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PROJECTIVE SPACES IN A WIDER SENSE, Π

KENJI ATSUYAMA

Introduction

In [2] we studied a family of compact irreducible symmetric spaces with
some property which all projective spaces have in common. We call the spaces
projective spaces in a wider sense. The family contains two conspicuous kinds of
spaces: Grassmann manifolds G(r, nr) and the symmetric space EM with the
exceptional type in the sense of E. Cartan. In these spaces the intersection
number of two lines in the general position is one.

In this paper we study the projective transformations of £111 (Propositions
4.1-4.5) and, at last, give an embedding map of Ml into E6 explicitely (Theorem
4.2). In §1 the known facts are quoted from I. Yokota [7], [8]. In §2 we define a
projective transformation ΠA,B(K) In §3 the polar sets in £111 are studied. The
one is the oriented Grassmann manifold GOR(2, 8) with the dimension 16. It
plays a role of line in the projective plane EM. In §4 an important transformation
φ(Λ, B; K) is introduced by modifying ΠAB(K). This clarifies the structure of
the plane EM.

We thank Prof. K. Yamaguti and Prof. I. Yokota for their long devotion to
the exceptional Lie groups.

§1. Exceptional Jordan algebra J*7 over C

We quote the known facts (Lemmas 1.1-1.6) from Yokota [7], [8]. Note that
zero divisors exist in the Cayley algebra <ξc over the field C of complex numbers.
Being different from the Cayley plane, this fact gives a new polar set (see.
Lemma 3.2, ®), which plays a geometrically important role in EΠI. Our main
product in Jc is X AY.

In d10 there are two kinds of conjugation: let {e,} be a basis of & (over the
field R of real numbers) and e0 the unit element.

(2) x = Σ&i -^x=Σξfit (for ξteC),

where ξ-* ξ is the usual conjugation in C. The following properties hold: for x,
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(1) xy = yx,

(2) χ*χ = x(xy), yx2 = (yx)x.

This algebra has zero divizors; for example, xx = 0 for x = e0 + ie\, where i = V~

in C. An inner product (x, y) is defined by (x, y) = τ(xy + yx)

We denote by 7° the exceptional Jordan algebra over C: each element in J°
has the 3 x 3 hermitian form

/ \
X = \X3 h xi\ (ξ, e c, *, e G5).

\ *2 *1 13/

Z7 is closed under the usual Jordan product X» Y= -(XY + YX), which satisfies

(ΐ)X Y=Y X,

(2) X2°(X°Y) = X°(X2°Y).

We write the above X as X=X(ξ, x). In 7° two non-degenerate inner products
(X, Y) and (X, Y) are introduced:

(1) tr(*) = ξ1 + §2 + fe, (JΓ, Y) = tr(*o Y),

tr(Z, Y,Z) = (Jf, Y Z),

(2) |

(X, Y, Z) = (X, Y x Z), det X = | ( Z , ΛΓ, X),

(3) (X, Y)=tr(τX»Y), XAY= τ(Xx Y),

where E is the 3 x 3 unit matrix and τ is defined by τX=X(ξ, x) for X = X(ξ,
x).

We denote by Isoc(/C) the group of C-linear automorphisms a in J°, i.e., a
satisfies a(ξX) = ξαX" (§GC) and α(Z°y )= aX°aY. The compact simple Lie
group E6 can be given via the complex Lie group Eξ (cf. [7]):

(1) Eξ: = {αr£ Isocί/7) I (αSΓ. ^

(2) £ 6 = { α e £ ? | <αY, αrY) = (X,

( l 0 θ\
Let Ex= 0 0 0 . Then £ , Δ £ i = O holds. We see later that E t is a base

\0 0 0/
point in the symmetric space EΆ\. Define an involutive automorphism σ in 7° by
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Let E6(σ) = {a£E6\aσ=σa}. Then one has σE£ 6 (σ) and E6(σ) = (t/(l) x
Spin(9))/Z4.

LEMMA 1.1. If aEE6 (a), then there exists ξEC, | § | = 1, such that
άEx = ξEt.

LEMMA 1.2. Γfte compact symmetric space JE1Π can 6e characterized by the
three forms:

(1) EM =

(2) £111 = {aEt I arG£6}/C*,

*: = C — {0} and the notation "IC*" means the equivalence relation by C*.

