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RIEMANNIAN SUBMERSIONS*
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Abstract

O'Neill introduced a notion of Riemannian submersion [7]. In this paper we give a new
notion of semi-Riemannian submersion and want to investigate some geometric proper-
ties concerned with sectional and Ricci curvatures of this submersion.

1. Introduction

The theory of Riemannian submersion was firstly introduced by O'Neill ([7])
and its geometric properties have been studied by many differential geometers
(Besse [1], Escobales Jr. [2], [3], Gray [4], Magid [5], Nakagawa and Takagi [6],
and Takagi and Yorozu [11]). In this paper we introduce a new notion of a semi-
Riemannian submersion which is more general than the notion of Riemannian
submersion and want to investigate its geometric properties.

The main purpose of section 2 is to give the notion of semi-Riemannian
submersion which contains the concepts of both Riemannian and indefinite
Riemannian (or said to be pseudo-Riemannian) submersions and to construct
some fundamental formulas for this submersion.

In section 3 we will give a typical example of semi-Riemannian submersion
of pseudo-hyperbolic space H%+n.

Now in section 4 the sectional curvature of semi-Riemannian submersion
will be defined and the sufficient conditions for the horizontal distribution 22)// of
the minimal semi-Riemannian submersion to be totally geodesic and integrable
will be studied in terms of sectional curvature.

Finally, in section 5 we also define the notion of Ricci curvature of the semi-
Riemannian submersion and want to investigate some geometric properties for
the horizontal distribution 2)// of the minimal semi-Riemannian submersion to
be totally geodesic and integrable in terms of Ricci curvature. Moreover, we will
give another example of minimal semi-Riemannian submersion which is not
totally geodesic.
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2. Preliminaries

Let M be an (m + rc)-dimensional connected semi-Riemannian manifold of
index r + ̂ (0 < r < m, 0 < s < n), which is denoted by M?£n and let B be an rc-
dimensional connected semi-Riemannian manifold of index s, which is denoted
by B". A semi-Riemannian submersion π\ M —» B is a submersion of semi-
Riemannian manifolds M and B such that

(1) The fiber π~x{b), b E B, are semi-Riemannian submanifolds of M.
(2) The differential dπ of π preserves scalar products of vectors normal to

fibers.
For a semi-Riemannian submersion π : M —» B vectors tangent to fibers are said
to be vertical and those normal to fibers are said to be horizontal. Any vector
field X on M can be decomposed as

X = X' + X\

where X' (resp. JΓ) denotes a vertical (resp. horizontal) part of X. We define
two tensors T and A of type (1, 2) on M by

n u ίT(X, Y) = (Vx'Ty + (V^Y%

for any vector fields A" and Y on M, where V denotes the Levi-Civita connection
on M. They are called integrability tensors for the semi-Riemannian submersion
π: M —» B. We choose a local field e l 5 . . . , em+n of orthonormal frames adapted
to the semi-Riemannian metric of M in such a way that, restricted to the fiber
^r~1(δ), b E B, el9 . . . , em is a local field of orthonormal frames adapted to a
semi-Riemannian metric of π~x{b) induced from that on the semi-Riemannian
manifold M. The following convention on the range of indices will be used
throughout this paper:

A, B, C, D, E, F, . . . = 1, . . . , m + n;

i, j , k,l, . . . = 1, . . . , m;

a, β, y, δ, . . . = m + 1, . . . , m + π,

where m denotes the dimension of fibers. The summation Σ is taken over all
repeated indices, unless otherwise stated. Then we have < eA, eB > = εAδAB,
where <, > denotes the scalar product on M. The dual coframe field is denoted
by {ωA}. The connection form ωAB are characterized by the structure equations
of M:

n 2) \d(°A + Σ£B<I>AB Λ ωB = 0,
; I coΛB + ωBΛ = 0,

3) dωAB

Λ

where β ^ β denotes the curvature form of M and RABCD are components of the
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Riemannian curvature tensor R with respect to the semi-Riemannian metric.
The Levi-Civita connection Von Mis given by

