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EFFECTIVE BASE POINT FREENESS
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Abstract

It is an interesting problem to know when the adjoint bundle Kx+mL is
free or very ample. Recently Ein-Lazarsfeld states very explicit numerical
conditions about L such that Kx+L becomes free on a smooth 3-fold. In this
paper, the author wants to enlarge their results on a singular 3-fold.

1. Introduction

The purpose of this paper is to enlarge Ein-Lazarsfeld's result on a singular
3-fold.

It is an interesting problem when adjoint bundle Kx+mL or pluricanonical
system is free or very ample. Reider shows in [11] the following theorem:

THEOREM 1. Let S be a smooth surface and L be a nef Cartier divisor on
S. Assume that:

(1) L2>5,
(2) L C^2 for all curves on S.

Then the adjoint bundle Ks+L is free.

From the above theorem, we can deduce the adjoint bundle KsΛ-mL is
free if m ^ 3 . Also Sakai shows in [12] that the similar statement holds on a
normal surface. In higher dimension, Fujita conjectured in [4] the adjoint
bundle Kx-\-mL is free if m^dimJ^-fl and very ample if m^άimX+2. Ein-
Lazarsfeld got in [2] the following theorem :

THEOREM 2. Let X be a smooth 3-fold and L be a nef Cartier divisor. Fix
one point x^X. If L satisfies the following criterion, the adjoint bundle Kx+L
is free at x.

(1) L3^92,
(2) L2-S^7, for the all surfaces S such that
(3) L C^3, for the all curves C such that

By the above theorem, Kx-\-mL is free if m^5. We want to enlarge the
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above result on a singular 3-fold, because it is natural to consider a variety
which has some mild singularities by minimal model program. Recently Ein-
Lazarsfeld-Masek states the freeness of adjoint bundle on the terminal 3-fold
in [3]. Our results are different from the above results at two points. First,
we work on the variety which has only log-terminal singularities. Second, we
consider the nef Cartier divisor L such that L—(KX+A) satisfies some numerical
conditions. It will not be suitable to consider the adjoint bundle on a singular
3-fold, since the canonical divisor is not a Cartier divisor in general. In such
situation, Kollar shows in [10] the following theorem:

THEOREM 3. Let X be a n-dimensional normal projective variety and A be
an effective Q-divisor on X. Assume that (X, A) has only log-terminal singularities.
Let L be a nef Cartier divisor such that aL—(Kx+A) is nef and big for some
integer a. Then (2(α + n)(n+2) !)L is free.

An analog of the conjecture of Fujita says that (a + n+l)L is free. Kollar's
result gave explicit estimates in all dimension, but it is far from above esti-
mation. So we guess if we use the technique of Ein-Lazarsfeld's, we can do
some improvement of Kollar's result in dimension 3, and we obtain the follow-
ing theorems.

THEOREM 4. Let X be a normal 3-fold and A be an effective Q-divisor.
Assume that (X, A) has only log-terminal singularities. Let L be a nef Cartier
divisor on X such that aL—(Kx-\-A) is nef and big for some rational number
a>0. Then nL is free if n > α + l l / 2 ,

THEOREM 5. Let X and A are same objects in above Theorem. Assume that
(X, A) has only weak log-terminal singularities and X is Q-factorial. Let L be
a nef Cartier divisor on X such that aL—{Kx+A) is ample for some rational
number α>0. Then nL is free if n>a+ll/2, (n<=N).

Similary Ein-Lazarsfeld-Masek [3], we can obtain the following result
about a pluricanonical system.

THEOREM 6. Let X be a minimal 3-fold of general type and r be an index
of X. Then

(1) 6KX is free if r = l ,
(2) mrKx is free if

By the above theorem, we can deduce that 5rKx is free for r ^ 2 . If
then ArKx is free and if rΞ>9 then 3rKx is free. Ein-Lazarsfeld-Masek proved
in [3] that IQKX is free if r = l , 7rKx is free if r^2 , 5rKx is free if r ^ 3 and
2rKx is free if r>2Ί.
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The outline of the proof of theorems
Fix one point x on X. We construct a smooth variety Y and a birational

morphism / : Y-*X depending on the type of singularity at x. According to
the argument of Kawamata-Reid-Shokurov, we show the restriction map

H°(Y, f*L-N) —> H\E, (f*L-N)\E)

is surjective, where N is an effective divisor such that f~\x)Γ\N=Q and E is
a surface on Y such that x^f(E). Then we will show there is a section s e
H°(E, (f*L—N)\E) which is non-vanishing at some point of f~\x).

We distinguish three cases, according to dim /(£)=0, 1, 2. In the case
dim f(E)=0, OE(f*L—N)=OE because xφf(N). Thus we are done. In the case
dim f(E)=l, we prove the restriction map H°(E, (f*L-N)E)->H\Z, (f*L-N)\z)
is surjective, where Z is a fibre of /l^such that ZΓΛN=$. Then Oz{f*L—N)
^Oz and we are done. In the case dim f(E)—2, we will produce the required
section by the following theorem:

THEOREM 7. Let S be a normal projective surface and Δ be an effective Q-
divisor. Assume that (S, Δ) has only log-terminal singularities. Fix one point x
on S. Let Q be a Cartier divisor on S which satisfies the following conditions:

(1) Λί:= Q(KS+A) is nef and big,
(2) M 2 >4,
(3) M C>2 for the all curves x e C .

Then xo£Bs\Q\.

This Theorem is an extension of Theorem 2.1 in [2]. In Theorem 2.1 in
[2], it is assumed that S has only rational double points.

In this paper, § 2 devoted to prove two elementary lemmas which used later.
In § 3, we prove Theorem 7. The statement of main theorem appears in § 4,
where we also introduce Kawamata-Reid-Shokurov argument. We will show
the existence of desirable section according to dim f(E) in § 5 and will construct
a smooth variety Y and a birational morphism / depending on the type of
singularity at x in § 6.

Achnowledgement. The author would like to express his hearty thanks to
Professor N. Nakayama for his useful advice. The author would like to thanks
Professor J. Kollar, R. Lazarsfeld, and N. I. Shepard-Barron for their useful
advice. By their advice, the author can improve Theorem 6.