LEMMA 1.3. In f2 the following properties hold: for η, μ,

(1) (ξX, Y) = ξ(X, Y), (X, ξY) = ξ(X, Y),

(2) (X, Y) = (Y, X),( ) ( ) ( ) ()
(3) <^TΔy, Z) = (X, Y, Z) {symmetric for X, Y, Z
(4) <βΔ(ΛΔJr), t/> = <JΓ, i4Δ(BΔt/)>,
(5) ηAA(μBΔξX)= η μξ
(6) (^ΔZ)Δ(ZΔ^) = (det

Proof. (4) is derived from (3). (6) is essentially due to H. Freudenthal ([3],
p. 220). The remaining proofs are easy. •

For αrElsoc (J0) we define the contragradient form α* by

(<x*X, Y) = (X, ocY) (for all YGJ0).

LEMMA 1.4. For a, jβelso c (/•"), one has

(1) («•)• = », (2) (a β)* = β*a*,
(3) 1* = 1 (identity map), (4) (α*)"1 = (a'1)*.

LEMMA 1.5.

(1) Eξ= {a<ΞIsodf) I aXA<xY= (a*)'1 (XAY)},

(2) E6={a<=lsoc(jC)\a(XAY)=aXAaY, (aX, aY) = (X, Y>}.

Proof. By (3) in Lemma 1.3 we can show (1) because (α-JΓ, aY, aZ) = (X,
Y, Z) is equivalent to aXΔaY=(a*)~1 (XAY). The equation (aX, aY) =
<Z, Y) implies (α*)" 1 = αr. This gives (2). o

COROLLARY 1.1. For aEE6 one has (a*)*1 = a.
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LEMMA 1.6. If a^Eξ then a*EE$ holds.

Proof. Using (6) in Lemma 1.3 we can verify this assertion. The method is
the same as Lemma 2.4 in ([8], p. 42) essentially. •

§2. Transformation ΠAfB(κ)

We define a transformation ΠAyB(κ) in Z7, which was first introduced by
H. Freudenthal ([4], p. 277) in the exceptional Jordan algebra over R. It will
have later the meaning of a projective transformation in EM.

We define a derivation DXU(A) in E% by

Dx,u (A) = τU o (X°A) - X°(τU <> A) - (X°τU) <> A + | (τt/, Z)A

Put LX(A) = X°A. Then [Lx ί/, L^] is a derivation of the complex exceptional

Lie group F^. Set S = XoτU--(τU, X)E. Since the trace of S is 0, L5 is a

derivation of #£. Hence DXt u = [Lτυ, Lx] — Ls is also a derivation of E%. This
satisfies the following identity. The proof is due to H. Freudenthal ([3], p. 220)
essentially.

LEMMA 2.1. Far X, U, AE.jP, ome has

UI^XΔA) = \DX}U{A) + ±{U, A)X + ^<£/,

DEFINIΉON. Let κ£ C* and i4, B, l e / , where (A, B) =£0. We define

LEMMA 2.2. Λ Λo/ώ that (ΠA>B(κ)X, U) = (X, ΠBtA(k)U).

Proof. Using (1), (2) and (4) in Lemma 1.3, one has

(πA,B(κ)x, u) = (x, u) + ̂ - ^ { f ^ f y <A, u)
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§3. Polar sets in MI

As the definition of MI, we make use of MI = {XE.JC\XΔX = 0, XΦO}/
C*. Denote the elements in EM by [X] because they are the equivalence classes
by C*. The polar sets for [Et] (= the fixed point set of σ) are studied here (cf.
[6], p. 42). Since the coefficient field of (£c is C, |x|2 (= xx) = 0 does not always
mean x = 0. By easy calculation one has the following two lemmas, where
X = X(ξ,x)(ΞJc andXΦO.

LEMMA 3.1. For XGJ€
f it holds that [X] e MI if and only if

= \x3\
2,

LEMMA 3.2. Γλe automorphism σ leaves [X\ 6ΞMI ./zxed */ *md on/y */
satisfies one of the following three cases:

φ X = ξtt

/ 0 x 3 Jfe\
(JC2JC3 = 0 , x2x2 = 0 , JC3JC3 = 0 ) .

