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EFFECTIVE BASE POINT FREENESS

DAISUKE MATSUSHITA

Abstract

It is an interesting problem to know when the adjoint bundle Kx+mL 1s
free or very ample. Recently Ein-Lazarsfeld states very explicit numerical
conditions about L such that Ky-+L becomes free on a smooth 3-fold. In this
paper, the author wants to enlarge their results on a singular 3-fold.

1. Introduction

The purpose of this paper is to enlarge Ein-Lazarsfeld’s result on a singular
3-fold.

It is an interesting problem when adjoint bundle Kx-+mL or pluricanonical
system is free or very ample. Reider shows in [11] the following theorem :

THEOREM 1. Let S be a smooth surface and L be a nef Cartier divisor on
S. Assume that:

1) L*z=5,

(2) L-C=2 for all curves on S.
Then the adjoint bundle Ks+L is free.

From the above theorem, we can deduce the adjoint bundle Kg+mL is
free if m=3. Also Sakai shows in [12] that the similar statement holds on a
normal surface. In higher dimension, Fujita conjectured in [4] the adjoint
bundle Ky-+mL is free if m=dim X+1 and very ample if m=dim X+2. Ein-
Lazarsfeld got in [2] the following theorem :

THEOREM 2. Let X be a smooth 3-fold and L be a nef Cartier divisor. Fix
one point xX. If L satisfies the following criterion, the adjoint bundle Kx+L
is free at x.

(1) L3z=92,

(2) L*-S=7, for the all surfaces S such that xS,

(3) L-Cz=3, for the all curves C such that x=C.

By the above theorem, Ky+mL is free if m=5. We want to enlarge the

Received October 11, 1994 ; revised January 9, 1995.
87



88 DAISUKE MATSUSHITA

above result on a singular 3-fold, because it is natural to consider a variety
which has some mild singularities by minimal model program. Recently Ein-
Lazarsfeld-Masek states the freeness of adjoint bundle on the terminal 3-fold
in [3]. Our results are different from the above results at two points. First,
we work on the variety which has only log-terminal singularities. Second, we
consider the nef Cartier divisor L such that L—(Ky+A) satisfies some numerical
conditions. It will not be suitable to consider the adjoint bundle on a singular
3-fold, since the canonical divisor is not a Cartier divisor in general. In such
situation, Kollar shows in [10] the following theorem :

THEOREM 3. Let X be a n-dimensional normal projective variety and A be
an effective Q-divisor on X. Assume that (X, A) has only log-terminal singularities.
Let L be a nef Cartier divisor such that alL—(Kx+A) is nef and big for some
integer a. Then (2(a+n)n+2)Y)L is free.

An analog of the conjecture of Fujita says that (a+n+1)L is free. Kollar’s
result gave explicit estimates in all dimension, but it is far from above esti-
mation. So we guess if we use the technique of Ein-Lazarsfeld’s, we can do
some improvement of Kollar’s result in dimension 3, and we obtain the follow-
ing theorems.

THEOREM 4. Let X be a normal 3-fold and A be an effective Q-divisor.
Assume that (X, A) has only log-terminal singularities. Let L be a nef Cartier
divisor on X such that aL—(Kx+A) is nef and big for some rational number
a>0. Then nL is free if n>a+11/2, (nN).

THEOREM 5. Let X and A are same objects in above Theorem. Assume that
(X, A) has only weak log-terminal singularities and X is Q-factorial. Let L be
a nef Cartier divisor on X such that aL—(Kx+A) is ample for some rational
number a>0. Then nL is free if n>a+11/2, (nEN).

Similary Ein-Lazarsfeld-Masek [3], we can obtain the following result
about a pluricanonical system.

THEOREM 6. Let X be a minimal 3-fold of general type and r be an index
of X. Then

(1) 6Kx s free if r=1,

(2) mrKy is free of
T¥r
2r

m>2+ —71; + r=2.

By the above theorem, we can deduce that 57Ky is free for »=2. If r=4
then 47Ky is free and if »=9 then 37Ky is free. Ein-Lazarsfeld-Masek proved
in [3] that 10Ky is free if r=1, 7rKy is free if r=2, 5vKy is free if »=3 and
2rKy is free if »r=27.
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The outline of the proof of theorems

Fix one point x on X. We construct a smooth variety ¥ and a birational
morphism f:Y—X depending on the type of singularity at x. According to
the argument of Kawamata-Reid-Shokurov, we show the restriction map

HY, f*L—N)—> HXE, (f*L—N)|x)

is surjective, where N is an effective divisor such that f~*(x)"\N=0 and E is
a surface on Y such that x< f(E). Then we will show there is a section s
H(E, (f*L—N)|g) which is non-vanishing at some point of f~'(x).

We distinguish three cases, according to dim f(E)=0, 1, 2. In the case
dim f(E)=0, O(f*L—N)=0z because x& f(N). Thus we are done. In the case
dim f(E)=1, we prove the restriction map HYFE, (f*L—N)g)—HZ, (f*L—N)|z)
is surjective, where Z is a fibre of f|z such that ZN\N=0. Then Oz(f*L—N)
=@z and we are done. In the case dim f(E)=2, we will produce the required
section by the following theorem :

THEOREM 7. Let S be a normal projective surface and A be an effective Q-
divisor. Assume that (S, A) has only log-terminal singularities. Fix one point x
on S. Let Q be a Cartier divisor on S which satisfies the following conditions:

(1) M:=Q(Ks+A) is nef and g,

2) M*>4,

(3) M-C>2 for the all curves x<C.

Then x,£Bs|Q].

This Theorem is an extension of Theorem 2.1 in [2]. In Theorem 2.1 in
[2], it is assumed that S has only rational double points.

In this paper, §2 devoted to prove two elementary lemmas which used later.
In §3, we prove Theorem 7. The statement of main theorem appears in §4,
where we also introduce Kawamata-Reid-Shokurov argument. We will show
the existence of desirable section according to dim f(E) in §5 and will construct
a smooth variety Y and a birational morphism f depending on the type of
singularity at x in §6.

Achnowledgement. The author would like to express his hearty thanks to
Professor N. Nakayama for his useful advice. The author would like to thanks
Professor J. Kollar, R. Lazarsfeld, and N.I. Shepard-Barron for their useful
advice. By their advice, the author can improve Theorem 6.

2. Preliminary

We work throughout over the complex numbers C. Notation and termino-
logy is same as in [7]. In this section, we prove two elementary lemmas
which need the proof of Theorems. First we define a multiplicity of Q-Cartier
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divisor D at a point x.

DEFINITION 1. For an effective Cartier divisor D on a projective variety
X and a point xX, define a natural number v, (D) by

v.(D):= max{neN|Ox(—D)Cm?},
where m, is a maximal ideal of Oy, ,. For an effective @-Cartier @-Weil divisor
D’ on X, define a rational number y.(D’) by
1
v (D) 1= —v.(pD"),
P
where p is a natural number such that pD’ is a Cartier divisor.