2. Preliminary

We work throughout over the complex numbers C. Notation and termino-
logy is same as in [7]. In this section, we prove two elementary lemmas
which need the proof of Theorems. First we define a multiplicity of Q-Cartier
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divisor D at a point x.

DEFINITION 1. For an effective Cartier divisor D o n a projective variety
X and a point X G I , define a natural number vx(D) by

vx(D) := mdLX{n<=N\Ox(-D)(Zni»},

where rax is a maximal ideal of Oχ,x. For an effective Q-Cartier Q-Weil divisor
D' on X, define a rational number ι>x{D') by

where p is a natural number such that pDf is a Cartier divisor.

Then we show the following lemma.

LEMMA 1. Let X be a projective variety of dimension d and M be a nef and
big Q-Cartier divisor on X such that Md>ad. Fix a point x on X such that
multx X—a. Then there is an effective Q-divisor B on X such that J3~ Q M and

Proof. Consider the following exact sequence:

0 — ^ H\X, Ox(mM®mι

x)) —•> H\X, Qx(mM)) —-> H\X, Ox/mι

x).

By Kodaira's Lemma, we can choose an ample divisor A, an effective divisor
D, and small numbers 0<<5, σ < l such that M^QA+δD, Ad>(a/(l-σ))d. For
a sufficiently large number m such that mM and m(M—δD) are Cartier,

h\mM)'^h\m(M-δD))=^τm
d-\-(\ower terms of m)>Λd~£ md,

a I a I

where 0<ε<<7<l. On the other hand,

h%Ox/mι

x)=a-^-ld-i-(iower terms of l)< ^Ίd

d\ d\

for a sufficiently large /. If we choose a suitable large m, there exists an
integer / which satisfy the following inequality,

ma
1-σ '

For these m and /, h\mM)>h\Ox/mι

x). So we can choose a section te//°(mM)
such that vx(άiv (t))^L If we put B : = (l/m)div(ί) then the assertion of lemma
follows. •

LEMMA 2. Let S be a normal surface and M be a nef and big Q-Cartier



EFFECTIVE BASE POINT FREENESS 91

divisor on S. Fix one point x0 on S. Assume that (S, x0) is a normal quotient
surface singularity and M2>(σ2)

2. Let π: S1->S be a minimal resolution of
(S, x0) and Z be a rational curve such that Zdπ'1(x0). Then there is an effec-
tive Q-divisor B on Sλ which satisfies the following two conditions:

(1) B~Q π*M,

(2) β-τZ^O,

Proof. Consider the following exact sequence:

0 —> H\SU OSl(mπ*M-(k+l)Z))

—> H\Slt OSl(mπ*M-kZ)) —> H\Z, Qz{mπ*M-kZ)),

where m is an integer such that mπ*M become a Cartier divisor. We obtain
the following inequality,

h\Sί} OSι{mπ*M-{k+l)Z))^h\Su OSι{mπ*M-kZ))-h\Su Oz(-kZ)).

By Riemann-Roch formula,

h\Z, Oz{-kZ))-h\Z, ωz(g)Oz(kZ))=:degOz(-kZ)+l-g(Z).

Since Z2<0 and g(Z)=0, h\Z, Oz(-kZ))=-kZ2+l. Thus

h°(Su OSί(mπ^M-(k + l)Z))^h0(S1} QSl(mπ*M-kZ))-(kZ2+l).

From this inequality, we obtain

h°(Su OSί(mπ^M-lZ))^h°(Su OSl(mπ*M)- Σ (-^

By Kodaira's Lemma, there are an ample divisor A and an effective divisor D
such that π*M^Q A+εD, A2>(σ2/(l—σ))2, where a and ε are small numbers
such that 0<σ, ε<l. If we take m and / large enough, we may assume mπ*M,
m(π*M— εD) are Cartier divisor and

h%Slf O8l(mπ*M))^h\Su OSί(m(π*M-eD)))

m
= —9—τ42+(lower term of m)

Δ

^ A2-ef

 2
> — 2 ~ m>

Σ(-kZ2+l)=:z^2-l2+(\oweτ term of /)
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Furthermore we may assume m and / satisfy the following inequality:

/Λ2_ / v / n ').J~Z*> m(l2

1 — σ

For these m and /, there is a section teH°(mπ*M—lZ). Let B :=(l/m)(div(0
+/Z). Then the assertion of lemma follows.

3. Effective base point freeness for surface

THEOREM 7. L*?ί S be a normal projective surface and A be an effective Q-
divisor on S. Assume that (S, Δ) has only log-terminal singularities. Fix one
point x0 on S. Let Q be a Cartier divisor on S which satisfies the following
condition:

(1) M:=Q-(KS+A) is nef and big,
(2) M 2 >4,
(3) M C>2, for all curves CdS such that XO<=ΞC.

Then x o £ B s | Q | .

Proof of Theorem. If (S, x0) is a smooth point or rational double point,
Theorem 7 follows by the following theorem.

THEOREM 8 ([2] Theorem 2.1). Let S be a normal projective surface which
has only rational double points. Fix one point x0 on S. Let M be a nef and big
Q-divisor which has the following numerical criterion:

(1) M 2 >4.
(2) M C>2, for all curves C such that XOGΞC.

Then xo(£Bs\Ks+\Άf~\\.

Thus we may assume (S, x0) is quotient singularity. Let π: Si—>S be the
minimal resolution. For an effective Q-divisor B such that B~Q π*M and prime
divisors {£<}, (O^z^m) on Sx such that w £ t = Supp B\Jπ~\x0), we define
rational numbers {bt} and fa} by the following formulae:

Let

c:= mmi^-\xo<Ξπ(Et),

CLAIM 1. (1) cbt—et^Q, for any i.
(2) // cbi-et>l, then xo£π(Et).

