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ON THE GOLDBACH PROBLEM IN ALGEBRAIC NUMBER
FIELDS AND THE POSITIVITY OF THE SINGULAR
INTEGRAL

TakuMi Nopa

Abstract

We show the positivity of the singular integral which arises in the Goldbach problem in
algebaic number fields.

Introduction

In this paper our main purpose is to show the positivity of the singular
integral under a sufficient condition. The singular integral is the generalized
Dirichlet integral which appears in the coefficient of asymptotic formula in the
Waring problem and the Goldbach problem in algebraic number fields (see
Y. Wang [14]).

In §1 and §2 we shall define a singular integral which arises in the Goldbach
problem in algebraic number fields and show the positivity as Theorem 1. Here
we notice that the positivity is not trivial if the algebraic number field K has the
complex conjugates. In §3 and §4 we shall derive an asymptotic formula as
Theorem 2 following the generalized Vinogradov-Vaughan method introduced
by Mitsui ([4], [5]). The asymptotic formula is a generalization of Sultanova [10]
and Theorem 1 shows that the leading term of this formula has a positive
coefficient.

1. Statement of results

Let K be an algebraic number field of degree n. Let K@ (g=1,2, ...,r)
be the real conjugates of K and K, K®*™ (p=r,+1, ..., r;+r,) be the-
complex conjugates of K with K®*+™ = K®)_ Let b denote the different of K and
D = N(b) (norm of p) the absolute value of the discriminant of K. Further, k
denotes the ideal class number of K and R the regulator of K. Let y be a number
of K and put by = b/a with integral ideals a and b such that (a, $) = 1. We write
this relation by y — a.
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GOLDBACH PROBLEM 9

Let u be a number of K; u also denotes an n-dimensional complex vector
@, u?®, .., u™ywith g € KO (i=1,2, ..., n). More generally we consider
any n-dimensional complex vector §=(§;, &, ..., §,) with real §, (¢=1, 2,
..., 1) and complex §,,, =&, (p=r;+1, ..., ry +ry). We denote the set of §
by E™". For £ € E™", we write T

N(E) = iI:_Il & S(E) = ]él gl and E(S) = 2S5

Let x(&) denote the n-dimensional real vector x(&) = (X1(§), X2(8), ..., Xu(8))

with X,(8) = &, X,(§) = (& + &,)/2 and X,,..(§) = (§,— E,)/2V/—1. We denote
the map from E™" into R" such that the image of & is x(&§) by ¢.

Let D(t) (t>0) be aset of § € E™"™such that 0<§,<t(¢=1, ..., ry) and
&=t (p=r1+1, ..., ri+r). Regarding X,(§), ..., X,(&) as variables we
define an integral

B,(2) = jﬁ | oy EEIX®

where k is a positive rational integer, z& = (z,&, ..., z,&) with z € E™" and

dx(&8) = dXy(§) - dX,(§).
In the following we let u be a totally positive integer and a; = (af?, a?, . ..,
af®) (k=1,2, ..., s) be a point of E™™ which satisfy the condition:

a) € R, a) >0 (i=12,..,mk=12,...,53),
0<afP=af = - - =aP=1<1+D=aP +af + - + a?

with a positive constant c”. We define a singular integral as follows:

. s
l‘Ifl(l’t; A’l’ )'27 DRI As) =2" VD— kH ¢l (AkZ) E(—HZ)dx(Z)
R k=1
with
Ak=ak/4 (k=1,2,...,3).
We shall prove the following theorem:

TueoreM 1. There is a positive constant ¢, which depends on af? (i=1,
2, ...,n k=1,2, ..., s) such that

1
Wi, Mg, ..., A) = ——.
(15 Aho ) N(w)

In this paper we call an integer w of K a prime number, if the principal ideal
(w) is a prime ideal. Let £(A;) be a set of prime numbers w; of K such that
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0<af =M (q=1,2,...,r), |0 |=<|2| (p=r+1, ..., +nr).
We define a sum R(u; Ay, Ay, ..., A;) as follows:

R(us Ay Apy ooy Ag) = > log N(w,) - - - log N(wy),
u=w+- o, 0,EQRX)
where the sum is taken over all the s-tuples (wy, s, ..., w;) of prime numbers
such that
U= + w+ - + w, w, € (M) (k=1,2,...,9).

