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PROJECTIVE SPACES IN A WIDER SENSE, I1

KENJI ATSUYAMA

Introduction

In [2] we studied a family of compact irreducible symmetric spaces with
some property which all projective spaces have in common. We call the spaces
projective spaces in a wider sense. The family contains two conspicuous kinds of
spaces: Grassmann manifolds G(r, nr) and the symmetric space EIll with the
exceptional type in the sense of E. Cartan. In these spaces the intersection
number of two lines in the general position is one.

In this paper we study the projective transformations of Ell (Propositions
4.1-4.5) and, at last, give an embedding map of Elll into Eg explicitely (Theorem
4.2). In §1 the known facts are quoted from 1. Yokota [7], [8]. In §2 we define a
projective transformation I14 g (k). In §3 the Rpolar sets in Elll are studied. The
one is the oriented Grassmann manifold G° (2, 8) with the dimension 16. It
plays a role of line in the projective plane EIlll. In §4 an important transformation
¢(A, B; k) is introduced by modifying I14 g (k). This clarifies the structure of
the plane EIl.

We thank Prof. K. Yamaguti and Prof. 1. Yokota for their long devotion to
the exceptional Lie groups.

§1. Exceptional Jordan algebra J€ over C

We quote the known facts (Lemmas 1.1—1.6) from Yokota [7], [8]. Note that
zero divisors exist in the Cayley algebra g€ over the field C of complex numbers.
Being different from the Cayley plane, this fact gives a new polar set (see.
Lemma 3.2, @), which plays a geometrically important role in Ell. Our main
product in J€ is X AY.

In @€ there are two kinds of conjugation: let {e;} be a basis of § (over the
field R of real numbers) and e, the unit element.

(1) x = ke = £ = &eo — 2 Eei
~  i#0
Q) x=8e;—>x=25e (for §€0),
where E—  is the usual conjugation in C. The following properties hold: for x,
yE 6¢,
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(1) Xy = y%,
(2) ¥y = x(xy), y¢ = (yx)x.
This algebra has zero divizors; for example, xx = 0 for x = ey + ie;, where i =V/—1
1
in C. An inner product (x, y) is defined by (x, y) =§(x}7 + yx).

We denote by J€ the exceptional Jordan algebra over C: each element in J¢
has the 3 X 3 hermitian form

& X3 fz)

X = (& € C, x, € 6°).

¥ & o0
X % &3

1 . .
JC is closed under the usual Jordan product XoY = E(X Y + YX), which satisfies
(1) XeY=YeX,
(2) X2o(X°Y)=X(X>Y).

We write the above X as X = X(&, x). In JC two non-degenerate inner products
(X, Y) and (X, Y) are introduced:

D uX)=§+5+5, (X, V)=tr(X°Y),
(X, Y, Z)= (X, YoZ),

2) Xx Y= %(2)« Y - tr(X) Y — tr(Y)X + (tr(X)tr(¥) — (X, Y))E),
(X, Y, Z)= (X, YX Z), det X= %(X, X, X),

B) (X, Y) =tr(zX°Y), XAY="HXXY),
where E is the 3 X 3 unit matrix and 7 is defined by X = X( E, X) for X=X(§,
x).

We denote by Isoc(J€) the group of C-linear automorphisms « in JS, i.e., «
satisfies a(EX) = EaX (EEC) and (X °Y) = aX°aY. The compact simple Lie
group Eg can be given via the complex Lie group ES (cf. [7]):

(1) E§: = {aE€Isoc(JO) | (X, aY, aZ)=(X, Y, Z)},
(2) Es={a€E§|(aX, aY) =(X, Y)}.
1 00

00 O). Then E; AE;=0 holds. We see later that E; is a base
000

point in the symmetric space Elll. Define an involutive automorphism o in J€ by

&1 x3 X &1 —x3 —%
B & x - - & x1 .

X2 % & -X2 X &3

Let E; =




PROJECTIVE SPACES 43

Let E¢(0) = {@€ E¢| @o= 0a}. Then one has o€ E¢(0) and Eg(0) = (U(1) X
Spin(9))/Z,.

Lemma 1.1. If a€ Eg (0), then there exists EEC, |E|=1, such that
aEl = EE].

LemMA 1.2. The compact symmetric space Elll can be characterized by the
three forms:

(1) El={X€J°|XAX=0, X+0}/C*,

(2) Ell = { aE; | @€ Eg}/C*,

(3) Ell = E¢/Eg (0),

where C*: = C — {0} and the notation “/C*” means the equivalence relation by C*.