( 2 4 ) Ve/B

We define two tensors h and Ao of type (1, 2) on M by

h{X, Y) = (VrXy, A0(X, Y) = -(V

for any vector fields X and Y on M. They are also called integrability tensors for
the semi-Riemannian submersion π\ M—> B. The integrability tensor h restricted to
a fiber means the second fundamental form of the fiber. It follows from (2.2)
and (2.4) that

h(eh βj) = Σε*ω«i(ej)e«, Λ0(ea, eβ) = Σ^aj(eβ)ej.

In fact, by the definition we get

h{eh ej) = (Σεcωci(ej)ec)tr = Σ ^ ω ^ K .

On the other hand, it is seen by Gray [4] that the integrability tensor Λo

satisfies the following relation:

(2.5) A0{ea, eβ) = -A0(eβ, ea)= - ~[ea, eβ]
f,

and hence we get

A0(ea, eβ) = -

Thus the only components hβC (resp. ACD) of h (resp. Ao) which may not vanish
are

Kj = (oj.ej), (resp. Aι

φ = ωai(eβ)).

Accordingly the connection form ωaι are given by

(2.6) ωaι = Σεjh?jo)j + Σ

We may choose a suitable semi-Riemannian metric on the tangent bundle TM of
M and decompose TM as a direct product of a vertical distribution Q)v and a
horizontal one 2)//, where the vertical (resp. horizontal) distribution is defined
by an assignment of any point x in M with a tangent space (resp. the orthonormal
siibspace) to a fiber through x. A distribution 2) is said to be integrable if [X, Y]
belong to 2) whenever vector fields X and Y belong to 2). Since the vertical
distribution 2)κis defined by ωa = 0 and it is integrable, by Cartan's lemma we
have

(2.7) A£ = h%

Since the integrability tensor Ao is also skew-symmetric, we get

(2.8) A^ = A'p*.

The semi-Riemannian submersion π: M —> B is said to be minimal if each fiber
is minimal, i.e., if it satisfies Σεy Λ^=0. The semi-Riemannian submersion
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π: M-* B is said to be totally geodesic if each fiber is totally geodesic, i.e., if it
satisfies hfj = 0. By (2.5) the horizontal distribution 2)// is integrable if and only if

(2.9) A^ = 0.

Now, for a tensor field T= (Ίήt'.'.'.ήjf) on M, we define the covariant derivative
T&ΐ :fe by

(2.10) ΣεcΊft

Then, from the definition of (H^CD), (A^CD) and (2.6), it follows that

tiίjk = - Σejiψiΐk, hι

ij(X = -

γ = WCβD = 0,

A)ock = - ΣεβAβaHfh

Aγcφδ = ΣεiA'aβA'y* A?iD = Afco = Agy D = 0,

(2.11) Λ^ M

(2.12) Λg,

(2.13) ^ =

(2.14) Λ ^ =

Moreover, by the exterior derivatives of (2.6) and by means of (2.2), (2.3)
and (2.10)-(2.14), we have

(2.15) Rrtjt = h*k - h%j + A ι

φ - Aι

akj,

(2.16) Rcdjβ = hΐjβ ~ hψj + Aι

ajβ — Aι

aβj,

(2.17) R*iβγ = hfβγ — hfγβ + Aι

aβγ — A^β.

Next, by virtue of (2.2), (2.3) and (2.10) we have the Ricci formulas for the
second covariant derivatives of h as the following

3. Examples

In this section typical examples of semi-Riemannian submersion of an (m +
n)-dimensional pseudo-hyperbolic space H%+n are considered.