Then we have

THEOREM 2. Let u be a totally positive integer of K and s be a rational
integer with s = 3. Then

i(1; ay, a3, ..., as) s _
R Jay Jas oy ) = — 2= Sl 1] N(a)NGoy™
N(s—l)n
+ O<—'—+;),
(log Ny’

where N =max { [A?| }(1<i=n), W=2"""2"hR/w\/D with w the number of the
roots of unity in K and Sg(u) is the singular series which is written as an infinite
product: :

_ _ __(_:})_s_— (_1)s+1
Se(u) R (1 + (N(p) — 1)5—1) 1;,{(1 * (N(p) — l)s).

2. Singular integral
First, we recall a fundamental lemma for @,(z).
LemMaA 1 ([5] Theorem 4.6.1, [14] Lemma 5.3). For k=2 we have
@4(2) << [T min(t, lg| .
In the case k=1, we have
Dy(z) < r;ﬁ:z min(1, |z;|™Y).
If s > 2k
| 1ol

is convergent.
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We now prove the positivity of a singular integral with a linear restriction on
the integral @(z).

Proof of Theorem 1. Wi(u; A, Ay, ..., A;) is written as follows:
(21) Wl(lﬁ '11’ AQ’ RS ] A'.s)

2rz(1 +5) n o

K 1
-Z1 { [ expmingz g ax, e | expl-22iu® z)ax, (2

2 —o0 k=1

r1+r7

p =r+1

j N U f |§|<1eXp(2m(}"’(f ) 2,6 + W 5,8))

XDy (B | X exp(—27(u P2, + EOENAX, (K11 (2).

We consider the factors of product[[sand ], on the right hand side of (2.1).
Firstly, the factor of product ], is

© s 1

(22 H expRuM? z,&,)dE, | exp(—2miu? z,)dz,
-2 k=1 Jo
] s 1

= #—(1;) f . kf_ll{ f . exp(27iaf? quq)d§q} exp(—2miz,)dz,

1 « 1 1 ) ) ) —
mq)f e [ i st it g, - ag ) ez,

0

a(q) a(q) a(q)
e T i )
(q) H (q) -

e _2’"2"dzq.

II

Then, putting w=u,; + - - - + u,, we have

1

- j { f E e duyduy - - dus_ldw} e 2mady,
—co @
@ kI:I1 al? A

1 o0 a‘f”+~ - +d® )
) o)
—oc 0 B@

@ 11 o
k=1

e 2.71'ququ’

where A@ and B@ are defined as follows:
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0=y =da?, ...,0=<u,_, < a?
A@ = L(up up, .., U, WER|0=w=a? + ... + a9
O=w-—u — - —u_y <a?
4 l0=u=a?, ...,0=u_, < a?
(q) — s—1 1 ’ ’ s—1 s—1
B {(ul,uz,...,us_l)ER Osw—u1—~--—us_lsas"
Now we put
Ff)")(w)=f dujduy - - dug_q.
B@

Then we have F§{P(w)=0 for w<0 or w>a{? + --- +a{® and F? (w) is a
continuous function of w. Therefore, applying the theory of Fourier integrals,
we find that (2.2) is equal to

(23) —sl————- J { f ng)(w)eZm'zqwdw} e—Zanqxleq
u@ ]_:[ al® - —

k=1

-—— .

u@ 11 af@
k=1

In a similar way, the factor of product[], is

eof | I{[], . owenor s+ 1 hpaxear,.. o |

X exp(—=2mi(uP z, + 59 2,))dX,(2)dXp+r,(2)

— 1 J f { j j G(p)(U, V)eZm'(uU+vV)dUdv}

2400 [T aPap™
k=1

X e—2ni(uX1+v>(0)dudV

= 1 G?® (1, 0),

2400+ [T aPap
k=1

where

GO (U, V) = | dude - diyadyidys - dys
D@

is a 2(s — 1)-fold integral with
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(U—xl v =X )2 H (VA yr + oo+ ye1)

X1, X2, « .5 Xs—1
D(p) =1V Y2 - Ys—1

xl + .YI = (aip))Z e xs—l + ys 1= (a(p)1)2 }

By (2.1), (2.3) and (2.4) we obtain
r(s—1) >
(2.5) Wi Ay Ay ..., D) = —Z—D— 11 A ) H G® (1, 0).
N() H N(ay) ™ P

Here F{? (1) and G (1.0) denote the volumes of domains B and D§ in (s — 1)
and 2(s — 1)-dimensional euclidian space, where B{? and D§’ are given as
follows:

= < a\D = <= 49D
Bf)q) = {(ul’ Uz, ..., us—l) S Rs_l 0= U = ai [ 0= us—laqas——l},

O=1—-uy— -+ —u_1 =
X1y X25 ¢ vy Xg—1 x% + )’% = (a?))29 ey x?—l + }’3—1 = (a.gl',-)l)2
DY =3y, y2 s ysmr | =31 — oo —x)* + (p1 + -+ + ys1)?
= (a0’

We shall show the existence of domains B{? and D{” such that B{¥ C B{?,
D C D and that the volumes of B{? and D{ are positive in each euclidian
space. We now consider two cases to define B{?.

Case 1. af? +a$? + --- +a'?, < 1. Let us define

B? = {uj, up, ..., u_1|a® -89 =<=uy;=a? (i=1,2,...,5-1))},
where
89 = min(a{?, c9/(s — 1)).
Case 2. 1 =af?+a$? + --- +al?,. Let us define

@ _ B < y. < @D — B9 + 5@
al 1 ul L
BS‘I):{ul, Uy, ..., Ug—q (i=1, 2, ...,S—l) (] (]

with
KD _ @) (@,
KD KD + 5D (1 - a® - ... — aD),

where we take positive constants s{ (i=1, 2, ..., s — 1) which satisfy following
conditions:

SO+ 59+ .+ 59, =1,

s @ < gD,
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It is easy to see that such constants s{? exist for all g=1, 2, ..., r; and
B{? C B{? in each case. Then we have
s—1
(2.6) FP(1) = f duy - dus_, = [] &9.
Bi(q) i=1

Now we consider two cases to define D).
Case 1. Suppose 2a{? = ¢P. Let us define

DSp) — {xla X2, o5 Xs—1
,V1, }’2, vy ys—l

a?) — s6P(s — 1) = x, < aP — P }
OSij(S(p/(s—l)(i:l,za~~-,s_1) ’

where
8® = min(a?/2, cP/2s).

For 2= (X1, X2, .. .» Xs—1, Y1» Y25 - - -5 ¥s—1) € D¥, the coordinates x4, ..., X;_1,
Y1, ..., ys—1 satisfy the condition

2.7 c+y=@”? (=12,...,s-1).
In order to show z € D, we shall prove
CO)A-—x—x— - =X+ 1+ 32+ o+ ye1)’ = (@)

We consider two cases to show (2.8).
First, we take the point z= (X1, X2, ..., ds—_1, Y1, V2, - ., Ys—1) € DP’ with
x,=a,(p)—6(p), y,-=6(”/(s -1 (G=1,2,...,s = 1).
Then we have
Q—x1—X— o =X )* + 1+ 2+ - +ya)
= {a® — @ + (5 — 1)6P)? + (5P)?
= (@P)? = 249 (@ — (s — 1)6P} + {c? — (s — 1)P)? + (8P
= (@@)? — P (P — (s = )P} + {¢P — (s — 1)6P}? + (§P)?
= (@) — (s = D&P @ + {(s — 17 + 1) (67)?
< (a?)?,
where the last inequality is followed by using 6% = ¢®)/2s.

Secondly, we take the point z= (X1, X2,. .., Xs—1, Y1, Y25 - - -» Ys—1) € Dy
with x;=a) — s6@/(s—1), y;=86P/(s—1) (j=1,2, ..., s—1). In a similar
way we can see that the condition (2.8) is satisfied also on this point. Therefore
the condition (2.8) is satisfied on all points of D).

Case 2. Suppose ¢? > 24, Let £”) be positive constants which satisfy the
following conditions:
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P+ + -+ =1, 0<P<P<...<P <1,
P =saPi(s+1) (=1,2,...,5 = 1).
We define

Dip) - {xl, X2y ooy X
Y15 Y2, -4, Ys—1

;= £P)
d<y <(§(P) (]=]

1,2, ...,s — 1)}
with
8 = min(aP/(s + 1), {P).