LeMMA 1.3. In JC the following properties hold: for n, u, EEC,

(1) (&X, Y) = E(X, Y), (X, EY) = &X, Y),

Q) (X, Y)=(Y, X), (XX Y)=1XX 1Y,

B)(XAY, Z) = (X, Y, 2) (symmetric for X, Y, Z € J°),
(4) (BA(AAX), U) = (X, AA(BAU)),

(5) nAA(uBAEX) = muE (AA(BAX)),

(6) (XAX)A(XAX) = (det X)X.

Proof. (4) is derived from (3). (6) is essentially due to H. Freudenthal ([3],
p. 220). The remaining proofs are easy. o

For a€ Isoc (J€) we define the contragradient form a* by
(*X, Y)=(X, aY) (for all YEJO).

LemMMA 1.4. For a, BE Isoc (J€), one has

(1) (¢#)* =@, (2) (« p)* = p*o,

(3) 1* =1 (identity map), @) ()™ = (a7 H*.

LemMma 1.5.

(1) ES = {aE€Iso(JC) | aXAaY = (a*)~! (XAY)),

(2) Eg={aEIsoc(JC)| a (XAY) = aXAaY, (aX, aY)=(X, Y)}.

Proof. By (3) in Lemma 1.3 we can show (1) because (aX, aY, aZ) = (X,

Y, Z) is equivalent to aXAaY = (a*)"! (XAY). The equation (aX, aY)=
(X, Y) implies (a*)~! = . This gives (2). o

COROLLARY 1.1. For «€ Eg one has (a*)™ ' = a.
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Lemma 1.6. If &€ ES then a* € E§ holds.

Proof. Using (6) in Lemma 1.3 we can verify this assertion. The method is
the same as Lemma 2.4 in ([8], p. 42) essentially. o

§2. Transformation IT, (k)

We define a transformation IT4 (k) in JC, which was first introduced by
H. Freudenthal ([4], p. 277) in the exceptional Jordan algebra over R. It will
have later the meaning of a projective transformation in EIl.

We define a derivation Dy y(A) in ES by

1
Dxy (A) = U ° (X°A) — Xe(tU ° A) — (XetU)° A + 3 (zU, X)A.
Put L, (A)=X°A. Then [Lyy, L,] is a derivation of the complex exceptional

1
Lie group F%. Set S=X°rU—§(1:U, X)E. Since the trace of Sis 0, L is a

derivation of E§. Hence Dy y = [Lyy, L,] — L, is also a derivarion of ES. This
satisfies the following identity. The proof is due to H. Freudenthal ([3], p. 220)
essentially.

LemMma 2.1. For X, U, A€ JC, one has
1 1 1
UB(XBA) = 2Dx.u(4) + (U, A)X + (U, X)A.

DErRNITION. Let k€ C* and A, B, X €J¢, where (A, B) +0. We define

1 - x (B, X)
(B, A4~ 4(3 )

M p(0X = X + BA(AAX).

LEMMA 2.2. It holds that (I14 g(x)X, U) = (X, IIg 4(X)U).

Proof. Using (1), (2) and (4) in Lemma 1.3, one has

(as(0X, U) = (x.0) + LB 4 0)
1 -
-4y B) K (X, ANBAU))

= (X, IIz s(K)U). o
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§3. Polar sets in ETl

As the definition of Elll, we make use of Ell= {XE€J°|XAX =0, X+ 0}/
C*. Denote the elements in Ell by [ X] because they are the equivalence classes
by C*. The polar sets for [E,] (= the fixed point set of o) are studied here (cf.
[6], p. 42). Since the coefficient field of €€ is C, |x|> (= x£) = 0 does not always
mean x=0. By easy calculation one has the following two lemmas, where
X=X(§ x)€JC and X +0.

Lemma 3.1. For X€JC it holds that [X] € Ell if and only if
5& = |ul, && = |xl, §& = |l

xXx3 = E1%y, x3x1 = ¥, xX1%y = E3%3.

LeEmMMA 3.2. The automorphism o leaves [X]| € Ell fixed if and only if X
satisfies one of the following three cases:

@ X=§&E (&:#0).
0 X3 X
@ X=|x 0 0], (xox3 = 0, x%, = 0, x3%; = 0).
X2 0 0
0 0 O
® X=|0 & x|, (&&= |uP.
0 x &

For the above polars we know the following facts (cf. Atsuyama [1]).