Let C or H be the field consisting of complex numbers or quaternion
numbers. They are simply denoted by K. In Kn+1 with the standard basis, a
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semi-Hermitian form F is defined by
r n+1

F(zy w) = - Σ ZiWi + Σ ZjWp
1 +l

where z = (zi, . . . , zn+i) and w = (w1? . . . , wn+1) are in jfiΓrt+1. The complex or
quaternion semi-Euclidean space (Kn+1, F) is simply denoted by ΛΓ"+1. The
scalar product g'{z, w) is given by ReF(z, w) is a semi-Riemannian metric of
index dr in tf?+1, where d = 2 or d = 4 according as K = C or K = H. Let H^tf'1

be a real hypersurface of Jf?+1, r > 1, defined by

fl&tf"1 = {z e *?+ 1: F(z, z) = -1},

and let g be a semi-Riemannian metric of Hir-i'1 induced from the semi-
Riemann metric gr. Then (Hdr-i'1, g) is the semi-Riemannian manifold of
constant sectional curvature —1 and with index dr—1, which is called a unit
pseudo-hyperbolic space. For the unit pseudo-hyperbolic space H^l(~ι with
index dr—1 the tangent space T^Hdr-i'1) at each point z can be identified
(through the parallel displacement in *? + 1 ) with {w E K?+1: ReF(z, w) = 0}.

Let T*z be the orthogonal complement of the vector iz in TZ(H2?+1) or the
vectors iz, jz and kz in Tz(Hi"+3), where we denote by / an imaginary unit in C
and by 1, /, j and k a basis for H so that they satisfy i2=j2 = k2 = — 1, ij = — ji =
k, jk = —kj = i and ki = —ik=j. Let /ί^li be the multiplicative group of these
numbers of absolute value 1. Then H%}+d~1 can be considered a principal fiber
bundle over a pseudo-hyperbolic tf-space H^-γK with group H^-l and the
projection π. Furthermore there is a connection such that Tz is the horizontal
subspace at z which is invariant under the //^l}-action. The metric g0 of constant
holomoφhic sectional curvature -4 is given by gOb (X, Y) = gz(X*, Y*) for any
tangent vectors X and Y in T^Hf^K), where z is any point in the fiber π~λ (b)
and X* and Y* are vectors in ϊz such that dπX* = X and dπY* = Y.

On the other hand, complex structures /: w ^ w , /: HΊ-^/V and A': w *-> kw
in Γ̂  is compatible with the action of //^-i and induce almost complex structures
/, / and K on //?_! jfiΓ such that dπ°i = I°dπ, dπ°j = J°dπ and dπ°λ; = K °dπ. Thus
//?_! ϋΓ is a pseudo-hyperbolic space over K of constant holomoφhic sectional
curvature - 4 and it is seen that the principal /f^Ii-bundle H^^1 over H?_j #
with projection jris a semi-Riemannian submersion with the fundamental tensors /,
/ and K. A distribution 2) determined by the subspace spanned by iz, jz and kz
at any point z is integrable. In fact, we have

(3.1) Viz(jz) = /Vκ(z) = jiz = -kz,

because j is parallel and H^-f'1 is totally umbilic in 1£?+1. This shows that [/z,
z] = — 2Jfcz. Since the others hold similarly, it means that the distribution 2) is

integrable. On the other hand, (3.1) implies that the maximal integral submanifold
of 2) is totally geodesic. Thus the semi-Riemannian submersions have totally
geodesic time-like fibers Ha-l-
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ττd—1 . ττdn+d—1
Hd-1 ~^ Hdr-1

i π
W-iK

In particular, we consider the case r = 1. Then there exist totally geodesic space-
like submersions π: H\n+1 -> H"C and π: Hf1*3 -» WH whose basic manifold is
Riemannian.