Proof. Since (S, Δ) has only log-terminal singularities, we obtain et>—1
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and c>0. Because π is the minimal resolution, et^0. Thus cbί—ez^0.
(2) If bi>0 and xo^π(Et), then c^(β,+l)/&i. Thus cbi~et^l. If bt=0

and d?*—β t>l, then et<—l. But this contradicts the hypothesis that (S, Δ) has
only log-terminal singularities.

We go back the proof of Theorem 7. Let R:= ^Σi{cbi—eι)Eι. By chang-
ing indices, we may assume the following:

(1) cbi—et=l and Ex is not π-exceptional for O^z^m'.
(2) cbi—βi—1 and Eτ is π-exceptional for m'+l^i^mx
(3) cbi—et>l for m1-\-l^i^m2.

Let

m ' wij m 2

£ 7 : = Σ ^ t , E":= Σ £» and N:= Σ ίcbi-ei]Eι.
ί=0 t=7Π'+l ί=mj + l

We define

T := π*Q-N-E'-E"-KSι-<R> .
Then

PROPOSITION 1. For α suitable B, c<l holds.

T is nef and big by Proposition 1. First we consider the case E" Φ§. We
need the following lemma.

LEMMA 3 ([2] Lemma 1.1, 2.4). Let S be a smmoth surface and M be a nef
and big Q-divisor on S. Then

(1) H\S, Ks+ΓM-})=0.
(2) Let {Ei\ be curves on S such that ord^.«M»=0 and M £ t > 0 . Then

H\S, Ks+ϊMΛ+E.Λ- ... +Ek)=0.

By Lemma 3, we obtain

H\SU O8l(K8l + \-T~\ + E'))~H\Su OSι(π*Q-N-E"))=0.

Thus the restriction map

H\SU OSl(**Q-N)) — > E\E\ QE,,{π*Q-N))

is surjective. Since E" is ^-exceptional and xoψπ(N) by Claim 1, OE»(π*Q—N)
^OE". Therefore we obtain a section t^H°(Su OSl(π*Q—N)) which doesn't
vanish at some points of π~1(x0). Because xQ^π(N), the existence of t shows

Next we consider the case £ " = 0 . By Lemma 3,

H\SU Os^Ks^

Thus the restriction map
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H\Su OSl(π*Q-N)) — > H°(EOf 0Eo(π*Q-N))

is surjective.

PROPOSITION 2. For a suitable B, [T1 EO>1.

Since [T~\-E is integer, [T] £ ^ 2 by Proposition 2. Then deg(0*o(*r*Q—JV))
E0), because

0Bo(π*Q-N)^θBQ(KBo+ΓT'\+E1+ ••• +Em>).

Since Eo is Gorenstein, ΘEo(π*Q—N) is globally generated (cf. [5]) and there is
a section te//°(E0, 0Eo(π*Q—N)) such that ί(jy)^O for some point ^eπ'Xxo).
Thus we can deduce xo£Bs\Q\. For the rest of the proof of Theorem 7, it is
enough to show Proposition 1, 2. Now we will give a proof of Proposition 1, 2.

Proof of Proposition 1. Let M 2=(σ 2) 2 and M-C^σ, for all curves C c S
such that xo^C. Note that σ2>2 and σi>2 by the assumption of Theorem 7.

LEMMA 4. For α suitable B,

(1) c < ^ + H ; 3 , wΛβn the dual graph of π~\x0) is of type An.
{Zn+l)σ2

(2) c<-^—, when the dual graph of π~\x0) is of type Dn.

(3) c < — , when the dual graph of π~ι(xo) is of type En.

We can obtain the assertion of Proposition 1 by the above lemma, because
σ2>2.

Proof of Lemma 4. We show (1) and (2) in parallel. By changing indices,
we may assume π~1(x0)=yΣΐ=i Eτ. We define rational numbers a% by the
formula KSl~Q π*Ks+ΣtaiEι.

Eι E2 En

Figure 1. The dual graph of type Λn.

En-l

?, E,

En

Figure 2. The dual graph of type Dn.
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CLAIM 2. (1) // the dual graph of π~ι{x^) is as in Figure 1, then

1 , 1 V* *—1 n—i V1

z n—i+l/\ + l /

where δi := —(Et)
2.

(2) // ί/ιβ dwα/ graph of π'1(x0) is as in Figure 2, then

a>ι^=—1+— ( ^ — 1) , /or

First we shall show the assertion of Lemma 4 (1), (2) by assuming Claim 2.
Let Ek be the component which has the minimum self intersection number
(Ek)

2 in {Ei\. By Lemma 2, we can take an effective Q-divisor B such that
). Then

If the dual graph of π-\x0) is of type An,

β.Sβ,£-l + (̂  + —^ Γ )( ί . - V - ^ ) - 1 , for any A.

Thus

\k n
_ rc-fc v 1 ( l -

n-k+l)\k k n-k + lf σ2

tf2

The function

\-1l — σ

is decreasing in δk, and because δk^3,

n—k w (1 — σ
σ

n-k \-
' n-k+l)
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Let N(k):= k(n—k+l). Then N(k)^n because l<k£n. Therefore

This completes the proof of Lemma 4 (1).
If the dual graph of π'\x0) is type Dn,

Thus

k v * k /

The function

is decreasing in δk and because ^^^

k\ k

This completes the proof of Lemma 4 (2).

Proof of Claim 2. (1) We consider Ksβ^^KsEj+ΣatEiEj. Then we
obtain the following linear equations:

Thus
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and

where

Because δ^2,

Thus we obtain

^ T ϊ ϊ a n d ^ j ί ϊ

1 1 Λ-!
p h « p Π P;

JΓ 0 — r ; i

1 1

= -1 +

and

^ ^ W + ^ - ( n - i ) / r c M7+ϊ

(2) We consider KSιE3=π*KsEj+ΣaiExE3. Then we obtain the follow-
ing linear equations:

y—2=—δjaj+an-2, {j—n — l, n).
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Note that δj=2 for / = n — 1 or j=n. Thus

where

Because δi>2,

Thus we obtain

S^<1 and Tj<-J-^.
3~ 7+1

and

We have completed the proof of Claim 2. •

We go back the proof of Lemma 4. We consider (3). Define rational num-
bers {αj by KSί~Q π*Ks+*ΣaiEι> We denote by (μ; a, b, c d, e) the dual
graph of type En as in Figure 3. Then the classification of dual graphs of
type En listed in Table 1. By changing indices, we may assume (E1)

2=—μ.
We can take an effective Q-divisor B such that B^Q π*M and
B-(σJ(l-σ)yίμ)Eu (0<<r<l) by Lemma 2. Considering KSlE,=π*KsEj+
^ΣjdiEiEj, ax is computed as in Table 2. We can write Vμ(di+1) as
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ι-fl; t-b) (-c)

Figure 3. The dual graph of type En.