For the above polars we know the following facts (cf. Atsuyama [1]).
(1) In the case φ the fixed point set of a consists of one point [E{\. We may

regard [E{\ as the North Pole in JEIΠ.
(2) In the case © we have X°X=0. The set of [X] becomes the compact

irreducible symmetric space with the type DIΠ(5). This is connected and has the
dimension 20. This equals the set consisting of the midpoints of the shortest
closed geodesies starting from [£Ί] (cf. [1], p. 246).

(3) In the case © the set of [X] is also connected. This is the real oriented
Grassmann manifold GOR(2, 8) with the dimension 16.

Let [P] be an arbitrary point in ML We denote by L(P) the polar set with
the type © for [P]. Thus, if a[P] = [£χ] for some αrG E6, L(aP) is the set of all
elements with the type © in Lemma 3.2. L{P) is called a line (in the sense of
projective geometry). Let [P], [Q]G£1II. We say that [P] and [Q] are in the
singular position if they lie on a shortest closed geodesic. If not, we say that they
are in the general position. Then the following properties hold in MI. By this
reason we call EM a projective plane in the wider sense.

(i) For two points in the general position there exists only one line passing
through them. If in the singular position, the set of lines passing through them
becomes a connected manifold with the dimension 8 (cf. [1], p. 247-248)
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(ii) There exits a duality between the points [P] and the lines L(P), i.e.,
[P] E L(Q) if and only if [Q] E L(P). The correspondence L: [P]->L(P) gives
the polarity.

LEMMA 3.3. Let [Xo] E JEΉI be an arbitrary point with the type Q) (in
Lemma 3.2) for [EJ. Then [X] E El\\ lies on a shortest closed geodesic passing
through [Eι] and [Xo] if and only if there exists ξEC such that [X] = [ξE1

Proof (Sufficiency) Since [Xo] lies on a shortest closed geodesic starting
from [-Ei], we may assume £=£ 0 (cf. [1], p. 246). Next we define a curve γ(t) =
[X(t)]9 tER, in EIΠ by

1 - t -t.

-r-ί, 0

-τ-xτ 0

ί _
— X2

0

In fact γ(t) passes in EIΠ because X(t)AX(t) = 0. Furthermore the following
facts hold:

and(1) y(0) = [EJ, y^J =

(2) y(ί) is a closed geodesic: Put Z = ξ~λ Xo Since the trace of Z is 0, Lz is
an infinitesimal element of E%. E% acts in EΠI. By ^o°^o = 0, one has

γ(t) = [exp(ΘLz)E!],

2ί
where θ = - . Essentially γ(t) is a great circle in the unit sphere 5 s 2 CJ*7 and

EΠI is a submanifold in S52/C*. Hence, by y(—°°) = K00)? w e c a n s e e that y(/) is
a closed geodesic.

(3) γ(t) is the shortest closed geodesic: There exists the following fact. If a
geodesic ω(t) connecting [EJ and [Xo] satisfies the condition (*), then it is
closed and has the shortest length 2V3π, where the metric in EIΠ is introduced
from the Killing-form of the Lie algebra of E6.

(*) Let [X] be an arbitrary point on co(t), where [X] Φ [ £ J , [Xo]. If OCEL E6

leaves [Ex] and [X] fixed, then a leaves ω(t) fixed pointwise.

We can see that γ(t) satisfies (*): Assume that aE1 = ηE1 and
Xo) = μ(ξEt + Xo), where η, μEC* and ξΦ 0. Then one has aX0 = ξ(μ - η)Et +
μX0 and hence 0 = (E 1 ? JΓ0) = (αEi, aX0) = ηξ(μ- η). This implies μ = ry and
αXΌ = ^ o Therefore, for any vEC, a[vEt + Xo] = [vEx + Xo] holds.
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(Necessity) Let H be the subgroup of E6 which leaves [Eι] and [Xo] fixed.
Consider one closed geodesic ω(t) which has the shortest length and passes
through [Eι\ and [Xo] Then any other such geodesic is transitive to ω by //, and
the set of orbits of ω(t) by //, {hωiήh'1 \hEH, /G/?}, becomes a two-
dimensional sphere because the tangent space to the orbit at ω(t) consists of
some single vector ([1], p. 244). Put ξ = eiθ, 0Ert, in X(t) (defined in the proof
of sufficiency), and write y(ί; θ) instead of y(ί) Then, for ΘELR, y(ί; θ) is a
geodesic passing through [#i] and [Xo], and the set {y(r, θ) \ t, ΘGR} becomes
the sphere. •

LEMMA 3.4. Let [X\EE0L Then XxEλ = Q if and only if [X] lies on a
shortest closed geodesic starting from [EJ.