Then we show the following lemma.

LEMMA 1. Let X be a projective variety of dimension d and M be a nef and
big Q-Cartier divisor on X such that M*>a®. Fix a point x on X such that
mult, X=a. Then there is an effective Q-divisor B on X such that B~q M and

a

vx(B)>m0<0<l .

Proof. Consider the following exact sequence:

0 —> HX, 0x(mM@m})) —> HX, 0x(mM)) —> H*X, Ox/m}).

By Kodaira’s Lemma, we can choose an ample divisor A, an effective divisor
D, and small numbers 0<d, ¢<1 such that M~y A+d8D, A*>(a/(1—0))*. For
a sufficiently large number m such that mM and m(M—dD) are Cartier,

Al—e

d!

me,

d
h"(mM)gh"(m(M—BD)):%de+(lower terms of m)>

where 0<e<ad<1. On the other hand,

a+¢

a v

h°(0x/m§)=a§7l"+(lower terms of )<

for a sufficiently large /. If we choose a suitable large m, there exists an
integer [ which satisfy the following inequality,

ms/A%—e >(%&/a+¢e) > T’%.
For these m and [, A°(mM)>h%0Ox/mL). So we can choose a section t=H(mM)
such that y,(div (#))=!. If we put B := (1/m)div (¢) then the assertion of lemma

follows. O

LEMMA 2. Let S be a normal surface and M be a nef and big Q-Cartier
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divisor on S. Fix one point x, on S. Assume that (S, x,) s a normal quotient
surface singularity and M?®>(g,)®. Let m:S,—S be a mummal resolution of
(S, xy) and Z be a rational curve such that ZCr '(x,). Then there is an effec-
tive Q-divisor B on S, which satisfies the following two conditions:

(1) Brgqm*M,

@2) B—tZ=0, >

g
7—_‘227, TEQ.
Proof. Consider the following exact sequence :
0 — H'(S,, Os,(mr*M—(k+1)Z))
—> H'(S,, 0s,(ma*M—kZ)) —> H"Z, Oz(ma*M—FkZ)),

where m is an integer such that mz*M become a Cartier divisor. We obtain
the following inequality,

h(Sy, Os,(mr*M—(k+1)Z))Zh"(S,, Os,(ma*M—k Z))—h*(S,, Oz(—kZ)).
By Riemann-Roch formula,
hoZ, 0x(—kZ)—h"(Z, 0:Q02(kZ))=deg Oz(—k Z)+1—g(2).
Since Z2<0 and g(Z2)=0, h%Z, 0x(—kZ))=—kZ*+1. Thus
h*(S;, Os,(ma*M—(k+1)Z))=h*(S,, Os,(mn*M—kZ)—(RZ*+1).

From this inequality, we obtain

1
RS, Os,(ma*M—1Z)Zh%(S,, Os,(ma*M)— 33 (—k Z*+1).
k=0
By Kodaira’s Lemma, there are an ample divisor A and an effective divisor D
such that w*M~gy A+eD, A*>(0,/(1—0)),, where ¢ and e are small numbers
such that 0<e, e<1. If we take m and [ large enough, we may assume mz*M,
m(n*M—eD) are Cartier divisor and

h%(S,, Os,(ma*M))=h*(S,, Os,(m(zx*M—eD)))
m2
=~ A+(lower term of m)

2 ’
Al—e

>2m,

- 72
:Zl(—kZ“l-l):—ZZ»lZ-i-(lower term of [)
=0

72
2

< (U+e?, 0<e’'Kakl.
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Furthermore we may assume m and [/ satisfy the following inequality :
ma
l1—0

For these m and [, there is a section teH(mrn*M—I(Z). Let B :=(1/m)div (i)
+{Z). Then the assertion of lemma follows.

maJA = >+ — 22>

3. Effective base point freeness for surface

THEOREM 7. Let S be a normal projective surface and A be an effective Q-
divisor on S. Assume that (S, A) has only log-terminal singularities. Fix one
point x, on S. Let Q be a Cartier divisor on S which satisfies the following
condition:

(1) M:=Q—(Ks+A4) is nef and big,

(2) M*>4,

(3) M-C>2, for all curves CCS such that x,&C.

Then x,£Bs|Q].

Proof of Theorem. If (S, x,) is a smooth point or rational double point,
Theorem 7 follows by the following theorem.

THEOREM 8 ([2] Theorem 2.1). Let S be a normal projective surface which
has only rational double points. Fix one point x, on S. Let M be a nef and big
Q-divisor which has the following numerical criterion:

1) M>*>4.

2) M-C>2, for all curves C such that x,=C.

Then x,&Bs|Ks+TMT|.

Thus we may assume (S, x,) is quotient singularity. Let = :S,—S be the
minimal resolution. For an effective @-divisor B such that B~y #*M and prime
divisors {E;}, (0<i<m) on S, such that \UE,=Supp BUr '(x,), we define
rational numbers {b;} and {e;} by the following formulae :

B:E biE‘L )
Ksl'\’q ﬂ*(Ks+A)+E éfE1 .
Let
e;

c:= min{ ;l |xoen(E,), bi>0}.

CrLamM 1. (1) c¢b;—e, =20, for any 1.
2) If cb;—e,>1, then x,&n(E,).

Proof. Since (S, A) has only log-terminal singularities, we obtain ¢,>—1
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and ¢>0. Because n is the minimal resolution, ¢,<0. Thus cb;—e,=0.

2) If ;>0 and x,=xn(E,), then c¢<(e;+1)/b;. Thus cb;—e,<1. If b;=0
and cb;—e,>1, then e¢;<<—1. But this contradicts the hypothesis that (S, A) has
only log-terminal singularities.

We go back the proof of Theorem 7. Let R:= X (cb;—e,)E,. By chang-
ing indices, we may assume the following:

(1) cb;—e,=1 and E, is not w-exceptional for 0=</<m’.

(2) cb;—e;=1 and E, is m-exceptional for m'+1<7<m,

(3) c¢b;—e,>1 for m;+1=<i<m,.

Let
E'3=m2Ez, E”:= Zl‘, E, and N:= 22 [cb;—e E,.
1=0 1=m'+1 1=my+1
We define
T:=n*Q—-N—E'—E"—Ks,—<{(R).
Then

Tr~e(l—c)M.
PROPOSITION 1. For a suitable B, c<1 holds.

T is nef and big by Proposition 1. First we consider the case E”+0. We
need the following lemma.

LEMMA 3 ([2] Lemma 1.1, 2.4). Let S be a smmoth surface and M be a nef
and big Q-divisor on S. Then

(1) HYS, Ks+IM1)=0.