(1) In the case @ the fixed point set of o consists of one point [ E;]. We may
regard [E,] as the North Pole in FEIL.

(2) In the case @ we have X°X =0. The set of [X] becomes the compact
irreducible symmetric space with the type DII(5). This is connected and has the
dimension 20. This equals the set consisting of the midpoints of the shortest
closed geodesics starting from [E;] (cf. [1], p. 246).

(3) In the case @ the set of [X] is also connected. This is the real oriented
Grassmann manifold G°%(2, 8) with the dimension 16.

Let [P] be an arbitrary point in Ell. We denote by L(P) the polar set with
the type @ for [P]. Thus, if of P] = [E,] for some « € Es, L(aP) is the set of all
elements with the type @ in Lemma 3.2. L(P) is called a line (in the sense of
projective geometry). Let [P], [Q] € Elll. We say that [P] and [Q] are in the
singular position if they lie on a shortest closed geodesic. If not, we say that they
are in the general position. Then the following properties hold in EIl. By this
reason we call Ell a projective plane in the wider sense.

(i) For two points in the general position there exists only one line passing
through them. If in the singular position, the set of lines passing through them
becomes a connected manifold with the dimension 8 (cf. [1], p. 247—248)
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(ii) There exits a duality between the points [P] and the lines L(P), i.e.,
[P] € L(Q) if and only if [Q] € L(P). The correspondence L: [P]— L(P) gives
the polarity.

LeMMA 3.3. Let [Xo] €EEll be an arbitrary point with the type @ (in
Lemma 3.2) for [E,]. Then [X] € Elll lies on a shortest closed geodesic passing
through [E,] and [Xy)] if and only if there exists §€E€ C such that [X] = [EE; + X,).

Proof. (Sufficiency) Since [X,] lies on a shortest closed geodesic starting
from [E;], we may assume §# 0 (cf. [1], p. 246). Next we define a curve y(t) =
[X(1)], tER, in Ell by

t t _
1-t —x3 —
g2 g2
X(t) = 'é_3 0 0
t
—x 0 0
E 2

In fact y(¢) passes in Ell because X(#)AX(t)=0. Furthermore the following
facts hold:

(1) 70 = (Bl o{3) = (85 + Xe] and v(1) = (%]

(2) A(?) is a closed geodesic: Put Z = E~! X,. Since the trace of Zis 0, L, is
an infinitesimal element of E§. ES acts in Ell. By X,° X, =0, one has

Nt) = [exp(6L;)E],

2t
where 6= -7 Essentially y(¢) is a great circle in the unit sphere $°> CJC and

Elll is a submanifold in $°2/C*. Hence, by y(—=) = y(), we can see that y(¢) is
a closed geodesic.

(3) 1(?) is the shortest closed geodesic: There exists the following fact. If a
geodesic w(t) connecting [E;] and [Xj] satisfies the condition (*), then it is
closed and has the shortest length 2\/3s, where the metric in Ell is introduced
from the Killing-form of the Lie algebra of Es.

(*) Let [ X] be an arbitrary point on w(?), where [X] # [E,], [Xo]. If a€ E;
leaves [E,] and [X] fixed, then a leaves w(?) fixed pointwise.

We can see that y(r) satisfies (*): Assume that aF;=nE; and o(EE, +
Xo) = W(EE, + X,), where 1, u € C* and £+ 0. Then one has aXy = &§(u— n)E; +
uXo and hence 0= (E;, Xy) = ( aE;, aXy) = n&(u— n). This implies u= 7 and
aX, = nXo. Therefore, for any vEC, a[vE; + Xo] = [VE; + Xo] holds.
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(Necessity) Let H be the subgroup of Es which leaves [E;] and [X)] fixed.
Consider one closed geodesic w(t) which has the shortest length and passes
through [E;] and [ X,]. Then any other such geodesic is transitive to w by H, and
the set of orbits of w(t) by H, {hw(t)h ' |hEH, tER}, becomes a two-
dimensional sphere because the tangent %pace to the orbit at w(¢) consists of
some single vector ([1], p. 244). Put £=¢€'°, 6ER, in X(¢) (defined in the proof
of sufficiency), and write y(¢; 6) instead of y(z). Then, for OER, ¥(t; 6) is a
geodesic passing through [E;] and [X,], and the set {¥(¢; 0)|t, 6 € R} becomes
the sphere. O

LemMMmA 3.4. Let [X]€EI. Then XX E;=0 if and only if [X] lies on a
shortest closed geodesic starting from [E,].