Proof Put X = X(ξ, x). Since [X|e£III, the entries ξέ and xt satisfy the
condition in Lemma 3.1.

(Sufficiency) By Lemma 3.3 we may set X=μ(ξE1 + X0), μ, ξGC. Since
Eι x Eλ = 0 and Xo x Ex = 0, one gets XxE1 = 0.

(Necessity) Assume X x E\ = 0. This implies JC2JC3 = 0, x^Xi = 0 and JC3X3 = 0.
Hence, if we put Xo = ξiEt - X, [Xo] belongs to the polar set with the type φ
(in Lemma 3.2) for [E{\. Hence, from Lemma 3.3, [X] lies on a shortest closed
geodesic connecting [£χ] and [Xo\ D

PROPOSIΉON 3.1. Let [A], [B]GESΆ. Then
(1) ΛAB = 0 if and only if [A] and [B] are lie on a shortest closed geodesic,
(2) // AAB Φ 0, then L(AΔB) is the unique line passing through [A\ and

[B].

Proof (1) By the transitivity of E6 in £111, there exists a£E6 such that
ocB = μEi (μ£iC*). Since a is also an automorphism for Δ, we have

a(AAB) = ocAAocB = τ(aA X aB) = τ(aA X μEλ).

Hence, by Lemma 3.4, one obtains

A AB = 0 <̂ > ocA X Ex = 0,
» [aA] lies on a shortest closed geodesic starting from [Z?i],
» [̂ 4] and [B] are lie on a shortest closed geodesic.

(2) Let aB = μEx (aEE6, μEC*). If we put aA=X(ξ, x) and Y=AAB,
then

τocY =

/o o o

o •£& -4*1f
-f*
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holds by direct calculation. We get [αrY]EMI from Lemma 3.1. Furthermore,
by Lemma 3.2, [aYl^LiE^ holds. This means [7]6L(B). Since the corre-
spondence L gives the polarity between points and lines in £IΠ, we obtain
[B]EL(Y). Similarly [A]EL(Y) can be shown. Hence, L(Y) passes through
[A] and [B]. Since AΔB Φ 0, [A] and [B] are in the general position. Therefore,
the line passing through them is determined uniquely ([1], p. 247). •

§4. Protective transformation φ(A, B; K)

We define a transformation φ(A, B; K) in Z7 by modifying ΠAB(κ). This
explains clearly the structure of projective geometry in £ΊII.

LEMMA 4.1. One has A A (UΔ (AΔ X)) = UA, U)A Xfor [A], [X\ G 011

and

Proof. This identity is independent of choosing the representative elements
of [A] and [X], Put B = AΔX. If S = 0, the identity is trivial. Hence we may
assume BΦO. And we shall prove

AA(UAB) =!<A, U)B.

Note Hitat [4JGL(ff | holds by (2) of Proposition 3.1. If we take aSE6 such
titaίt mxB = μEι (μEC*), the above equation becomes

aAΔ{aUΔEλ) = ̂ (oA, a

Since ocA EL(E1) holds, we may set

Then, for aU= V(η, y) with ηGC and y/G6;c, we obtain

ocAΔ (aUAEt) = -(ξ2η2 + ξ3η3 + 2(al9

COROLLARY 4.1. // [̂ 4] E L(B), one Λα̂  that AΔ (UΔ B) = ̂ <

C/G/7.
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LEMMA 4.2. For [ i ] G M I and ί/e/ 7 , it holds that (AAU)A(A U) =

±(UAU,A}A.