Under the condition ¢ > 24{) such constants £?) exist for all p=r, + 1,
r1+r, and we see that D{) C DS”) Then we have

@9) DD (WL0) = | g dn o droadyy - dyes = (80U = DY,

By (2.5), (2.6) and (2.9) we have

2rz(s—1)Dl;i rt
Wi Ay Aoy oy A) = ——— T {H 6<‘"}
. N(s) II Na) 1

rn+n
I1 {6(”)/(s — 1)}27D,
p=n+
Now we consider the constant ¢; defined by
ra(s—1) 1 r s—1
= _zs_i__ I {n 5l(q)} H {5(17)/(3 — 1))26-D,
I—[ N(ak) q=1 U p=r+
k=1

which allow us to establish Theorem 1. o

3. Farey dissection

Let {8, &, ..., 8,} be a basis of b~'. We put
7z =000 + 89 + .- + x,69 G=12,...,n)
for real numbers x;, x;, ..., x, and define a set E of z=(zy, 22, ..., Z,) @S
follows:

E={z |z,= D0, —12<x, =12 (=1,2, ...,n)}

=1
Let H and T be real numbers such that
H > 2DT and T>1,
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and let I"be a set of numbers y of K such that y € E and y — a with N(a) = T".

In the following we let y; be a number of K and N (max(|z|, 7)) = ] max(|z],
i=1

7).

Now we define divisions of E in two ways.

(i) For every y € I' with y — a we define a subset E, of E by
E, = {z € E| 3y, = y(mod ") such that N(max(H|z — v, T™")) = N(a)™!}
and put

EO =FE — UYEF'EY'
(ii) For every y € I' with y — a we define a subset B, of E by

3y, = y (mod »~') such that }
|z, _ W)l =sT"YH (=12,...,n)

and put
B’ = E — U,erB,.

These division of E depend on the pair (H, 7). We shall call these divisions
Farey dissection of E with respect to (H, T). The Farey dissection (i) was
introduced by Siegel [8] and the Farey dissection (ii) by Mitsui ([4] §4).

Now we take positive constants o, 0;, 0,, u and v such that

o=z506>v,u—-1=o,

min(o; — v, 00 —v+v/in—1) =0+ u + v/n,

min(o, v/in, oy — 1, (u —v)in — 1) = o + 2,

min(oy, v/in, 0, — 1) = 2r —=20=40 (r=r; +r, — 1).

We put
N = max{|A?|}1<i<n)
and
3.1 H = N/(log N)*, T = (log N)*.

The following Lemma 2 was proved by Siegel and Lemma 3 is due to Mitsui.
LemMA 2(Siegel [9]). If v, and y, belong to T and y, #Y,, then we have
E,NE,=¢.
LemMMmA 3(Mistui [4] §4). We have
B,DE, B°C E°
and if y; and y, belong to I" and y, # y,, then we have
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B, N B, =4§.

4. Asymptotic formula

Let u be a totally positive integer of K with sufficiently large norm N(u). For
z € E we put

4.1)  S(z; M) = 2 E(wz)log N(wy) (k=1,2,...,5).
€Q(X,)

Wy

Then the integral

k=1

(42 [ I st aB- wydnds, - ax,
2z

[

—onvp|  T1 S AWE(- m)dx(z)
HE) k=1

isequal to R(u; Ay, A2, ...,4s). To getanasymptotic formula of R(u; A, 4, . ..
As) we shall quote the estimate of S(z; A;) in Mitsui [5]. In the case of rational
field, we can find the estimate in Vaughan [11].

First, for any totally positive unit 1 we have

R(n; mhts Moy -5 MAs) = R(Us Ay, Ay, ..., As).
The theory of units allow us to take a totally positive unit 7, satisfying
N < |9 u®| < IN(v)r (i=1,2,...,n).
Taking nou instead of u, we shall assume that u in (4.1) satisfies the inequalities
INOY < |u?| < 'N(v): (i=1,2, ..., n).
Then N = max{|A{’|}1=i=n) is sufficiently large and the inequalities
cN<|M)| =N (=12, ...,nm k=1,2,...,5)

are satisfied.

LEMMA 4. Let z be a point of E. For a positive constant b we put
HBo) = {(x(z) ER| [al = (ogN)’IN  (i=1,2,...,n)
Then we have
(4.3) 2’2\/—D_ j kl_ll WI(AkZ)E(—‘uz)dx(Z)
P(By) k=
= Wiy A, Ay ...y A) + O(1/N™(log N)°¢=2),

Proof. By Lemma 1 we have
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rn+nr2 i
¥ (Mz) < H1 min(1, |A@zj|~Y)
=

n+r;