(2) Let {Ei} be curves on S such that ordg,(KM>)=0 and M-E,>0. Then

HYS, Ks+IM1+E;+ --- +E,)=0.
By Lemma 3, we obtain
HY(S:, 0s,(Ks,+TTT+E))=H(S,, Os,(x*Q—N—E"))=0.
Thus the restriction map
HY(S,, Os,(a*Q—N)) —> HYE”, Opn*Q—N))

is surjective. Since E” is m-exceptional and x,&n(N) by Claim 1, Og.(x*Q—N)
=~Og. Therefore we obtain a section t=H(S,, Os,(7*Q—N)) which doesn’t
vanish at some points of 7#7(x,). Because x,&n(N), the existence of ¢ shows

xo&EBs|Q1.

Next we consider the case £/=0. By Lemma 3,
HY(Sy, 05, (Ks,+TT+E'—E)=H'(S), 0s,(n*Q—N—E))=0.

Thus the restriction map



94 DAISUKE MATSUSHITA
H'(S,, Os/(m*Q—N)) —> HE,, Og,(t*Q—N))
is surjective.
PROPOSITION 2. For a suitable B, [T1-E,>1.

Since [T1-E is integer, [T]-E=2 by Proposition 2. Then deg(Og,(7*Q—N))
=>2pq.(E,), because

On(W*Q—N)=0r,(Ke,H [T+ Es+ - +En).

Since E, is Gorenstein, Og(7*Q—N) is globally generated (cf. [5]) and there is
a section t€ H(E,, Og(m*Q—N)) such that #(y)=#0 for some point yeEz~'(x,).
Thus we can deduce x,&Bs|@Q|. For the rest of the proof of Theorem 7, it is
enough to show Proposition 1, 2. Now we will give a proof of Proposition 1, 2.

Proof of Proposition 1. Let M?*=(0,)* and M-C=¢, for all curves CCS
such that x,&C. Note that ¢,>2 and ¢,>2 by the assumption of Theorem 7.

LEMMA 4. For a suitable B,

@1 < M, when the dual graph of m '(x,) is of type An.

(2n+1)o,
(2) c<%/o—3, when the dual graph of n ' (x,) is of type D,.
2

3) c<;1—, when the dual graph of n '(x,) is of type E,.
2

We can obtain the assertion of Proposition 1 by the above lemma, because
g,>2.

Proof of Lemma 4. We show (1) and (2) in parallel. By changing indices,
we may assume 7 '(x,)=23~; E,. We define rational numbers a, by the
formula Ks,~q n*Ks+31a;:E,.

/D
E, E, E,

Figure 1. The dual graph of type 4,.

. Eny
SO ——
El E2 E‘;&

E,

Figure 2. The dual graph of type D,.
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CLAaM 2. (1) If the dual graph of m '(x,) ts as in Figure 1, then

1 1 i—1 n—i \-!
- 1, 1 s =1 n—i .
a, < 1+<z +n—i+1><51 ; n—i+1) , for any i,
where 0;:= —(E,).
(2) If the dual graph of n (x,) is as in Figure 2, then
1

1 i— -1
< _ (5. =
a,<—1+ Z.((Z ; 1) , for any 1,

where 9; .= —(E,)%.

First we shall show the assertion of Lemma 4 (1), (2) by assuming Claim 2.
Let E, be the component which has the minimum self intersection number
(Ew)? in {E;}. By Lemma 2, we can take an effective Q-divisor B such that

B~gn*M and B—(0./(v/8;(1—0)E =0, (0<a<1). Then
g,

b= Uai—a)
If the dual graph of 7 '(x,) is of type A,,

e”§0”§_1+<%+n—;+1)(5”— kk_l _nﬁ;—ﬁl)—l’ for any k.

Thus

(i, 1 k=1 n—k \'(1—0),

'<?+n—k+1)<5” 3 n—k+1) 7

1 n—k \ 1 )—11—0
T n—k+1/48,) @,

—(k n— k-l—l)(\/a" k

The function

— (k—1 n—k \ 1 \-11—¢
(Vo 507
is decreasing in 0, and because 0,=3,

(l_'_n k+l)<5" k L nﬁ;il)"(l—zzx/ﬁ—k

é(%+n_iﬂ)(?’-k?—ﬁfl)"‘ S

(n+1)+/3
(k(n—k+1)4+n+1a,’

AN
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Let N(k):= k(n—k+1). Then N(k)=n because 1<k<n. Therefore

c< (n V3
2n+1)a,

This completes the proof of Lemma 4 (1).
If the dual graph of n#~'(x,) is type D,,

er<ars—1+ @rﬁi 1)
Thus

<e,,—|—1

<=5

A

The function

b (V- 1) g5)

is decreasing in J, and because 0;=3,

- <5k_k_l_1>_l V0, (1—a)

k g,
17, k=1 ~N-'v/3(1—0) +3(1l—0)
= k(3 kb l) g, T 14k
< V3(1—a) U) V3
= 20, 202 ’

This completes the proof of Lemma 4 (2).

Proof of Claim 2. (1) We consider Ky E,=n*KsE;+> a;E;E,. Then we
obtain the following linear equations :

0,—2=—0,a;+a,,
Or—2=—0rar+as_+a,;, (2=Zk=n—1)

5n‘—2:—‘6nan+an_1 .
Thus

a,=—1+P,+11P,,
7=1
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and
k-1 n-k
ar=—1+(TLQ;+ I P,)0r—Prn_r—Qr_)™", k+#1,
=1 =1
where
1 1 1 .
P, ant;:——-gn‘:;‘— T (7=2),
1
Pl = 5—,
1 1 1 .
- = <
QJ 5] 6]‘_1 51 ’ (] =2))
1
Ql = 5—
1
Because §;=2,
_J S
P < T and Q"‘j—i—l'
Thus we obtain
1 ]_ n-1
al—_1+ 51—‘Pn-1+51_Pn—1 J=1P]
1 1 n-1 ]
< I
R NS sy ey yy e | G|
. n+1
and
k-1 7 n-k 7 k—l Tl—‘k
< _J _J [ A S
dr= 1+(,=1]-|—1+;1;11]—|-1>(6k k n——k—l—l)

(2) We consider Ks E,=n*KsE;+3a;E,E,, Then we obtain the follow-
ing linear equations :

0,—2=—0,a,+a,,
0r—2=—0ar+a,_+ar,, (2Zk<n-3),
Ons—2=—0n_28n 2+ an s+ an1t+an,
0;—2=—0;a;4+a,..,, (j=n—1, n).
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Note that ;=2 for j=n—1 or j=n. Thus
al="‘l+sn—2

k-
ay=—1+(T 7)) 0 —Tr=Sns0)”, (@Sk<n—3)

n-3
an—2=—l+<1=]__[1 Tj)(an—Z—Tn-a_l)_ly

where
1 1 1 .
e S O >
SJ 5"_]-1 57;_] 511_2‘—1’ (].._.2):
1
51 . (_3”_2—1 »
1 1 1 .
—_— i —— >
Tj 51 5}_—1 51 3 (J =2);
1
T,:= 5
Because 0;=2,
< <__
5,1 and T,< a
Thus we obtain
1 1
L R
and
k-1 ] k—]_ -1
or 14 )0 55 )
1 k—1 -1
‘“1+E(5k__k_“l> . (kz2).
We have completed the proof of Claim 2. O

We go back the proof of Lemma 4. We consider (3). Define rational num-
bers {a;} by Ks~qn*Ks+>aE,. We denote by (¢;a,b, c;d, e) the dual
graph of type E, as in Figure 3. Then the classification of dual graphs of
type E, listed in Table 1. By changing indices, we may assume (EF,)?=—qu.
We can take an effective @Q-divisor B such that B~gn*M and
B—(0:/(1—a)v/¢)E,, (0<a<1) by Lemma 2. Considering Ks E,=n*KsE;+
Na;EE,, a, is computed as in Table 2. We can write \/E(al—i—l) as
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Q

06020

Figure 3. The dual graph of type E,.