Table 1.

Type

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

List of dual graphs
of type En.

dual graph

μ 2,2 2, 2

j«; 2 , 2 ; 3

A*; 3 ; 3

μ\ 2 ,2; 2,2,2

i« 3 2,2,2

^ 2,2; 4

i«; 3 ; 4

Ai 2,2 2,2,2,2

JM 3 2,2,2,2

^ 2,2; 3,2

μ 3 3,2

j " 2,2 2,3

μ; 3; 2,3

^ 2,2; 5

j«; 3 ; 5

Table 2. List of

Type

1

2

3

4

5

6

7

8

9

10

1 11

12

13

14

15

^=-1+1/(6^-11)

^=-1+1/(6 μ-9)

fli=-l+l/(6^-7)

^=-1+1/(12^-23)

α1=-l+l/(12/i-19)

fl1=-l+l/(12/i-17)

^=-1+1/(12//-13)

^=-1+1/(30 JM-59)

^=-1+1/(30^-49)

^=-1+1/(30^-47)

fl!=-l+l/(30/ι-37)

α1=-l+l/(30//-53)

α1=-l+l/(30iM-43)

^=-1+1/(30^-41)

fl!=-l+l/(30^-31)

μ^S

μ^2

μ^2

μ^S

μ^2

μ^2

μ^2

μ^S

μ^2

μ^2

μ^2

μ^2

μ^2

μ^2

μ^2
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where a and β are positive integers. The function

1

is decreasing function in μ. Then we can deduce ^~μ{aλ+l)<l by Table 2.
Thus

^ <
&1 &1 0*2 0*2

This completes the proof of Lemma 4 (3). We have now completed the proof
of Lemma 4.

Proof of Proposition 2. We will prove Proposition 2 dividing into two cases.

CASE 1. The dual graph of π~\x0) is of type An, (n^3), Dn or En.

CASE 2. The dual graph of π~\x0) is of type An, (n£2).

In Case 1, Proposition 2 follows by the following Claim.

CLAIM 3. // the dual graph of π~\xQ) is of type An, (n^3), Dn or E, then
c<l/2.

Since T~Q(l-c)M,

TΈ0=(X

By Claim 3

Thus we obtain

because (Ti>2. This completes the proof of Proposition 2 in Case 1. •

Proof of Claim 3. If the dual graph of π~\xQ) is of type An, c < ( ( n + l ) v T )
/(2n+l)σ2 by Lemma 4. The function

is decreasing function in n. Hence

(n±lW^3~ 4 V3 4 v T
^ (2n+l)σ\ ^ 7<r2 ^ 14
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by Lemma 4, n^3 and σ2>2.

If the dual graph of π'\x0) is of type Dn. By Lemma 4, c<V3/(2σ2).
Since σ2>2, we obtain c<V3/4<l/2.

If the dual graph of π~\xQ) is of type En, c<l/σ2 by Lemma 4. Because
σ2>2, we can obtain c<l/2. Then we completed the proof of Claim 3. •

We go back the proof of Proposition 2. We consider Case 2. By changing
indices, we may assume TΓ"1(Λ:0)=S?=I-^t Define rational numbers {αj by the
following formula Ks1^>Qπ*Ks+ΣiaiEι. Since £*=0, c6t—β,<l for
So Γ T Ί - T ^ Σ Γ = i ( ^ - ^ ) ^ t . Hence

Because xoe7r(£o), i v £ 0 > 0 for some / (l^ί^w). We obtain

Therefore

CLAIM 4. (1) // n=l, then max{et\l^i^n\ ^-1/3 .
(2) // n=2,

Proof. (1) By considering KsίE1^π^KsE1-\-a1(E1)
2, we obtain the linear

equation:

J 1 - 2 = - α 1 J 1 ,

where 3^= -(^i) 2 . Thus α ^ l + 2 / ^ . Because 3^3,

(2) By considering /ί^^t = π*/f5^i+Σ?=i o<jEjEι, we obtain the linear
equations:

where δt := —(Et)
2. Then we obtain

We may assume δ^3 and δ2^2. Then
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1 3 1 ^ 2

5' ί.-(l/δi) = 5 <5A--1 - 5

Thus

2 } ^max {et | 1^**^2} ^

This completes the proof of Claim 3. Q

We go back to the proof of Proposition 2 in Case 2. By Claim 4

=(l-c)M E 0 + j (n=D,

=(l-c)Af.£β+y (n=2).

Then by Lemma 4,

. (n+DVT
C <~(2n+l)σ 2 '

We obtain

Because σ ^ 2 and σ2>2,

Therefore

(n=2).
5 5

We have completed the proof of Proposition 2. •

Now we have completed the proof of Theorem 7. Q. E. D.
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4. Statement of main theorem

THEOREM 9. Let X be a normal projective 3-fold and A be an effective Q-
divisor on X. Assume that {X, Δ) has only log-terminal singularities. Let Xo be
a normal projective variety and g: X^>X0 be a projective morphism. Let Q be a
Cartier divisor on Xo and D be an ample Q-Cartier divisor on Xo- Assume that
g*Q—(Kx-\-A-\-g*D) is nef and big. Fix one point x0 on Xo.

In the case of d imZ 0 =3, suppose that g is a birational morphism and D has
the following numerical criterion:

(1) £ 3 >(σ 3 ) 3 ,
(2) D2'S>(σ2)\ for all surfaces SdX0 such that
(3) D-C>σu for all curves CcX0 such that x o 6 C .