Proof. Consider <*E£6 such that ocA-μEγ (μGC*) and put aU= V(ξ,
x). Then, by direct calculation, we can see

( μEίAV)A (μEiΔV) = -μ2(ξ2ξ3 ~ * Λ ) £ i = ~(VAV, μE^μE^ •

DEFINITION. For [A], [B] E MI with (A, B ) Φ 0, we define a transformation

φ in Z7 by φ(Λ, £; ez) = e- zΠΛ,β(e 3 z), z<ΞC.

PROPOSΠΊON 4.1. The following properties hold:

d 6
(1) — φ = - :- DA B,dz z=o (B, A)

(2) φ(A, B; μ) φ (A, B; v) = φ(A, B; μv),

(3) φ(A, B; ez) = exp

(4) φ(A, B; K) E Eξ,

(5) φ(Ay B; K)* = φ(B, A; ϊ ) ,

(6) aφ(A, B\ tήoΓ1 = φ(aA, (α*)" 1 J5; *:) /or a

Proof. We can calculate (1) directly. (2): From AA A = 0, one has φ(A, B;
μ)A = μ~4 A. By Lemma 4.1 and (4) of Lemma 1.3, we get φ(A, B\ μ)(BA (AA
X)) = μ2BA(AAX). (In Lemma 4.1, the condition [X|EEΠI is unnecessary
because linear combinations Σ ξX span J° where ξGC and [X|EEIΠ). We
obtain (2) by these two identities. (3): If we fix [A], [B]EEW, φ is an one-
parameter group and it satisfies the initial condition (1). Hence (3) holds. We
get (4) from (3) because DAB is a derivation of Eξ. (5): The first identity can be
obtained by (X, ΠA B(v)Y) = {ΠB A{v)X, Y). The second one holds by
(2) and φ(A, B; 1) = id. Finally one can show (6) by <£, a~xX) = ( ( α * ) " 1 ^ ,
X), (B, A) = ( ( α * ) - 1 ^ , ocA) and o(BA(AAoΓιX)) = ( ( α * ) - 1 B)A(aAά
X). •

PROPOSITION 4.2. φ(A, B; K) E E6 if and only if [A] = [B], |ΛΓ| = 1.

Proof. (Necessity) Put φ= φ(A, B; K) simply. By (φA, φA) = {A, A)
and φA = κ~4 A, one gets |ιc| = 1. Let [X] (E £ΊΠ) satisfy A AX= 0. Then, by
Proposition 3.1, [̂ 4] and [X] lie on a shortest closed geodesic and the type of X
is of φ (in Lemma 3.2) for [A]. Moreover we obtain (B, X) = 0 from (φX,
φX) = (X, X). This means that B has the type φ or @ for [̂ 4] bSrause X is an
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arbitrary element with the type (2). If the type of B is of ©, then (A, B) = 0.
But this contradicts the definition of φ(A, B; K). Hence [A] = [B] holds.

(Sufficiency) The definition of φ(A, B\ K) is independent of choosing the
representative elements of [A] and [B]. Hence, from the transitivity by E6 in
£111, we may assume A = B = Et. Then, for X = X(ξ, x) and Y= Y(η, y), one
has

(φiEl9 Eι, ic)*)-1 = φ(Eu Eύ K) (by (5) of Proposition 4.1)

and

(φX, φY) = \κ\~4 ( | i m + | 2 η2 + I 3 η3)
+ 2\κ\4 ((Xι, yι) + (X2, y2) + (X3, y3))

= < * , y>.

This gives φ E E6 by (2) of Lemma 1.5. •

PROPOSITION 4.3. Let aGE6 satisfy aE1 = ξE1 (£EC*, |§ | = 1). Then a
commutes with σ.

Proof. This is the converse of Lemma 1.1. Since σ= φ(Eu Eλ\ -1), we
obtain aφ(Eu Eχ\ - l ) ^ " 1 = φ(aEu ocEχ\ -1) = σ and hence αrσ= σa.

PROPOSITION 4.4. φ(A, B; K) satisfies the following properties:
(1) φ leaves [A\ fixed.
(2) φ fixes the line L(B) pointwise.
(3) The image of [X] by φ lies on a line passing through [A\ and [X\.