Table 1. List of dual graphs

of type E,. Table 2. List of a,.
Type i ————— dual graprlplw_"w ' Type
Lo ,2 22,2 e LGe | gz
2 | ;223 2 ——141/(6 p—9) | p=2
3 | u3:3 3| a=—141/6p-D | pz2
4 4522222 4| a=—141/(2p—23) | 423
5 | u;3:2,22 L5 | a=—141/02p—19) | p=2
6 | 4;22;4 6| a=—141/124—17) | p=2
7 ¢ 3; 4 o g 7 a,=—1+1/(12 p—13) | p=2
8 | 43222222 8 —141/(301—59) | u=3
9 | u4;3;2222 “ 9 | ay=—1+1/(30 p—49) | p=2
10 | 432,232 10| a=—l+1/G0p—4D) | p22
11 p;3:32 ‘ 10| a=—141/30 p—37) | p=2
12 p;22;23 12 —14+1/(B0 p—53) | p=2
13 4323 1 13 a=—141/(30 p—43) | p=2
. |
14 | p;22;5 1| a=—1+1/G0p—aD) | 22
15 [7, 35 15 a=—141/(30 p—31) | p=2

i
I
I
1
|
i
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Ve D= M =
where a and 8 are positive integers. The function
1
T ayE =B/
is decreasing function in g. Then we can deduce /g (a,+1)<1 by Table 2.
Thus

91+1§‘11+1§(01+1)'\/ﬁ(1—0) <l’
b[ bl 02 0-2

c

IA

This completes the proof of Lemma 4 (3). We have now completed the proof
of Lemma 4.

Proof of Proposition 2. We will prove Proposition 2 dividing into two cases.
CASe 1. The dual graph of nY(x,) is of type A,, (n=3), D, or E,.
CASE 2. The dual graph of n~!(x,) is of type A,, (n<2).

In Case 1, Proposition 2 follows by the following Claim.

CLAIM 3. If the dual graph of = '(x,) is of type A., (n=3), D, or E, then
c<1/2.
Since T~q(1—0)M,
T-E;x=1—c¢c)M-E,=(1—¢)a, .
By Claim 3

T-E0>(1—%>al= 1’2—
Thus we obtain

rTw-EozT-Eo>%>1

because ¢,>2. This completes the proof of Proposition 2 in Case 1. O

Proof of Claim 3. 1If the dual graph of n7'(x,) is of type A,, c<{((n+1)4/3)
/(2n+1)g, by Lemma 4. The function

m L
2n+1

is decreasing function in n. Hence

(n+DA3 443 443 _1
2n+1)o, < 70, <74 <73

c<
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by Lemma 4, n=3 and ¢,>2.
If the dual graph of #~%(x,) is of type D,. By Lemma 4, c<+/3/(20,).

Since ¢,>2, we obtain ¢<+/3/4<1/2.
If the dual graph of = *(x,) is of type E,, ¢<1l/g¢, by Lemma 4. Because
0,>2, we can obtain ¢<1/2. Then we completed the proof of Claim 3. O

We go back the proof of Proposition 2. We consider Case 2. By changing
indices, we may assume n~'(x,)=>1%, E,. Define rational numbers {a;} by the
following formula Kg,~q #*Ks+3> a,E,. Since E”’=0, cb;—e;<1 for 1<i<n.
So [T1—T=3",(cb;—e,)E,. Hence

[T1-Ev=T Eot( 3 (cbi—e)E. )E,
Because x,=n(E,), E.-E,>0 for some 7 (1</<n). We obtain

( g:‘(cbi—ez)E,)Eog( gl—eiEt)Eog—max le]l<i<n}.

Therefore
[T1-E¢=T.E,—max{e,|1<i<n}.

CLamMm 4. (1) If n=1, then max{e,|1<i<n}<—1/3.
(2) If n=2, then max{e,|1<:<n}<—1/5.

Proof. (1) By considering Ks E,=n*KsE,+a,(E,)’, we obtain the linear
equation :

61*'2:—(1151,
where 0,:= —(E,)?.. Thus a,=1+2/0,. Because 0,=3,
2 1
91§0x§—1+—3—:—§‘.

(2) By considering Ks,FE, = n*KsE;+>., a;E;E,, we obtain the linear

equations :
51—2=~—015,+dz

0,—2=—a,0;+a,,
where J;:= —(E,)?. Then we obtain
1 1
I GV S X -
1
a,=—1+ -+ 1

0,—(1/9y) © 6:0,—1"

We may assume 6,=>3 and 6,=2. Then
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1 3 1 2 1 1
S - e v g =—=.
5=/ =5 6—Wo)=5 ™ 5513
Thus
max{e,llgz‘_S_Z}émax{a,llg_igZ}g—%.
This completes the proof of Claim 3. a

We go back to the proof of Proposition 2 in Case 2. By Claim 4
[TV1-E.=T-E,—max{e;|1<i<n}

=<1—c>M-Eo+§ (n=1),

=(l—c)M-Eo+—é— (n=2).
Then by Lemma 4,

(n+1)v/3

c< @n+la, *

We obtain

(1-c)M-E0><l—-2§/TZ3)01 (n=1),

>(1—3*/ You (n=2).

50,

Because d,>2 and d,>2,

1—oM-E>(2-243) (=),

>(2—?’—‘—é———) (n=2).

Therefore
24/3\, 1 _7-24/3 _
[T1-E>(2— 255 )+ 5= 3 >1 (n=D),
3v/3\, 1 _11-3v/3 _
>(2— c )+ ==Y (n=2).
We have completed the proof of Proposition 2. O

Now we have completed the proof of Theorem 7. Q.E.D.
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4. Statement of main theorem

THEOREM 9. Let X be a normal projective 3-fold and A be an effective Q-
divisor on X. Assume that (X, A) has only log-terminal singularities. Let X, be
a normal projective variety and g: X—X, be a projective morphism. Let Q be a
Cartier divisor on X, and D be an ample Q-Cartier divisor on X,. Assume that
g¥Q—(Kx+A+g*D) is nef and big. Fix one point x, on X,.