Then if σu σ2 and σ3 satisfy the following conditions:

(1) c r . ^ 1

xo£Bs\Q\.
In the case dim^Γ0—2, suppose g has only connected fibres and D has the

following numerical criterion:
(1) D*>(σ2γ,
(2) D-C>σu for all curves CdXQ such that

Then if σx and σ2 satisfy the following conditions:
(1)

(2) ( l - ^ > ^

In the case of dim ̂ 0 = 1 , suppose that g has only connected fibres and D has
the following numerical criterion:

(1) deg£>>l.
Then

Proof of theorems stated in introduction. First we consider Theorem 4.
By Base point free theorem [7], we can obtain a normal variety Xo, a projec-
tive morphism g : X-+Xo and an ample Cartier divisor H on Xo such that L^g*H
and g*Qχ=Oχ0. Let Q : = nH and D\—(n—a)H. If d i m Z 0 = 3 then the in-
equalities in Theorem 9 are satisfied with (7i=ll/2, (*'=1, 2, 3). If d i m Z 0 = 2
then the inequalities in Theorem 9 are satisfied with σ t =ll/2, (/=1, 2). If
d i m Z 0 = l then the inequalities in Theorem 9 are satisfied because d e g £ > l l / 2 .
Next we consider Theorem 5. The pair (X, (1 — ε)Δ) has only log-terminal
singularities for 0 < ε < l , because X is Q-factorial. On the other hand, aL —
(Kχ+(l—ε)A) is still ample for 0 < ε < l . Thus we can reduce this theorem to
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Theorem 4 by replacing Δ with (1 —s)Δ. Finally we consider Theorem 6. Simi-
larly we can obtain a normal 3-fold, a birational morphism g: X-^X0 and an
ample Q-Cartier divisor Kχ0 such that Kx^Qg*Kχ0. If r—\ then we put
Q:=zQKx and D:=(5—ε)Kz, 0 < ε < l . Note that KXQ is even. Thus we can
put

245/3* A 24 .
(T!=:—^— and *i=-c-, for ι = l , 2,

in the inequalities of Theorem 9. If r ^ 2 then we put Q : = mrKχ0 and D :=
(mr-l-ε)KχQ, 0 < ε < l . Note that KXo(Ξ(l/r)Z. We can put

mr—l — ε . mr—l — ε , . . _
< T i = — 3 - 7 = and ύi— , for *=1, 2,

Λ/Γ r

in the inequalities of Theorem 9.

Proof of Theorem. We may assume that X has only Q-tactorial terminal
singularities, because by Kawamata [8], there is a normal projective 3-fold X',
an effective Q-divisor Δ', and a birational morphism π: X'—*X which satisfy the
following conditions:

(1) X' has only Q-factorial terminal singularities.

(3) (Xf, Af) has only log-terminal singularities.
If we replace X, A, g by X', A', g°π all assumptions of Theorem are satisfied.

Let B be an effective Q-divisor on X such that B^Q g*D, Y be a smooth
projective 3-fold and / be a birational morphism / : Y-+X. We consider a pair
(B, Y, f) which satisfy the following conditions :

(1) There is a simple normal crossing divisor Σt>Et on Y.
(2) Ky~Qj

(3) f*B=EbtEt,
(4) There is an ample Q-Cartier divisor A on Y such that /*(^*0~(

We define

c : = min

By changing indices, if necessary, we may assume that the minimum c attained
only at a unique index i=0. We obtain the following lemma.

LEMMA 5. (1) // cbi—βi+piKO, then Et is a f-exceptional divisor.
(2) // cbi-βi+p^l, then xo£g<>f(Et).

Proof. (1) If cbi-ei+pt<0, then et>cbt+pi. By bt^0, pi>0, and c>0,
we obtain et>0.

(2) If bi>0 and xo<^g<>f(Et), then c<L(ei+l — pi)/bi. From this inequality,
we obtain cbi—et + pi^.1. If ft<=0 and cbt—ei+pi>l, then ^ < — 1 + ί i But
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this inequality contradicts et-{-l — pi>0. D

We go back the proof of Theorem 9. Let R : = Σ>(cbi-eι+pi)Eι. Then
we can write [R]=E0+N—P, where Eo, N and P are effective Carder divisors
which satisfy the following conditions:

(1) Eo, N and P have no common components.
(2) P is a composite of the /-exceptional divisors.
(3) N is a composite of the divisors Et such that xo^g°f(Et).

We define

T := (g°f)*Q+P-E0-N-KY-<R> .

Then

by

(1) {g°f)*Q + P-N-EQ^Q Ky+{l-c)(gof)*D+A+Jl <cbi-ei-\-pi}Et.

PROPOSITION 3. For a suitable pair {B, Y, /),

(1) c<-7~-,

(2) c < — , ̂

(3) c<τ---,

We will prove Proposition 3 in section 6. By the conditions of theorem:

(1) o^Ί~, (dim*o=3).

(2) (T2^3,
(3) d e g i » l , (dimΛΌ=l).

and Proposition 3, we get l - c > 0 . Thus T is nef and big. Supp <T>=Supp <i?>
is a simple normal crossing divisor. Therefore by Kawamata-Viehweg Vanish-
ing Theorem,

H\Y, KY+[TΛ)^H\Y, (g°f)*Q+P-N-E0)=0.

Hence the restriction map

H\Y, (g*f)*Q+P-N)-+H\E0, ((g*f)*Q+P-N)\EJ

is surjective.

LEMMA 6. In the following diagram,
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H\Y, {g°f)*Q+P-N) - U H\E0, ((g°f)*Q+P-N)\EJ

Vί

H\Y,{g'f)*Q-N) -^ H"(E0, ((g°f)*Q-N)\Eΰ)

the bottom horizontal map l2 is surjective.

Proof. For the proof of this lemma, we need the following lemma.

LEMMA 7 ([7] Th. 1-5-2). Let X be a smooth projectiυe variety, Y be a
normal projective variety, and f: X—*Y be a birational morphism. Let Q be a
f-exceptional divisor on X. Then f*OQ(Q)=^0.

