Math. J., 40 (1988), 465-471.
[7] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J., 13 (1966), 459469.
[8] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York-London, 1983.
[9] G. Oshikirı, A remark on minımal foliations, Tôhoku Math. J., 33 (1981), 133-137.
[10] B. Watson, Manifold maps commuting with the Laplacian, J. Differential Geom., 8 (1973), 85-94.
[11] R. Takagi and S. Yorozu, Minimal foliations on Lie groups, Tôhoku Math. J., 36 (1984), 541-554.

Department of Mathematics Education
Taegu University, Taegu 705-714.
Korea

Department of Mathematics
Kyungpook National University.
Taegu 702-701, Korea
E-mail: yjsuh@bh.kyungpook.ac.kr

[^0]: * The first author was partially supported by the grants from the Institute of Natural Science of Taegu University and the second by BSRI-96-1404 and TGRC-KOSEF

 1991 Mathematics Subject Classification. Primary 53C50; Secondary 53B20, 53B30.
 Recerved June 28, 1996.