In the case of dim X,=3, suppose that g is a birational morphism and D has
the following numerical criterion :

(1) D*>(as),

(2) D?-S>(0,)?, for all surfaces SCX, such that x,ES,

(3) D-C>a,, for all curves CCX, such that x,=C.

Then if a,, 6, and o5 satisfy the following conditions:

lod
{

1) 032—2—,
7 7
) (1—273)0122, and (1—2—08)0222,
%, #EBs|Q].

In the case dim X,=2, suppose g has only connected fibres and D has the
following numerical criterion:

1) D*>(0,)’,

(2) D-C>ay, for all curves CCX, such that x,=C.
Then if o, and g, satisfy the following conditions:

) 023,
3
@ (1-7)oz2
%o Bs| Q|

In the case of dim X,=1, suppose that g has only connected fibres and D has
the following numerical criterion:

(1) degD>1.
Then x,£Bs|Q].

Proof of theorems stated in introduction. First we consider Theorem 4.
By Base point free theorem [7], we can obtain a normal variety X, a projec-
tive morphism g: X—X, and an ample Cartier divisor H on X, such that L~g*H
and g«0x=0Ox, Let Q:=nH and D:=(n—a)H. If dimX,=3 then the in-
equalities in Theorem 9 are satisfied with ¢;=11/2, (=1, 2, 3). If dim X,=2
then the inequalities in Theorem 9 are satisfied with ¢,=11/2, (=1, 2). If
dim X,=1 then the inequalities in Theorem 9 are satisfied because deg D>11/2.
Next we consider Theorem 5. The pair (X, (1—e¢)A) has only log-terminal
singularities for 0<e<l, because X is @Q-factorial. On the other hand, aL—
(Kx+(1—¢)A) is still ample for 0<e«1. Thus we can reduce this theorem to
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Theorem 4 by replacing A with (1—e)A. Finally we consider Theorem 6. Simi-
larly we can obtain a normal 3-fold, a birational morphism g:X—X, and an
ample Q-Cartier divisor Ky, such that Kxy~qg*Kx, If r=1 then we put
Q:=6Ky and D:=(5—¢)Ky, 0<e«1. Note that K%, is even. Thus we can
put

___24"%/?

! 5
in the inequalities of Theorem 9. If r=2 then we put Q := mrKy and D:=
(mr—1—e)Kx,, 0<e<1. Note that K} &(1/r)Z. We can put

and a,:gsil, for 7=1, 2,

mr—1—e mr—1—e .
g,=—57+—— and g;=—, for i=1, 2,
Nr r

in the inequalities of Theorem 9.

Proof of Theorem. We may assume that X has only @Q-factorial terminal
singularities, because by Kawamata [8], there is a normal projective 3-fold X’,
an effective @-divisor A’, and a birational morphism = : X’—X which satisfy the
following conditions :

(1) X’ has only Q-factorial terminal singularities.

(2) Kxi+A'~g ¥ Kx+A).

3) (X’, A’) has only log-terminal singularities.

If we replace X, A, g by X/, A’, gom all assumptions of Theorem are satisfied.

Let B be an effective @Q-divisor on X such that B~4 g*D, Y be a smooth
projective 3-fold and f be a birational morphism f:Y—X. We consider a pair
(B, Y, f) which satisfy the following conditions :

(1) There is a simple normal crossing divisor 3JE, on Y.

(2) Ky~ [ Kx+A)+ZeE, e.>—1.

(3) f*B=Xb:E,, b;=0.

(4) There is an ample Q-Cartier divisor A on Y such that f*(g*Q—(Ky+

A+g*D)~q A+ p:E,, 0<p:«1 and e;+1—p;>0.
We define

i 1_ T
{820 e g £ (B, b0}
i

¢ := min
1
By changing indices, if necessary, we may assume that the minimum c¢ attained
only at a unique index :=0. We obtain the following lemma.

LEMMA 5. (1) If cb;—e;+p:<0, then E, 1s a f-exceptional divisor.
() If cbi—ei+pi>1, then x,&g°f(E.).

Proof. (1) If cb;—e;+p:;<0, then e,>cb;+p;. By b;=20, p;>0, and ¢>0,
we obtain ¢,>0.

2) If b;>0 and x,=g-f(E,), then ¢<(e;+1—p;)/b;. From this inequality,
we obtain cb;—e;+p;<1. If b;=0 and cb;—e;+p;>1, then ¢;<—1+p;. But
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this inequality contradicts e;+1—p,;>0. O

We go back the proof of Theorem 9. Let R:= 3)(¢b;—e,+p)E,. Then
we can write [R]=E,+N—P, where E,, N and P are effective Cartier divisors
which satisfy the following conditions :

(1) E,, N and P have no common components.

(2) P is a composite of the f-exceptional divisors.

(3) N is a composite of the divisors E, such that x,&g-f(E,).

We define
T:= (g /*Q+P—E,—N—Ky—<R).
Then
Tr~q(l—c)g-f)*D+A,
by

ey (g /N*Q+P—N—Ey~q Ky+(1—c)(g-[)*D+ A+ {cbi—e;+pE..
PROPOSITION 3. Ior a swstable pair (B,Y, f),

—Z— , ¢f dim X,=3.

@ C<203

(2) c<§, 1f dim X,=2.
(3

1 .
e dim X,=1.
3) < og if dim X,
We will prove Proposition 3 in section 6. By the conditions of theorem :

0 ag>%, (dim X,=3).

(2) 0,23, (dim X,=2).

3) deg D>1, (dim X,=1).
and Proposition 3, we get 1—¢>0. Thus 7T is nef and big. Supp <7T">=Supp {R>
is a simple normal crossing divisor. Therefore by Kawamata-Viehweg Vanish-
ing Theorem,

HYY, Ky+[TO)=H'Y, (g-/)*Q+P—N—E;)=0.
Hence the restriction map
HY, (g:/*Q+P—N)—> HYE,, (g-/)*Q+P—N)|g,)

is surjective.

LEMMA 6. In the following diagram,
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l
HYY, (g:f*Q+P—N) —> HYE,, (g-/))*Q+P—N)|g,)

V1 T T V2
Iy
HYY, (g-f)*Q—N) —> HYE,, (g-/)*Q—N)|g,)
the bottom horizontal map I, is surjective.

Proof. For the proof of this lemma, we need the following lemma.

LEMMA 7 ([7] Th. 1-5-2). Let X be a smooth projective variety, Y be a
normal projective variety, and f:X—Y be a birational morphism. Let Q be a
f-exceptional divisor on X. Then f+0(Q)=0.