4. Sectional curvatures

Let M = M?!fs

n be an (m + rc)-dimensional semi-Riemannian manifold of
index r + s and B = B" be an n-dimensional semi-Riemannian manifold of index
s. We denote by PD and P/ the set of all definite plane sections and all non-
degenerate plane sections, respectively. For any non-degenerate plane section Pf

the sectional curvature is denoted by K(Pj). Let πT M —> B be a semi-Riemannian
submersion. Then we have

by means of (2.8), (2.11), (2.13) and (2.16). Assume that the semi-Riemannian
submersion π: M -» B is minimal. Then it is easily seen that we have

from which the following

is derived. Since the left hand side and the first two terms of the right hand side
are symmetric with respect to indices αrand β and the last one is skew-symmetric, we
have

(4.2) Σεflαϋβ = -Σφ*fij&Ej +Σε,-εrA>αrAjίγ.

THEOREM 4.1. Let π: M^n -> Bn be α semί-Riemαnniαn submersion. If
K(Pj) > 0 and if the submersion is minimal, then it is totally geodesic and
horizontal distribution is integrable.

Proof By (4.2) we get

because of εy = - 1 and εγ= 1. By the assumption K(Pf) > 0 w e get εjεji^ja ^
0. Thus we get hf = 0 and Aι

φ = 0 for any indices. •

Similarly, using (4.2) one can prove the following:

COROLLARY 4.2. Let π: M£+n -> B% be a semi-Riemannian submersion.
If K{P[) ^ 0 and if the submersion is minimal, then it is totally geodesic and
the horizontal distribution is integrable.
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Certain semi-Riemannian submersions like those in Theorem 4.1 and Corollary
4.2 have simple geometric situation. The distribution 9) is said to be parallel if
the vector field VXY belong to % whenever a vector field Y belongs to 2). Let
π: M -» B be a semi-Riemannian submersion with totally geodesic fibers. We
assume that the horizontal distribution Q)H is integrable. Then by (2.4) and (2.6)
we have

which means that the horizontal distribution is parallel. Thus the vertical distri-
bution orthogonal to 2>// is also parallel and hence one finds the following:

THEOREM 4.3. Let π: M™+rt —> Bn be a semi-Riemannian submersion. If it is
totally geodesic and if the horizontal distribution is integrable, then the total space
M is locally decomposed into the product manifold Fx B.

Remark 1. Let π: M%+n -* Bn be a semi-Riemannian submersion. If it is
totally geodesic, the mixed sectional curvature K(U, X) is always non-positive,
where U (resp. X) is a vertical vector (resp. a horizontal vector).

Now, an m-dimensional semi-Riemannian manifold of index r and of constant
curvature c is called a semi-Riemannian space form, which is denoted by M™(c).
Let π\ M^n{c) -» Bn be a minimal semi-Riemannian submersion. We denote
by 5 the square of the length of the second fundamental form of the fiber, that
is, S = ΣεiεiεJιφι*=Σh$t*9 because of εt=-I and εa=l. Then by (4.2) we
obtain

S = Σ
From this equation we can conclude the following properties: For a minimal
semi-Riemannian submersion π M%+n(c) —> Bn

(1) c > 0 implies that c = 0, hf = 0 and A3^ - 0 for any indices i, , a and β.
(2) c < 0 implies 5 < -mnc, where the equality holds if and only if AJ^ = 0

for all indices a, β and .
Therefore we can state the following lemmas:

LEMMA 4.4. Let π: M%+n(c) -> Bn be a semi-Riemannian submersion. If the
submersion is minimal and if c > 0, then c = 0. Moreover it is totally geodesic and
the horizontal distribution is integrable.

LEMMA 4.5. Let π:M^+n(c) —> Bn be a semi-Riemannian submersion. If the
submersion is minimal and ifc<0, then S < -mnc, where the equality holds if
and only if the horizontal distribution is integrable.

Thus we can prove the following:

THEOREM 4.6. Let M be an (m + ή)-dimensional semi-Riemannian space
form M™+"(c) of index m and B be an n-dimensional Riemannian manifold. If
c > 0, then there are no minimal semi-Riemannian submersions π: M -> B.
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Similarly, the following properties can be verified:

LEMMA 4.7. Let π: M™+n(c) -» B^be a semi-Riemannian submersion. If the
submersion is minimal and if c < 0, then c = 0. Moreover it is totally geodesic and
the horizontal distribution is integrable.