Proof. We know (1) by direct calculation. (2): Let [C] be an arbitrary
point in L(B). The definition of φ(A, B\ K) implies {A, B) Φ0 and hence
[A] ^L(B). Especially [A] Φ [C]. Let / be a line passing through them. If a
point [X] G / satisfies BΔ (A AX) = 0, one has A AX= 0 because 0 = A A (BA

(AAX)) = -(A, B)AAX by Lemma 4.1. Thus [̂ 4] and [X] lie on a shortest

closed geodesic from (1) of Proposition 3.1, and [X] is in the singular position
for [̂ 4]. In /, the set of points, in the singular position for [A], becomes a
connected submanifold with the dimension 14. On the other hand, since / is 16
dimensional as a submanifold in £3Π, there exists [Y]€=/ such that AAYΦO.
Hence L(AAY) = l holds because the line, passing through [̂ 4] and [Y], is
determined uniquely by (2) of Proposition 3.1. At the same time we have BA
(AAY)Φ0. This means that the line L(BA(AAY)) passes through [B] and
μ Δ Y ] . The duality of L asserts {[BA(AΔ Y)]} = L(B) ΠL(AAY) in ESΆ.
This implies [BA(AAY)] = [C] because [C]^L(B)ΠL Hence there exists
μ G C* such that C = μBA {A A Y). By a similar calculation to (2) of Proposition
4.1, we get,

φ(A, B; κ)C = φ(Ay B\ K) (μBA(A AY)) = K2 μBA(AAY) =
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(3): If A AXΦ 0, the line L(A AX), passing through [A] and [X], is determined
uniquely. First we have [A Δ φX] = [AAX] by the direct calculation of A AφX.
This asserts L(AA φX) = L(A AX). If AAX= 0, [A] and [X] lie on a shortest
closed geodesic. Let / be an arbitrary line passing through them. Let N be the
subset of / consisting of the points in the singular position for [A]. We know that
Nis a compact connected submanifold with the dimension 14. Since the dimension
of / is 16 and [X] EiV, there exists a sequence {Xn} in / such that X— lim Xn

and AAXnΦ0. Then L(AAXn) = l holds for each n. Therefore we obtain
φX = φ (lim Xn) = lim φ{Xn) E /. •

PROPOSITION 4.5. The group E% preserves the incidence relation, i.e., if
[X] E L(Y), a<= Eξ satisfies [aX] E L({a*)-λ Y).

Proof. Since E% acts on £111, we show that aGE% satisfies
) x Y) for [X]GL(Y). By the transitivity of £ 6 in £111, we may assume

Y=E1. Then [X] has the type φ (in Lemma 3.2) for [£ x]. This implies (X,
Eι) = 0. Let [Z] be an arbitrary element in E\Ά with the type ® for [£χ]. Then
Z satisfies (Z, X) = 0 and Z Λ £ i = 0. Hence we get (α*)" 1 Z Δ ί α * ) " 1 ^ =
oc(ZAEχ) = 0. Since Z is arbitrary, this means that the set of [(a*)~xZ] makes a
polar set with the type φ for [(c**)" 1^]. Finally we can see that aX is an
element with the type φ for ( α * ) " 1 ^ ! because {aX, ( α * ) " 1 ^ ) = 0 and <a#,
(or*)"1 Z) = 0. Therefore [aX] E L ^ a * ) " 1 ^ ) holds. •

THEOREM 4.1. £111 becomes a symmetric space in the sense of O. Loos [5]:
// we define a product in EIΆ by [A] [B] = [φ(A, A; —1)5], the fallowings hold.

(3) [A] • ([B] • [C]) = ([A] • [B]) • ([A] • [C]),
(4) [^4] is an isolated fixed point in the set of points [X] such that [A] - [X] = [X].

Proof Since σ= φ(Eχ, Eχ\ -1) holds and σ is the geodesic symmetry at
[£Ί] in MI, we can see (4) in the case of [̂ 4] = [EJ. The remainings of proof
are easy. o

THEOREM 4.2. The map Φ: [Λ]-> φ(A, A; -1) gives an embedding of the
symmetric space £IΠ into the group £ 6 . Then Φ is a homomorphism for the
reflection products in EUland in E6.

Proof If Φ(A) = Φ(B), we obtain [A] = [B] because φ(A, A; -1 ) has the
isolated fixed point [A], If we define a product a- β= a β~xoc usually, then Φ
satisfies Φ([A] [B]) = Φ(A) Φ(B). a
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