P and N have no common components. So by Lemma 7, f*OP(P—N)=0.
Hence v1 is isomorphism. Moreover v2 is injective and lλ is surjective. By the
commutatibity of this diagram, U is surjective. D

PROPOSITION 4. There is a section t^H°(Eϋ, ((g°f)*Q—N)\Eo) which dose
not vanish at (g°f)~1(xo)>

By Proposition 4 and Lemma 6, there is a section se//°(F, (g°f)*Q—N)
which doesn't vanish at (g°/)"1(x0). Because xo$Ξg°f(N), we can deduce x 0 ^
Bs I ζ? I.

For completing the proof of theorem, it is enough to show Proposition 3
and Proposition 4. We will show Proposition 4 at the section 5 and Proposition
3 at the section 6.

5. The existence of desirable section

Proof of Proposition 4.
The Case dim go/(£0)=0.
Since x0£gof(N), OEQ{(gof)*Q—N)^QEQ. Thus the assertion of Proposition

4 follows immediately.

The Case dimgo/(£ 0 )=l .

Let C:=gof(E0). Take a stein factorization Eo -^ C -^ C of Eo - ^ i C.
Then C is a smooth curve and p is a flat morphism. Fix one point xι^v~1(xQ).
Let Z be a scheme theoretic inverse of xλ.

LEMMA 8. The restriction map

H\E0, ((gof)*Q-N)\Bo)-^> H\Z, {(g°f)*Q-N)\z)

is nonzero map.
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Since H\C, v*Q)^H\E0, ((£*/)*<?) Uo), the section s<=H%E0, ((gof)*Q)\B)
which vanish at some point of (g°f)~\xι) is identically zero on Z. Thus, if
Lemma 8 is valid, there is a section t<^H°(E0, ((g°f)*Q—N)\Eo) which doesn't
vanish some point of (^°/)"1(^0).

Proof of Lemma 8. First we prove the following claim.

CLAIM 5. (1) H\E0, (ίg*f)*Q+P-N)\B0-Z)=0.
(2) H\Z,((g*f

Proof. (1) Let AEo—Σι<cbi-ei+pί>(Et\Eo). We define

U := {(gof)*Q+P-N)\B0-Z-KEo-ASo.
Then

U~Q(l-c)(pov)*(D\c)+A\Bii-Z,

~Q p*Oc((l-Φ*(D\c)-Xi)+A\So,

because

((g^f)*

by the equation (1) and ((gof)*D)\Eo=(poV)*(D\c). We obtain

By Proposition 3,

( d i Z 0 = 3 ) , and c<—,
σ2

Thus

and

by the assumption of theorem. Hence U is ample. On the other hand Supp<£/>
=Supp <Δ#0> is simple normal crossing divisor. Therefore by Kawamata-
Viehweg Vanishing Theorem

HKEo, KEQ+WΛ) = H\EQ, ((g*f)*Q+P-N)\B0-Z)=0.

(2) Since x£g°f(N), there is a point x' on C such that x'φ.g°f{N). For
Z'\=p-\x'\ HχZ'Λ(g*f)*Q+P-N)\z')=H\Z',P\z.)ΦQ, Because p is flat,
H°(Z, ((g°f)*Q+P-N)\z)=£θ by semicontinuity. D

We go back the proof of Lemma 8. Consider the following diagram:
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Vi\ I V2

TO,(te»/W-«|,0) - Λ H\Z,((g*f)*Q-N)\z).

From Claim 5, k is surjection and v2 is nonzero map and injection. On the
other hand vλ is isomorphism. Thus l2 is surjection. Moreover H°(Z, ((g°f)*Q
—N)\z)^0, because Oz({g° f)*Q—N)=Oz Therefore the assertion of Lemma 8
follows.

The Case dimg°f(E0)=2
Let Sj : = g°f(E0). We define that Px is composition of the components Ex

of P such that xQ<=gof(Et). Let P2 : = P-Px. We denote by f (resp. g') the
restriction morphism f\Eo (resp. g|/(^0>).

LEMMA 9. (1) 5X /s normal in a neighborhood of x0.
(2) Λ U 0 2S /'-exceptional.

Proof. Consider the following diagram:

0

I
o — * oXo —> (g>f)*θτ(.Pι) —* o

I

1
We define

T' : = -

Then

by the equation (1). For a curve such that C<z.{g*fY\xύ, P2 C=N-C=0, be-
cause Supp(P2+A^)n(^°/)~1(^o):=r0- Thus Tf is ^o/.ample in a some neigh-
borhood V of x0. Supp <T'> is a simple normal crossing divisor. Therefore,
by Kawamata-Viehweg Vanishing Theorem,
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Hence (g/o/0*#2?0(Λ 1^)1^=0^IF- The assertions of Lemma follows by this
isomorphism. •

We go back the proof of Proposition 4. Since SΊ is normal in a some neigh-
borhood V of x0, by Lemma 9, there is an open neighborhood V of xQ such
that g'°f' is an isomorphism over F'\{x0}. Let Z :—(g'°f')~ί(x0). For Z, we
define p : E0-^S0 be a contraction morphism of Z, and q: S0-^Sχ be an induced
morphism. Then q is isomorphism over V. Let Δ#o : =
Take a relative log minimal model (S, As) of (£ 0, Δ#o) over

LEMMA 10. S^S0.

Proof. Let

First we show /o*(Pi|^0)=0. Assume the contrary. Because PI\E0 is <§
r/°//-

exceptional and (50, x0) is a normal point, there is a curve CcSupp(|θ*(.PiU0))
such that iθ*(ΛU0) C<0. Since /o*(/ζB o+Δ^0)=/C s+Δ5 and

by the equation (1), we obtain

Since

Because ^ is a birational morphism of surfaces, ample divisor's push-forward is
also ample. Thus (Ks+Δs) C<0, which contradicts with the assumption that
(S, As) is log minimal model. Hence P*(PI\EO)=O. Next we show v~\xQ) is
one point. Assume the contrary. Take a curve C(Zv~\xύ). Then

which is contradiction. Therefore v is isomorphism. •

We go back the proof of Proposition 4. For completing the proof of Pro-
position 4, we need the following lemma:

LEMMA 11. (S, As), p*((g°f)*Q+P—N)\Eo) are satisfy the assumptions of
Theorem 7.