Proof. Put X =X(&, x). Since [X] € Elll, the entries & and x, satisfy the
condition in Lemma 3.1.

(Sufficiency) By Lemma 3.3 we may set X = u(&§E; + Xo), u, EEC. Since
EIXE1=O and XOXE1=O, one gets XXE1=0.

(Necessity) Assume X X E; = 0. This implies x,x3 =0, x,%, =0 and x3%; = 0.
Hence, if we put X, = & E; — X, [X,] belongs to the polar set with the type @
(in Lemma 3.2) for [E;]. Hence, from Lemma 3.3, [ X] lies on a shortest closed
geodesic connecting [ E;] and [ Xp]. o

ProposiTioN 3.1. Let [A], [B] € Ell. Then

(1) AAB =0 if and only if [A] and [B] are lie on a shortest closed geodesic,

(2) if AAB+ 0, then L(AAB) is the unique line passing through [A] and
[B].

Proof. (1) By the transitivity of E¢ in Ell, there exists o € Eg such that
aB = uE; (u€ C*). Since « is also an automorphism for A, we have

a(AAB) = aAAaB = 1(aA X aB) = ©(€A X uE;).

Hence, by Lemma 3.4, one obtains
AAB =0 aA X E; =0,

& [aA] lies on a shortest closed geodesic starting from [E; ],
& [A] and [B] are lie on a shortest closed geodesic.

(2) Let aB = uE, (0 € Eg, u€C*). If we put aA=X(&, x) and Y=AAB,
then

0 0 0
» _K
taY = 0 253 2x1

0 ‘%fl %Ez



48 KENJI ATSUYAMA

holds by direct calculation. We get [aY] € Elll from Lemma 3.1. Furthermore,
by Lemma 3.2, [@Y] € L(E;) holds. This means [Y] € L(B). Since the corre-
spondence L gives the polarity between points and lines in EIll, we obtain
[B]€ L(Y). Similarly [A] € L(Y) can be shown. Hence, L(Y) passes through
[A] and [B]. Since AAB #0, [A] and [ B] are in the general position. Therefore,
the line passing through them is determined uniquely ([1], p. 247). a

§4. Projective transformation ¢(A, B; k)

We define a transformation ¢(A, B; k) in J€ by modifying IT4 p(x). This
explains clearly the structure of projective geometry in EIl.

1
LeEMMA 4.1. One has AA (UA(AA X)) = Z<A’ U)A X for [A], [X]EEI
and UE JC.
Proof. This identity is independent of choosing the representative elements

of [A] and [X]. Put B=AAX. If B=0, the identity is trivial. Hence we may
assume B # (0. And we shall prove

AAUAB) = %(A, U)B.

Note that {A]€ L(B) holds by (2) of Proposition 3.1. If we take a € Eg such
that aB = pE,; (€ C*), the above equation becomes

1
4D (UAE) = 3(aA, aU)E;.
Since aA € L(E;) holds, we may set
0 0 O
TaA =10 52 a|.
0 a &
Then, for aU = V(n, y) with ;€ C and y; € 6, we obtain

1
aAA (aUAE,) = Z(&zﬂz + &m + 2(ay, w))E;

= %( aA, aU)E,;. o

CorOLLARY 4.1. If [A] € L(B), one has that AA (UA B) =%(A, U)B for
UeJC.
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LemMA 4.2. For [A]E€EIl and UEJS, it holds that (AAUYA(A U)=
HUAU, 4)A.

Proof. Consider a € Eg such that A = uE; (4 € C*) and put aU = V(§,
x). Then, by direct calculation, we can see

: 1 1
(ME/AV)A (HELAV) = 1#2(5253 - x15)E; = Z( VAV, uE\)uE,. 0O

DeriniTION.  For [A], [B] € Ell with ( A, B) # 0, we define a transformation
¢ in JC by ¢(A, B; €°) =e I, p(e*), zEC.

ProrosITION 4.1.  The following properties hold:

d
D% 9.~ B 4
(2) ¢(A, B; u) ¢ (A, B; v) = ¢(A, B; wv),

() 64, B €) = exp (5555 Daa).