THEOREM 4.8. Let M be an (m + n)-dimensional semi-Riemannian space
form M™+n(c) of index n and B be an n-dimensional semi-Riemannian manifold
of index n. If c < 0, then there are no minimal semi-Riemannian submersions
π: M -* B.

5. Ricci curvatures

Let M be an (m + n)-dimensional semi-Riemannian manifold of index r + s
(r, s > 0) and B be an n-dimensional semi-Riemannian manifold of index s. Let
π: M -» B be a semi-Riemannian submersion. We choose a local field {eA} of
orthonormal frames, restricted to the fiber π~x{b), b E B, {e7} is a local field of
orthonormal frames of π~λ{b). By means of the semi-Riemannian submersion,
{e'a=dπ(ea)} is a local field of orthonormal frames on B. The dual coframe field
is denoted by {ω'^} on B with respect to {e"a}. It is easily seen that we get

(5.1) ωa =

The connection forms {ω'φ} are characterized by the structure equations of B:

(5.3)

where β'̂ 3 denotes the curvature form of B and i?'̂ 3yδ are component of the
Riemannian curvature tensor R" of B. Differentiating (5.1) exteriorly we get
dωa = d(π*ω"a) = jt*(daQ and hence, using (2.2), (2.6), (2.7), (5.1) and (5.2) we
get

(5.4) Σεβ(ω<*β ~ π*^) Λ <°β -Σψβ^Φ03! Λ <°β = °

We put

(5.5) ωaβ - π*α/^ = 'ΣεcWcφcωc, ωaj =

Then by (2.6), (5.4) and (5.5) we have

( 5 6 )

where we have used the fact that W^Y is skew-symmetric with respect to a and
β. A tensor W whose components are given by WaBC is called the structure
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tensor for the semi-Riemannian submersion π :M —> B. We denote by WaBcD
components of the covariant derivative of the structure tensor W with respect to
the connection form jfω'φ. Then it is defined by

(5.7) 1LZDW«BCDMD = dWaBC -

-Σ^iW^Dcωoβ + WaBDωDC).

Taking account of (2.6), (5.6) and (5.7) we can easily obtain

( Λ) 1
Differentiating (5.5) exteriorly we get

d(ωaβ - jfaZφ) =

Accordingly, making use of the structure equations (2.2), (2.3) for M and the
structure equations (5.1), (5.2) and (5.3) for B together with (5.5) and (5.7), we
can directly obtained the following Ricci formula:

(5.9) WcφCD - Wcφoc = RoφCD

Thus, from (5.8) and (5.9) we have for the semi-Riemannian submersion π\M
-> B

(5.10)

(5.11)

Remark 1. The above equations (5.10) and (5.11) in the Riemannian sub-
mersion are already obtained by Besse [1], Escobales Jr. [3], Gray [4], and
O'Neill [7].

For the non-degenerate plane spanned by vectors u and v at any point on
the semi-Riemannian manifold B the sectional curvature of the plane section is
denoted by K'{u, v).

LEMMA 5.1. For a semi-Riemannian submersion π\M^n —» Bn (n> 2), we
have

e«, eβ) > K"(dπea, dπeβ) <> π,

where the equality holds if and only if A}φ = 0 for any index j.

Proof. By the assumption of the semi-Riemannian submersion we have
Ej•= - 1 , which implies that (5.11) is equivalent to

Raββa ~ Kββa = ^ Σ ^ ^ c φ ^ 0.