By this lemma, we can choose a section S G P ( S , p*((g°f)*Q+P— N)\EQ)
such that s(xo)Φθ. Because Λ is ^-exceptional,
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So there is a setion s'eH°(E0, (g°f)*Q+P2-N)\Eo) which does not vanish at
some point of E0r\(gof)~\x0). Then consider the following diagram.

h
ΛO) —> H\E*, 0Eo(((gof)*Q+P-N)\Eo))

H\E0, 0E(((g°f)*Q+P2-N)\Eo))

H\Y, OY{(gof)*Q-N)) - Λ H%Eo, 0Eo(((g*f)*Q-N)*0))

Already we show that vι is isomorphism and llf l2 are surjective. Moreover v2u

v22 are injective, we can deduce v2U v22 are isomorphism. Then the section
vϊHs') has the desirable property.

Proof of Lemma 11. First we show the following claim.

CLAIM 6. Let M:= pMg°f)*Q+P-N)\Eo)-(Ks+As). Then Msatisfy the
following conditions:

(1) M is nef and big,
(2) M2>4,
(3) M-O2 for all curves C such that q~\

Proof. By the equation (1),

Since (S, Δ,s) is a log minimal model of (Eo, AEQ), p*(KEo+AEo)=Ks+As. Be-
cause ((gof)*D)\E0=(g'*f')*(D\8l) and g' f'^q p, we obtain p*((g-f)*D)\E9=
q*(D\Sl). Therefore

Then M is nef and big because D\Sl is ample, p is birational and A\EQ is ample.
Furthermore

and

M.c^α
where C is a curve such that q~\xo)^C. By the assumption of theorem,

(l-c)\q^D\

and
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a-c)q*(D\s1)'C=a-c)D\Sl.q(C)=(l-c)D q(C)>(l-c)σί,

because q is an isomorphism in a neighborhood of {xo} By Proposition 3, c<
7/(2(73). Thus 1—c>l—7/(2σ3). Then, again by the assumption of theorem

1 - έ ) * i ϊ s 2 and ( ^
Hence we can deduce the assertion of claim. •

We go back the proof of Lemma 11. By Claim 6, we only have to show
that p*(((gof)*Q+P-N)\Ef) is Cartier divisor.

Since PI\E0 is />-excetional and g/of/=qopf

\ E Q )

Then ί * ( P 2 U 0 ) - p*(N\Eo) is Cartier divisor because p is isomorphism over
S\{g-\xo)}' Therefore p*(((g°f)*Q+P-N)\Eo) is Cartier divisor. This com-
pletes the proof of Lemma 11. D

Now we have completed the proof of Proposition 4. •

6. Estimation of c

Proof of Proposition 3.
(1) Let B be an effective Q-divisor on X, Y be a smooth 3-fold and / be a

birational morphism / : Y-^X. We will construct the pair (B, Y, f) which
satisfy the following conditions:

(1) There is a simple normal crossing divisor Σ £ \ on Y.
(2)
(3)
(4) There is an ample Q-divisor Λ on Y such that f*(g*Q-(Kχ+A+g*D))

l and

We construct these objects dividing into three cases:

CASE 1.1. There is a smooth point in g~\x0).

CASE 1.2. g~\x0) is one point, and (X, xx) is terminal singularity of index
one, where xx:— g~\x0).
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CASE 1.3. g~\xo) is one point, and (X, xλ) is terminal singularity of index

r, (r^2), where xx : = g'\x0)-

If there is no smooth points in g~\x0), g'Kxo) is o n e point, because three
dimensional terminal singularity is isolated singularity.

CASE 1.1. Let xι^g~ι{x(s) be a smooth point. By Lemma 1, we can choose
an effective Q-divisor B on X such that vXι{B)>σJ(l-σ) and B~Qg*D. Let
h : X'^X be the blowing up with center xx. We take a resolution of singularities
/ 0 : F'—>Z' such that the union of the exceptional locus and the proper trans-
form of A+B by /ι°/o is a divisor with only simple normal crossings. By
Kodaira's Lemma, we can take an effective divisor D' such that (/i°/o)*(g*Q —
(Kχ+ΔJ

Γg*D))—3D' is ample for 0 < 3 < l . Taking a succession of blowing-ups
with nonsingular center, we can find a smooth variety F and a birational mor-
phism / i : Y^Yf which satisfies the following properties:

(1) the union of the /z°/0°/i-exceptional locus, the proper transform of A+B
by /ι°/o°/i and the proper transform of Ώ' by /Ί is a divisor with only simple
normal crossings.

(2) (hof0θfί)*(g*Q-(Kx+A+g*D))-δf*D/-I}d'iEt is ample for 0<d<<l,
where Σ dίEt is an exceptional divisor.

If we write Kγ~Q (Λ"/o°/i)*(A'jr+Δ)+Σβ<Eι, then et>-l because (Z, Δ) has
only log-terminal singularities. If we take δ and d[ small enough, we can
obtain βi+1—pi>0 by the Logarithmic Ramification Formula. Thus the pair
(B, Y, f : = /z°/o°/i) satisfies the above four conditions. Suppose F be the ex-
ceptional divisor of h. Let Ei be the proper transform of F by /O

o/i Then
bi>σΛ/(l-σ), e^2. Thus

CASE 1.2. Let xλ : = ̂ "XΛΓO). Since xx is a cDV singularity, l

By Lemma 1, we can choose an effective Q-divisor B on X such that vXί(B)>
σj\/Y{l-σ) and B<^Qg*D. Take the blowing up h:X'-+X with center xλ.
Then X1 is a normal 3-fold which has only Gorenstein singularity and there is
a reduced divisor F on Xf such that KX"^-<h*Kχ-\-F. Choose a smooth variety
Y and a birational morphism / ' : F - * ^ as in Case 1.1 such that the pair
(B, Y, / : = h°f) satisfies the above four conditions. Let E1 be the proper
transform of F by /. Then b1>σz/V2~(l-σ)> e^l. Thus

CASE 1.3. By Kawamata [8], we can choose a normal variety X2 and a
birational morphism h : X'-*X which satisfy the following conditions:
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(1) h is an isomorphism over X\{xγ).
(2) KX'^Q h*Kx+(l/r)G+(oUιeτ components), where G is a reduced com-

ponent of the exceptional divisor of h and r is an index of (X, xx).