(4) ¢(A, B; x) € ES,
(5) #(A, B; K)* = ¢(B, A; k), ®A, B; x)™' = ¢(A, B; k),
(6) ag(A, B; K)a™! = ¢(aA, (o*)! B; k) for « € E§.

Proof. We can calculate (1) directly. (2): From AA A =0, one has ¢(A, B;
wA=pu"*A. By Lemma 4.1 and (4) of Lemma 1.3, we get ¢(A, B; u)(BA (AA
X)) =1”BA(AA X). (In Lemma 4.1, the condition [X] € Ell is unnecessary
because linear combinations = EX span J¢ where £€C and [X]€ Ell). We
obtain (2) by these two identities. (3): If we fix [A], [B]E Elll, ¢ is an one-
parameter group and it satisfies the initial condition (1). Hence (3) holds. We
get (4) from (3) because D 4 p is a derivation of E§. (5): The first identity can be
obtained by (X, IT4 (v)Y) = (Il 4(¥)X, Y). The second one holds by
(2) and ¢(A, B; 1) =id. Finally one can show (6) by (B, o 'X) = ((a*)" B,
X), (B, A) = {((a*)"'B, aA) and o(BA(AAa" X)) =((a*)"' B)A(aA A
X). m]

ProposITiON 4.2.  ¢(A, B; k) € Eg if and only if [A] =[B], |x|=1.

Proof. (Necessity) Put ¢ = ¢(A, B; k) simply. By (pA, ¢A) = (A, A)
and ¢pA =k"* A, one gets |k|=1. Let [X] (€ Ell) satisfy A AX=0. Then, by
Proposition 3.1, [A] and [ X] lie on a shortest closed geodesic and the type of X
is of @ (in Lemma 3.2) for [A]. Moreover we obtain (B, X) =0 from (¢X,
¢X) = (X, X). This means that B has the type @ or @ for [A] bause X is an
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arbitrary element with the type @. If the type of B is of @, then (A, B) =0.
But this contradicts the definition of ¢(A, B; k). Hence [A] = [B] holds.

(Sufficiency) The definition of ¢(A, B; k) is independent of choosing the
representative elements of [A] and [B]. Hence, from the transitivity by Eg in
Ell, we may assume ‘A = B= E;. Then, for X=X(&, x) and Y=Y(#, y), one
has

((E1, Er; K*)1 = ¢(Ey, Eq; K) (by (5) of Proposition 4.1)
and

(¢X, ¢pY) = |k (Exm + Exm + E3m)
+ 2|k|* ((F1, y1) + (%2, y2) + (%3, ¥3))

b

This gives ¢ € E by (2) of Lemma 1.5. o

ProPOSITION 4.3. Let o€ Eg satisfy aE;=EE, (§€C*, |§|=1). Then «
commutes with o.

Proof. This is the converse of Lemma 1.1. Since o= ¢(E;, Eq; —1), we
obtain ag(E;, E;; —1)a™ ! = ¢(aE;, aE;; —1) = o and hence ao= oa.

ProrosiTioN 4.4. ¢(A, B; K) satisfies the following properties:
(1) ¢ leaves [A] fixed.
(2) ¢ fixes the line L(B) pointwise.
(3) The image of [X] by ¢ lies on a line passing through [A] and [X].

Proof. We know (1) by direct calculation. (2): Let [C] be an arbitrary
point in L(B). The definition of ¢(A, B; k) implies (A, B) #0 and hence
[A]€L(B). Especially [A]#[C]. Let I/ be a line passing through them. If a
point [X] € satisfies BA (A AX) =0, one has AA X =0 because 0=AA (BA

(AAX)) =%(A, B)A AX by Lemma 4.1. Thus [A] and [X] lie on a shortest

closed geodesic from (1) of Proposition 3.1, and [X] is in the singular position
for [A]. In [/, the set of points, in the singular position for [A], becomes a
connected submanifold with the dimension 14. On the other hand, since [ is 16
dimensional as a submanifold in Ell, there exists [Y] €/ such that AAY #0.
Hence L(A AY) =1 holds because the line, passing through [A] and [Y], is
determined uniquely by (2) of Proposition 3.1. At the same time we have BA
(AAY)#0. This means that the line L(BA(A AY)) passes through [B] and
[AAY]. The duality of L asserts {{[BA(AAY)]} =L(B)NL(AAY) in EIl.
This implies [BA(AAY)]=[C] because [C]€ L(B)NI. Hence there exists
u€E€ C* such that C = uBA (A AY). By a similar calculation to (2) of Proposition
4.1, we get,