« N—(r1+"2) l_[ min(N, lzjl“l)'
=1

Hence
S
W5 My Ao ..y A) =27 VD f I ¥i(h2)B(-piz)dx(z)
O(B,) k=1
= 2n/D [ Wy(h2)E(—pz)dx(z)
R—g(B;) k=1
rn+r $
« N—(n+rz)sf { min(N’ lzjl_l)} dX(Z)
R'—¢(By) \ =1
Here, we see
o N(S—I)
in(N, |x|™) dx K ——————,
j(log N)IN min(N, |+ (log N )b(s_l)
3 27T N(S—2)
f min(N, |r|™Y)* rd6dr « —Th
(log Ny/N J 0 (log N)

thus we obtain (4.3).
Under the notations of §3, we quote the following Theorems:

TueoreM A([4] Theorem 5.1, [5] Theorem 6.6.2). If z belongs to E°,

N"
(log N)”

S(z, 1) <

THEOREM B([5] Theorem 6.2.1). :Let vy be a number of K such that

o=y (modd7Y),
lz - |=T"YH (i=1,2...,n).
Then for z € B, (y — a),

_ wVD p(a)N(2) _ N*
S(z, A) = P heta) R D1(Mz — 1)) + 0<———(10g N b+1)
where
b=(n-10 + oy, a>bp,
and
wa) = > E(y), ¢(a) = > 1 E(py) with p € a.

y—>a, Y’mod b1 y—a, ymod b~
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Now we prove the Theorem 2.

Proof of Theorem 2. By the Farey dissection of E defined in §3, we have

(4.4) R Jas Doy . &) = 27 VD U > ¢(BY)}

LCORE G
11 8(z; B)E(=pz)dx(2).

We shall estimate the right hand side of (4.4) on ¢(B°) and ¢(B,) (y € I
respectively;
Let us consider the integral on ¢(B°). By Theorem A we have

RGs by o ooy ) = 2VD [T S(a BB i)

e RGN
KL 0 25 As zZ).
(log NY*¢™2 J om)

Applying Parseval’s identity and the prime ideal theorem, we find that this
quantity is equal to

N(s—2)

S\ - log? Ni
log NJED ucisy 108 M@
NG~
N"og N.

L ——0
(log N)°¢=2

Thus we have
s—1)

(4.5) 2/D f o klel S(z5 M)E(—pz)dx(z) < (log N&*D)’

Now we look at the integral on ¢(B,) (y € I'). By Theorem B we have

(4.6) 21D H S(z; A)E(—pz)dx(z)
#(B,) k=1

_22VD p (@)

Wty LLNGO [T e = ) i)

o(ﬁ‘)—b) | o, IEC a2

By putting z instead of z — y, and applying the estimate

bn
f dx(z) « M—)—,
B, N
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on the error term, we see that this is equal to

2"VD u(ay ¢

iy L NAE(=m) [T 4(h(2))E(—pi2)dx(2)
@(a)® k=1 k=1
+ O(N(-‘—l)n/(log N)a—b(n+1)+1)
with
#(B,) = {x(z) ER" I |z| = (log N)’/N G=1,2,...,n)).

Taking summation of the both sides of (4.6) over all y € I, and together with
the estimate

> 1« 2 N(a) =T,

yer N(a)=Tr"
we have
4.7) E 2"\/D f H S(z; A)E(—uz)dx(z)
#(B,) k=1
7 V_ NG 3 (‘;E“;s E(~u) j 1 01hen) B pe)asa)

+ O(N(s l)n/(log N)a~b(n+1)+1—2noz).
By Lemma 4, we find the right hand side of (4.7) is

@y VD VD I NG 3 B, () W5 s s - 1) + O

(p( )s N(s—l)n )

(log N)s+l
with

azbn+1)+1-2n0 +s + 1.
Now we apply the following property of the singular series S5(u) (see Rademacher

[7], Mitsui ([4] § 10)):

(4.9  Gopw = 2(‘;5“; YE”%O“I E(—py)

- M) _ 1
- N(tgsr‘ (P(Cl)a YEF,ygod p1 E( 'uY) + 0((10g N)mn/2>‘

By (4.4), (4.5), (4.8) and (4.9) we finally obtain
R(l"'7 )"17 A’Z, ey A'S)
1 S
= L ot & 1a, ..., 1) T NG + Of
W k=1

_ Y (1; ay, as, ..., a)
= -

N(s— n )
(log N)s+1

s . N(s—l)n
Ga(w) kgl N(a)N(uy~" + 0(w>-
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This completes the proof of Theorem 2. o
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