Take a smooth point x2<=Supp G ot X'. By Lemma 1, we can choose an effec-
tive Q-divisor B' on X' such that vX2(B')>σs/(l-σ) and B'~Q(goh)*D. We
put B \— h*B''. After take the blowing-up hf: X"-*Xr with center x2, we
select a smooth variety Y and a birational morphism / ' as in Case 1.1 such
that the pair (B, Y, f:— h°h'°f) satisfies the above four conditions. Suppose
F the exceptional divisor of h'. Let Eγ be the proper transform of F by / ' .
Then b1>σs/(l-σ\ ^ 2 + 1 / ^ 5 / 2 . Thus

Now we complete the proof of Proposition 3 of (1).

(2) We will construct normal varieties X', Xίf and a reduced divisor F on
X' which satisfy the following conditions:

(1) There is birational morphisms h : Xf—>X, and h : XX-*XQ.
(2) There is a commutative diagram:

γt . γ

(3) h{F) is one point xly where (Xu xλ) is a smooth point and JCiGΛ'W.
(4) /CX'^Q /z*/ίx+αF+(other components), (α^2).

First we show if we construct these objects, the assertion of proposition follows.
By Lemma 1, we can choose an effective Q-divisor Bf such that Bf^Q h*D and
vXι(B')>σJ(l-σ), (0<σ<l) . Let B:=h*g*B'. Take a smooth variety Y and
a birational morphism / ' : Y-^X' as in Case 1.1 such that the pair (B, Y, f : =
g°h°f) satisfies the four conditions in (1). Let Ex be the proper transform of
F. By the definition of c,

By construction of F and B, e,<:2 and b1>σ2/(l—σ). Thus
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We construct these objects dividing into six cases.

CASE 2.1. (Xo, x0) is smooth point, and dim g~1(x0)=2.

CASE 2.2. (Xo, x0) is smooth point, dim g~\xo)=l, and there is a singular
point of X in g~\x0).

CASE 2.3. (Xo, x0) is smooth point, dim g~\χo)=lf and there is no smooth
points of X in g'Hxo).

CASE 2.4. (Xo, x0) is singular point, and dim^" 1(x 0)=2.

CASE 2.5. (Xo, xQ) is singular point, aim g~\xo)=l, and there is a singular
point of X in g~\xQ).

CASE 2.6. (Xo, x0) is singular point, dim g~\χo)=lf and there is no singular
points of X in g~\x0).

CONSTRUCTION OF (Xf, Xu F).

CASE 2.1. This Case is verv easy. Let X' : = X, XΎ : = Xo We take a
divisor Fcg-^Xo)- Then X', Xλ and F satisfy the conditions.

CASE 2.2. Let X1 : = ΛΌ. Similarly to the Case 1.3, we take a normal
variety X', birational morphism h : X'-*Xy and the h-exceptional divisor F.
Then Xr, X1 and F satisfy the conditions.

CASE 2.3. Let Xx:— Xo. We choose a curve C in g'Kxo) and take an
embedded resolution of C, hi: X-^X. Let C be the proper transform of C.
We take the blowing up along C , h2:X'-^X. We define F is the exceptional
divisor of Λ2. Then Xr, ΛΊ and F satisfy the conditions.

CASE 2.4. Let h\Xi-+X0 be the minimal resolution of (Xo, x0). Take a
divisor F'Cg~\x0). By Hironaka [6], we can choose a smooth variety X and
a birational morphism h : Z-^Z which satisfy the following conditions:

(1) There is a morphism g: X->X1 such that g°h = h°g.
(2) There is a simple normal crossing divisor S o n I such that

Supp Σ—(^-exceptional divisor)w(The proper transform of F').

Let F" be the proper transform of f . If g{F") is one point, then we set
F : = F " and X' : = X If ^(F / r) is a curve /, we choose a point ^ G / such that
g~\χ\)C\F" is not contained any h-exceptional divisor. Then take a curve C
such that g{C)=xx and C is not contained any ^-exceptional divisors. We con-
struct X' and F similarly to Case 2.3. Since C is not contained any /ϊ-excep-
tional divisors,

Kχ"^Qh*Kχ+F+{otheτ components).
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Other conditions are easily checked.

CASE 2.5. First we construct abnormal variety X, a birational morphism
g: X-*X and ^-exceptional divisor F as Case 1.3. Then we can construct X',
Xι and F similarly to the Case 2.4. We only have to check condition 4. Since
Kx~Qg*Kχ+aF+ (other components), (α^jl),

KX'^Q(g°h)*Kx+(a-\-l)F+(other components).

Other conditions are easily checked.

CASE 2.6. First we construct a normal variety X, a birational morphism
g: X^X and ^-exceptional divisor F as Case 2.3. Then we can construct X',
Xι and F similarly to the Case 2.4. We only have to check condition 4. Since
Kχ~Qg*Kχ + F+ (other components),

KX'^Q(g°h)*Kx+2F+(other components).

Other conditions are easily checked. Then we complete the proof of Proposi-
tion of (2).

(3) We take a rational number σλ such that degD><7i>l. Since x0 is a
smooth point of Xo, by Lemma 1 we can choose an effective Q-divisor B' on
Xo such that B'^QD and vXQ(B')>σJ(l-σ). We define B:=g*B'. Select a
smooth variety Y and a birational morphism / such that the pair (B, Y, f)
satisfies the four conditions in (1). Suppose F be an irreducible component of
g~\x0). Let E1 be the proper transform of F by /. Then &i>0Ί/(l —<x), e^O.
Thus

6i 61 σx ^άtgD'

We complete of the proof of Proposition of (3). •

Now we have completed the proof of Theorem 9. Q. E. D.
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