P and N have no common components. So by Lemma 7, f4«Op(P—N)=0.
Hence v, is isomorphism. Moreover v, is injective and /, is surjective. By the
commutatibity of this diagram, [, is surjective. d

PROPOSITION 4. There 1s a section t€H'E,, ((gof)*Q—N)lEo) which dose
not vanish at (gof) '(x,).

By Proposition 4 and Lemma 6, there is a section s€HYY, (g-f)*Q—N)
which doesn’t vanish at (g-f)™'(x,). Because x,&g-f(N), we can deduce x,&
Bs|Q].

For completing the proof of theorem, it is enough to show Proposition 3
and Proposition 4. We will show Proposition 4 at the section 5 and Proposition
3 at the section 6.

5. The existence of desirable section

Proof of Proposition 4.

The Case dim go f(E,)=0.

Since x,&g°f(N), O ((g°f)*Q—N)=0g,. Thus the assertion of Proposition
4 follows immediately.

The Case dim g- f(E,)=1.

Let C:= gof(E,). Take a stein factorization E,—C’—C of E,~—> C.
Then C’ is a smooth curve and p is a flat morphism. Fix one point x,=v7'(x,).
Let Z be a scheme theoretic inverse of x;.

LEMMA 8. The restriction map

H(Eo, (8°/)*Q—N)Iz,) - HYZ, (g-/)*Q—N)|2)

1S nonzero map.
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Since H(C’, v*Q)=HE,, (g°/)*Q)|z,), the section s€ H(E,, (g°)*Q)|x,)
which vanish at some point of (g-f) *(x,) is identically zero on Z. Thus, if
Lemma 8 is valid, there is a section t&H*E,, ((g°f)*Q—N)|g,) which doesn’t
vanish some point of (g-f) *(x,).

Proof of Lemma 8. First we prove the following claim.

CLAIM 5. (1) HYE,, (g-f*Q+P—N)|g,—Z)=0.
@) HAZ, (g-/*Q+P—N)|2)+0.

Proof. (1) Let Ag :=3{ch;—e;+ pi>(E.|g,). We define

U:= (g /)*Q+P—-N)|g,—Z—Kg,—Ag, .
Then
U~q(—c)pv)*(DIc)+Alg,—Z,

~q p*O0c (1—cW*(D|g)—x)+Alg,,
because

(g /)*Q+P—N)|g,~q K, +Ap,+(1—c)(g°/)*D) g, +Alg,,
by the equation (1) and ((g/f)*D)|g,=(p°v)*(D|c). We obtain
deg p*OQc(1—cw*(D|¢)—x1)>(1—c)o,—1.

By Proposition 3,

7 . 3 . -
c<§(;3, (dim X,=3), and c<0—2, (dim X,=2).
Thus
7 . .
<1—c>al>(1—§5;)olzz, (dim X,=3),
and

(-0, >(1- o2, (@imX,=2),

by the assumption of theorem. Hence U is ample. On the other hand Supp<U)
=Supp <Ag,> is simple normal crossing divisor. Therefore by Kawamata-
Viehweg Vanishing Theorem

HYE,, Kg,+TUND=H'E,, (g°/)*Q+P—N)|g,—2)=0.

(2) Since x¢ g f(N), there is a point x’ on C’ such that x’¢&g-f(N). For
Z' = p X x"), H(Z’, (g-f)*Q+P—N)|z)=HYZ’, P|z)+#0, Because p is flat,
HYZ, ((g°)*Q+P—N)|z)#0 by semicontinuity. 0

We go back the proof of Lemma 8. Consider the following diagram:
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L
HYE., (g /)*Q+P—N)|g) —> HZ, (g /)*Q+P—N)|z)

o g
Iz
HY(E,, (g°/)*Q—N)|g) —> HYZ, (g-F)*Q—N)|2).

From Claim 5, [, is surjection and v, is nonzero map and injection. On the
other hand v, is isomorphism. Thus [/, is surjection. Moreover H%Z, ((g-f)*Q
—N)|2)#0, because Oz((g°f)*Q—N)=0z;. Therefore the assertion of Lemma 8

follows.

The Case dim gof(E,)=2
Let S,:= g-f(E,). We define that P, is composition of the components E,
of P such that x,=g-f(E,). Let P.:= P—P,. We denote by f’ (resp. g’) the

restriction morphism f|g, (resp. g|sw,y)-

LEMMA 9. (1) S, is normal in a neighborhood of x,.
(2) Pylg, is f’-exceptional.
Proof. Consider the following diagram :

0

l

(g°/)xOp(—Ey+Py)

|

0—0x,—> (g/)s0x(P) —>0

l l

0—> 0s, —> (&2 f)+08,(Pr|5,)

l

Ri(g° [)xOv(—Eq+Py).
We define
T/ := —Ey+P—Ky—3{cb;—b;+p D E, .
Then
T'~q—(go f*Q—P+N+A+1—c)g-f)*D,

by the equation (1). For a curve such that CC(g-f) *(x,), P.-C=N-C=0, be-
cause Supp(P,+N)N(g-f) '(x,)=0. Thus T’ is gof-ample in a some neigh-
borhood V of x,. Supp<T’) is a simple normal crossing divisor. Therefore,
by Kawamata-Viehweg Vanishing Theorem,

RY (g )xOp(Ky+TT' DIy =R (g [)+Oy(— Ey+P1)|y=0.
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Hence (g,°f/)*OE0(P1IE‘))IVE@SJV- The assertions of Lemma follows by this
isomorphism. O

We go back the proof of Proposition 4. Since S, is normal in a some neigh-
borhood V of x, by Lemma 9, there is an open neighborhood V’ of x, such
that g’-f’ is an isomorphism over V’\{x,}. Let Z:=(g’-f")"(x,). For Z, we
define p: E,—S, be a contraction morphism of Z, and ¢:S,—S, be an induced
morphism. Then ¢ is isomorphism over V’. Let Ag := 2 cbi—ei+po(E. k).
Take a relative log minimal model (S, As) of (E,, Ag,) over S..

LEMMA 10. S=S,.

Proof. Let

Ey—>S—5S,.

First we show p«(Pilg)=0. Assume the contrary. Because P,| £, i g’ f"-
exceptional and (S,, x,) is a normal point, there is a curve CCSupp (p«(P;|g,))
such that px(P|g,)-C<0. Since p«(Kg,+Ar)=Ks+As and

Kg,+(1—0) (g *D) g, +Alp,+Ar,~q (g /)*Q+P—N)|g,
by the equation (1), we obtain
Ks+As~q (gv)*Q+p+(Pi+Po—N) | g))— px(Al5)—(1—c)gev)*D .
Since Supp (Pa4+N)N(g° f)™(x0)=0,
(Ks+As)- C=—px(Alg) C+px(Pilg,)-C .