(A, B; K)C = ¢(A, B; k) (uUBA(A AY)) = &2 uBA(AAY) = i2C.
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(3): If AAX #0, the line L(A AX), passing through [A] and [X], is determined
uniquely. First we have [A A ¢X] =[A A X] by the direct calculation of A A ¢X.
This asserts L(AA ¢X)=L(AAX). f AAX=0, [A] and [X] lie on a shortest
closed geodesic. Let I be an arbitrary line passing through them. Let N be the
subset of / consisting of the points in the singular position for [A]. We know that
N is a compact connected submanifold with the dimension 14. Since the dimension
of / is 16 and [X] E N, there exists a sequence {X,} in / such that X =1lim X,
and AAX,#0. Then L(AAX,)=1 holds for each n. Therefore we obtain
¢X = ¢ (lim X,)) =lim ¢(X,) €L o

ProrosITION 4.5. The group ES preserves the incidence relation, i.e., if

[X] € L(Y), a € ES satisfies [aX] € L((a*)"' Y).

Proof. Since ES acts on Ell, we show that o€ ES satisfies [aX]E
L((a*)™' Y) for [X] € L(Y). By the transitivity of Eg in Ell, we may assume
Y = E;. Then [X] has the type @ (in Lemma 3.2) for [E;]. This implies (X,
E;) =0. Let [Z] be an arbitrary element in Ell with the type @ for [E;]. Then
Z satisfies (Z, X) =0 and Z AE;=0. Hence we get (o*)"! ZA(a*)'E; =
a(Z A Ey) =0. Since Z is arbitrary, this means that the set of [(@*)~'Z] makes a
polar set with the type @ for [(*) 'E,]. Finally we can see that aX is an
element with the type @ for (a*) 'E; because (aX, (o*)"'E;) =0 and (aX
(a*)~! Z) = 0. Therefore [aX] € L((a*)"'E;) holds.

THEOREM 4.1. Ell becomes a symmetric space in the sense of O. Loos [5]:
If we define a product in Ell by [A]-[B]=[¢(A, A; —1)B], the followings hold.

(1) [A]-[A]=[A],

(2) [A]-([A]-[B]) =[B],

() [A]-(B]-[€D) = ((A]-[BD) - (1A [CD),

(4) [A] is an isolated fixed point in the set of points [ X] such that [A] - [ X] = [ X].

Proof. Since o= ¢(E;, E;; —1) holds and o is the geodesic symmetry at
[E1] in Ell, we can see (4) in the case of [A]=[E,]. The remainings of proof
are easy. m]

THEOREM 4.2. The map @: [A]— ¢(A, A; —1) gives an embedding of the
symmetric space Elll into the group E¢. Then ® is a homomorphism for the
reflection products in Ellland in Eg.

Proof. 1f ®(A)= &(B), we obtain [A] =[B] because ¢(A A; —1) has the
isolated fixed point [A]. If we define a product a- 8= a B '« usually, then <P
satisfies @([A]-[B]) = ®(A) - ¢(B).



52

KENJI ATSUYAMA

REFERENCES

K. Atsuvama, The connection between the symmetric space E¢/SO(10)-SO(2) and projective
planes, Kodai Math. J., 8 (1985), 236—248.

K. Atsuvama, Projective spaces in a wider sense, I. Kodai Math. J., 15 (1992), 324—340.

H. FREUDENTHAL, Beziehungen der E; und Eg zur Oktaven evene, I, Indag. Math., 16 (1954),
218-230.

H. FrReuDENTHAL, Beziehungen der E; und Eg zur Oktaven evene, IV, Indag. Math., 17
(1955), 277—-285.

O. Loos, Symmetric Spaces I, II, Benjamin, New York, 1969.

T. Nacano, The involution of compact symmetric spaces, II, Tokyo J. Math., 15 (1992),
39-82.

I. Yokora, Simply connected compact simple Lie group Eg (—7g) of type Eg and its involutive
automorphisms, J. Math. Kyoto Univ., 20 (1980), 447—472.

I. Yoxkota, Simple Lie Groups with the Exceptional Type, Gendai Sugakusya, 1992 (in Japanese).

Kumamoto INSTITUTE OF TECHNOLOGY
IxepA, KuMaMmoro 860
JAPAN