Since the sectional curvature of the plane section spanned by ea and eβ (resp.
dπea and dπeβ) is given by
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K(ea, ββ) = Raββa> K"(dπea, djτββ) = R"aββa,

we get K(ea, eβ) > K"(dπea, dπeβ) ° π9 where the equality holds if and only if
AJeφ = 0 for any index j. π

THEOREM 5.2. For a semi-Riemannian submersion π: M%+n —» Bn {n> 2) if
K(PD) < 0, then there exists at least one plane P1 in ThBy b G By such that K"(F')
< 0 or B is locally flat and the horizontal distribution is integrable.

Proof Suppose that there does not exist a plane section Fr such that
K"(F') < 0. Then, for any point b E. B and for any plane section Pr in TbB we
have K"(F') > 0. Accordingly Lemma 5.1 means that

K(ea, eβ) > K'idπe^ dπeβ) <> π > 0

for any indices a and β. Since the plane section spanned by ea and eβ is definite,
by the assumption we get K(ea, eβ) < 0 for any indices a and β, which means
that B is locally flat and AJ

aβ = 0 for any indices. Q

From now on we assume that the semi-Riemannian submersion π: M —» B is
minimal. Then we have the formula (4.2) given in section 4. By virtue of this
formula we can prove

THEOREM 5.3. Let Mψ+1 be a Lorentzian manifold satisfying the strongly
energy condition and π: Mψ+1 —» B} be a semi-Riemannian submersion of
codimension one and with space-like fibers. If it is minimal, then it is totally
geodesic.

Proof By the assumption of codimension we have dim B = l and each
fiber is a space-like hypersurface, which implies that B is time-like. The assumption
for the strongly energy condition means that the Ricci tensor Ric(eα) = R i c ^ ,
ea) in the direction of the time-like vector ea of M satisfies Ric(eα) = Raa ^ 0,
where oc—mΛ-1.

On the other hand, (4.2) is reformed as Raa = - Σhfkhfk - Σ ^ Λ ί η , ^ 0,
because of εy = l and εa=—1. Thus, by the strongly energy condition, the
equality holds and hence we have ft// = 0 for any indices. •

Remark 2. Let M be a compact Riemannian manifold whose Ricci curvature
is positive semi-definite. It is proved by Oshikiri [9] that if a foliation (M, g, SP)
of codimension one is minimal, then SF is totally geodesic and the metric g is
bundle-like.

Next we study the Ricci curvature and the Einstein condition for the semi-
Riemannian submersions. Since the fibers are submanifolds of the total space Af,
the Riemannian curvature tensor R1 satisfies the Gauss equation

(5.12) R'w = Rijkl +Σε«(
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where R'^i are components of the Riemannian curvature tensor R' of the fiber.
We denote by RAB (resp. /?» and R"aβ) the components of the Ricci curvature
tensor of M (resp. the fiber and B). Because of

Rij = Σεk^kijk + ΣεβRβijβ>

we obtain by (2.8), (4.1) and the Gauss equation (5.12)

(5.13) Rtj = R'ij +

Similarly we get

(5.14) Rap =

where we have used (4.1) and (5.10). On the other hand, we have

(5.15) Riβ = Σsj(h§έ - h§j) + 2ΣεaεkhrkΛ
k

β(X + Σ ^ W

by (2.12) (2.14), (2.15) and (2.17). Now we denote by Ric (resp. Ric' and Ric")
the Ricci curvature tensor of M (resp. the fiber and B). The Ricci curvature in
the direction of e} of M is denoted by Ric(ey) = Ric(ey, e,). From (5.13) one finds
the following:

THEOREM 5.4. For a minimal semi-Riemannian submersion π: M^+n —» Bn

+^> Bn

nif

for any index j> then the horizontal distribution is integrable.

Proof. By the assumption and (5.13) we have

0 > R i φ , ) - Ric'(βy) = Σ ^ +Σ<*εAhrAbr

where the equality holds if and only if ΛJβγ = 0 for any indices.

On the other hand, we have Σεjεβnnβ = ^-> which implies

Σε,{Ric(e,) - Ric'(ey)} = 0.