Because p is a birational morphism of surfaces, ample divisor’s push-forward is
also ample. Thus (Ks+Ag)-C<0, which contradicts with the assumption that
(S, As) is log minimal model. Hence p«(Pi|g,)=0. Next we show y7I(x,) is
one point. Assume the contrary. Take a curve CCy !(x,). Then

(Ks+As5)-C=—px«(Alg)-C<0,
which is contradiction. Therefore v is isomorphism. O

We go back the proof of Proposition 4. For completing the proof of Pro-
position 4, we need the following lemma:

LEMMA 11. (S, As), p«((g°/)*Q+P—N)|g,) are satisfy the assumptions of
Theorem 7.

By this lemma, we can choose a section s€H%S, p«((g°/)*Q+P—N)|g,)
such that s(x,)#0. Because P, is p-exceptional,
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p¥(px((g°F*Q+P—N)|g)~(g°/)*Q+Po—N)|x, .

So there is a setion s’€HYE,, (gof)*Q-l—Pz—N)IEO) which does not vanish at
some point of E,N\(g-f)"'(x,). Then consider the following diagram.

L
HYY, oy((gf)*Q+P—N)) —> H(E,, Og,(g-/)*Q+P—N)|z,)

T V21

v HYE,, Op((g°f*Q+FP,—N)|g,)

Tvzz
Iy
HYY, 0y((g-/)*Q—N)) —> HYE,, Or,((g°/)*Q—N)g,))

Already we show that v, is isomorphism and /;, /, are surjective. Moreover v,,,
v,y are injective, we can deduce wv,;, vy, are isomorphism. Then the section
v72(s’) has the desirable property.

Proof of Lemma 11. First we show the following claim.

CLAIM 6. Let M:= px((g°f)*Q+P—N)|g,)—(Ks+As). Then M satisfy the
following conditions:

(1) M is nef and big,

(2) M*>4,

(3) M-C>2 for all curves C such that ¢~'(x,)€C.

Proof. By the equation (1),
(g /)*Q+P—N)|g)~q Kg,+1—c)(g°/)*D)| g, + Alg,+Ag, .

Since (S, Ag) is a log minimal model of (E,, Ag), px(Kg,+Ar)=Ks+As. Be-
cause ((g°f)*D)|5,=(g’=f")*(Dls,) and g’-f'=q-p, we obtain ps((gef)*D)|g,=
¢*(D|s,). Therefore

M~q(1—¢)g*D|s,+pxAlg, .

Then M is nef and big because D|s, is ample, p is birational and A|g, is ample.
Furthermore

M*=(1—c)g*D|s,+ p+xAlg,)*>1—c)*(g*(D|s,))?,
and
M-C=((1—c)g*D|s,+ pxAlg,) - C>((1—c)g*(D|s,))-C,
where C is a curve such that ¢ '(x,)C. By the assumption of theorem,
(1=c)*(g*(D|s))=1—c)(D|s,)*=1—c)}*D*-S;>((1—¢)a,)?,
and
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(I1—e)g*(D1s,)- C=(A—¢)D]s,-¢(C)=(1—c)D-¢(C)>(1—c)a,,

because ¢ is an isomorphism in a neighborhood of {x,}. By Proposition 3, ¢<
7/(205). Thus 1—¢>1—7/(265). Then, again by the assumption of theorem

(1—%3)0@2, and (1— 2%3)0@2.

Hence we can deduce the assertion of claim. O

We go back the proof of Lemma 11. By Claim 6, we only have to show
that p«(((gef)*Q+P—N)|g,) is Cartier divisor.

p+((g°/)*Q+P—N)|e)=p+(& - f)¥Qls)+Pilg,+Polg,—Nlz,) .
Since Pi|g, is p-excetional and g’-f'=q-p,
(8" f*Qls)+Pilpy+Pelg,—Nlg,)
=px(q° P)*Q s+ bx(Pel ) — p5(N | 5,)
=¢+Q |5, px(Pel£)— ps(N|z,).

Then p«(P:le)—p«(N|g,) is Cartier divisor because p is isomorphism over
S\{g7(xs)}. Therefore p«(((g-f)*Q+P—N)|g,) is Cartier divisor. This com-
pletes the proof of Lemma 11. O

Now we have completed the proof of Proposition 4. O

6. Estimation of ¢

Proof of Proposition 3.

(1) Let B be an effective @-divisor on X, Y be a smooth 3-fold and f be a
birational morphism f:Y—X. We will construct the pair (B,Y, f) which
satisfy the following conditions :

(1) There is a simple normal crossing divisor 3 F, on Y.

(2) Ky~q [MKx+A)+ZeE,, e,>—1.

3) f*B=3b;E,.

(4) There is an ample Q-divisor A on Y such that f*(g*Q—(Kx+A+g*D))
~e A+ pE,, 0<p;<1 and e;+1—p;>0.

We construct these objects dividing into three cases:
CASE 1.1. There is a smooth point in g~'(x,).

CaAsE 1.2. g %x,) is one point, and (X, x,) is terminal singularity of index
one, where x,:= g7 '(x,).
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CASE 1.3. g7 '(x,) is one point, and (X, x,) is terminal singularity of index
r, (r=2), where x,:= g (x,).

If there is no smooth points in g7'(x,), g '(x,) is one point, because three
dimensional terminal singularity is isolated singularity.

CaASE 1.1. Let x;=g7%(x,) be a smooth point. By Lemma 1, we can choose
an effective @-divisor B on X such that v, (B)>0:/(1—0) and B~g g*D. Let
h: X’—X be the blowing up with center x,. We take a resolution of singularities
fo:Y’—X’ such that the union of the exceptional locus and the proper trans-
form of A+B by hef, is a divisor with only simple normal crossings. By
Kodaira’s Lemma, we can take an effective divisor D’ such that (ko f,)*(g*Q—
(Kx+A+g*D))—dD’ is ample for 0<0<1. Taking a succession of blowing-ups
with nonsingular center, we can find a smooth variety ¥ and a birational mor-
phism f,:Y—Y’ which satisfies the following properties :

(1) the union of the A-f,-f;-exceptional locus, the proper transform of A+ B
by hef,of, and the proper transform of D’ by f, is a divisor with only simple
normal crossings.

(2) (heofoofO)*(g*Q—(Kx+A+g*D)—0f¥D'—>diE, is ample for 0<d; <1,
where X} diE, is an exceptional divisor.

If we write Ky~gq(hofyefi1)*(Kx+A)+>e;E,, then e¢,>—1 because (X, A) has
only log-terminal singularities. If we take 0 and d; small enough, we can
obtain e;+1—p;>0 by the Logarithmic Ramification Formula. Thus the pair
(B, Y, f:= hef,of,) satisfies the above four conditions. Suppose F be the ex-
ceptional divisor of h. Let E, be the proper transform of F by f,-f;. Then
b;>05/(1—a), e;<2. Thus

e, +1—p, <e1—i—l <3(l—o) .