Thus we get Ric(e;) — Ric'(ey) = 0 for any index /. •

We say the horizontal distribution %H satisfies the Yang-Mills condition if it
satisfies

Σ^βaβ = ΣεkεβhfkAkcφ

for any indices i and αr. It is important for Einstein Riemannian submersions (cf.
pp. 243 Besse [1]). From the formula between Ricci curvatures we get the
following:

PROPOSITION 5.5. Let π: M%+n^ Bn (resp. π: M%+n -> B£) be a semi-
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Riemannian submersion with time-like (resp. space-like) totally geodesic fibers.
Then M is Einstein if and only if the horizontal distribution Q)H satisfies the Yang-
Mills condition and the Ricci curvatures of the fibers and the base manifold B
satisfy

(2) R'^ = λεaδaβ

for a constant λ.

Next we assume that the semi-Riemannian submersion π: M —> B is minimal
and we denote by r (resp. r' or r") the scalar curvature of M (resp. the fiber or
B). Then by the definition we get

Then by (5.13) and (5.14) it is reformed as

(5.16) r - r' - r» = -Σφ

where r' = 2 ^ ί / an<3 *" =^Σεa^aa- Thus we have the followings:

THEOREM 5.6. For a minimal Riemannian submersion π: Mm+n —> Bn, we
have

r < r' + f,

where the equality holds if and only if it is totally geodesic and the horizontal
distribution is integrable.

COROLLARY 5.7. For a Riemannian submersion π: Mm+n —> Bn if there is a
point x E M such that r(x) > r'(x) + fix), then it is not minimal.

Remark 3. The following results are proved by Watson [10]. Let M be a
compact Riemannian manifold whose Ricci tensor is positive semi-definite and B
be a Riemannian manifold whose Ricci tensor is negative semi-definite. If there
is a point on M at which the Ricci tensor is positive definite, then there are no
minimal submersions π;. M —» B. In particular, if B is of negative curvature,
there are no minimal submersions π: M —> B.

From (5.13) and (5.16) we have

Σ<*{Rfc(<g - Ric"(dπea)} = 2(r - rf - f) +?ie€lefififi*

Thus we prove the following:

LEMMA 5.8. Let π: M%+n —> Bn be a semi-Riemannian submersion. If it is
minimal, then

- mc"(dπea)} > 2(r - r' -

where the equality holds if and only if it is totally geodesic.
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As a direct consequence of (5.16) and Lemma 5.8 we get

THEOREM 5.9. Let π: M%+n -> Bn be a semi-Riemannian submersion. If it is
minimal and if Ric(ea) < Ric"(djtea) and r — f — f > 0, then it is totally
geodesic and the horizontal distribution is integrable.

Example. An example of minimal semi-Riemannian submersion π: M%+n

—> Bn which is not totally geodesic is here constructed.

Let {fA} be the set of smooth positive functions on Rn. Let M^n (resp.
M%+n) be an (m + n)-dimensional semi-Riemannian manifold of index m (resp.
index n) defined by

M = M%+n (resp. M%+n)

= {(*, y)ERmx Rn: g = (gAB), gAB(x, y) = ε^Λ

where εy = —1, εα = 1 (resp. εy = 1, εa = —1). Also, let B — Bn (resp. B^) be an n-
dimensional Riemannian (resp. semi-Riemannian) manifold defined by

B = {ytΞ R»:g" = (g^), fo = eja

2(y)6^}.

Then, for the natural projection π\ M -> B, it is a semi-Riemannian submersion
whose fibers are defined by a fixed point y E Rn. For the natural coordinate
system {xΛ} the natural basis {d/dxΛ} satisfies

e -— e ^
ft dxι " fa dxa

Accordingly an orthonormal basis {eA} is given by

1 d Id

I

Thus, calculating V«ey we can get

Consequently we have

This shows that if the functions /1? . . . , fm satisfy the condition Π// = constant,
then the submersion is minimal, but in general not totally geodesic.
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