¢ b, b, 0,

IA

CASE 1.2. Let x,:=g7(x,). Since x, is a cDV singularity, mult, X=2.
By Lemma 1, we can choose an effective Q-divisor B on X such that v, (B)>
0s/%/2(1—0) and B~q g*D. Take the blowing up h:X’—X with center x,.
Then X’ is a normal 3-fold which has only Gorenstein singularity and there is
a reduced divisor F on X’ such that Ky.~h*Kyx+F. Choose a smooth variety
Y and a birational morphism f’:Y—X’ as in Case 1.1 such that the pair
(B,Y, f:= hof’) satisfies the above four conditions. Let E, be the proper

transform of F by f. Then b,>0¢./%/2(1—0), e;<1. Thus

Céel‘l‘l_pl < 91+1<_23ﬂ/‘2—(1—0).
bl b1 (1

CASE 1.3. By Kawamata [8], we can choose a normal variety X, and a
birational morphism 4 : X’—X which satisfy the following conditions :
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(1) h is an isomorphism over X\{x,}.
(2) Kyxi~q h*Kx+(1/r)G+(other components), where G is a reduced com-
ponent of the exceptional divisor of A and » is an index of (X, x,).

Take a smooth point x,=Supp G of X’. By Lemma 1, we can choose an effec-
tive Q-divisor B’ on X’ such that v,,(B")>a;/(1—0) and B'~q (g-h)*D. We
put B:= hB’. After take the blowing-up h’:X”—X’ with center x, we
select a smooth variety ¥ and a birational morphism f’ as in Case 1.1 such
that the pair (B, Y, f:= hoh’sf’) satisfies the above four conditions. Suppose
F the exceptional divisor of A’. Let E, be the proper transform of F by f’.
Then b, >0;/(1—0), ¢,<24+1/r<5/2. Thus

e;+1—p, e+l 71—o0)
<
=T ST <,

Now we complete the proof of Proposition 3 of (1).

(2) We will construct normal varieties X’, X,, and a reduced divisor F on
X'’ which satisfy the following conditions :

(1) There is birational morphisms 4 :X'—X, and #: X,—X,.

(2) There is a commutative diagram :

X'—"—>X0

hT &
g
X —F X,
(3) h(F) is one point x,, where (X,, x,) is a smooth point and x,&/ (x,).
(4) Kx:~q h*Kx+aF+(other components), (a=<2).

First we show if we construct these objects, the assertion of proposition follows.
By Lemma 1, we can choose an effective Q-divisor B’ such that B’~q 2*D and
vz, (B)>0,/(1—0), (0<o<K1). Let B := hyg*B’. Take a smooth variety ¥ and
a birational morphism f’:Y—X’ as in Case 1.1 such that the pair (B,Y, f:=
gehof’) satisfies the four conditions in (1). Let E, be the proper transform of
F. By the definition of ¢,

el+l—’f71

b, ’

By construction of F and B, ¢,<2 and b,>0,/(1—¢). Thus

c< @F1=p)1—0)
< .

4

IA

3

gy’
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We construct these objects dividing into six cases.
CasE 2.1. (X, x,) is smooth point, and dim g7 '(x,)=2.

CASE 2.2. (X,, x,) is smooth point, dim g7'(x,)=1, and there is a singular
point of X in g~!(x,).

CASE 2.3. (X,, x,) is smooth point, dim g~'(x,)=1, and there is no smooth
points of X in g7'(x,).

CASE 24. (X,, x,) is singular point, and dim g~'(x,)=2.

CASE 2.5. (X, x,) is singular point, dim g7%(x,)=1, and there is a singular
point of X in g %(x,).

CASE 2.6. (X,, x,) is singular point, dim g~!(x,)=1, and there is no singular
points of X in g7 '(x,).

CONSTRUCTION OF (X', X,, F).

CAsg 2.1. This Case is verv easy. Let X': =X, X,:=X,. We take a
divisor FC g~ '(x,). Then X’, X, and F satisfy the conditions.

CaSE 2.2. Let X,:=X,. Similarly to the Case 1.3, we take a normal
variety X', birational morphism 4 :X’'—X, and the h-exceptional divisor F.
Then X’, X, and F satisfy the conditions.

Case 2.3. Let X,:=X,. We choose a curve C in g '(x,) and take an
embedded resolution of C, A,: X—X. Let C’ be the proper transform of C.
We take the blowing up along C’, fi,: X’—X. We define F is the exceptional
divisor of #,. Then X’, X, and F satisfy the conditions.

CASE 2.4. Let h:X,—X, be the minimal resolution of (X,, x,). Take a
divisor F’Cg %(x,). By Hironaka [6], we can choose a smooth variety X and
a birational morphism £ : X—X which satisfy the following conditions :

(1) There is a morphism g: X—X, such that g-A=Fh-z.

(2) There is a simple normal crossing divisor 3} on X such that

Supp S =(/-exceptional divisor)\(The proper transform of F’).

Let F” be the proper transform of F’. If g(F”) is one point, then we set
F:=F” and X':= X. If g(F”)is acurve I, we choose a point x,=I such that
Z7Y(x)NF” is not contained any ﬁ-exceptional divisor. Then take a curve C
such that 3(C)=x, and C is not contained any h-exceptional divisors. We con-
struct X’ and F similarly to Case 2.3. Since C is not contained any h-excep-
tional divisors,

Ky.~q h*K y+F+(other components).
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Other conditions are easily checked.

S)ASE 2.5. First we construct a normal variety )?, a birational morphism
Z: X—X and j-exceptional divisor F as Case 1.3. Then we can construct X ’
X, and F similarly to the Case 2.4. We only have to check condition 4. Since
Ky~q 8*Kx+aF-+(other components), (a<1),

Ky ~q (gh)*Ky+(a+1)F+(other components).
Other conditions are easily checked.

NCASE 2.6. First we construct a normal variety X, a birational morphism
Z: X—X and §-exceptional divisor £ as Case 2.3. Then we can construct X’
X, and F similarly to the Case 2.4. We only have to check condition 4. Since
Kiz~q 8*Kx+ F+(other components),

Ky ~q (§h)*Kx+2F+(other components).

Other conditions are easily checked. Then we complete the proof of Proposi-
tion of (2).

(3) We take a rational number ¢, such that deg D>a,>1. Since x, is a
smooth point of X,, by Lemma 1 we can choose an effective @Q-divisor B’ on
X, such that B'~¢ D and v, (B")>0,/(1—0). We define B:= g*B’. Select a
smooth variety Y and a birational morphism f such that the pair (B, 7Y, f)
satisfies the four conditions in (1). Suppose F be an irreducible component of
g7 %(x,). Let E, be the proper transform of F by f. Then b,>0,/(1—0), ¢;<0.
Thus

e+1—p, <e1+l <(l——o‘) 1

<
€= b, b, g, < degD ’
We complete of the proof of Proposition of (3). 0
Now we have completed the proof of Theorem 9. Q.E.D.
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