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TWO RESULTS RELATED TO A QUESTION

OF HINKKANEN

J.K. LANGLEY

Abstract

We prove two results concerning meromorphic functions / and g of finite
order such that / O ) and £ O ) have the same zeros and poles, for ; = 0 , 1, 2.

1. Introduction

In this paper we use standard notation associated with value-sharing problems
problems [2, et. al.]. The meromorphic functions / and g share the value a
IM (ignoring multiplicities) if every α-point of / is an a -point of g, and vice-
versa, and CM (counting multiplicities) if, in addition, the multiplicities coincide.
The following problem was proposed by A. Hinkkanen [1].

Suppose that / and g are meromorphic in the plane such that fϋ) and gϋ)

share 0 and oo CM, for 0^j<n. How large need n be in order to determine
some relationship between / and g? In fact, for entire / and g of finite order,
this problem had already been considered by Gundersen [2]. The first published
results for meromorphic / and g seem to be those in the thesis of Kohler [4,
5], who proved (Satz 4.9) that n~6 suffices to conclude that one of the follow-
ing holds:

fig is constant; f(z)-eaz+b, g(z)=ecz+d

(1.1) f(z)=a/(l

f(z)=a{l-becz), g(z)=d(e-cz-b) α, b, c, d^C, h entire.

Moreover (Satz 3.1), if / and g have finite order, then one of the conclusions
(1.1) holds if /<» and gU) share 0 and oo CM, for / = 0 , 1, k, for some k>2.
Further results were proved by Tohge [8] for functions of hyper-order less
than 2 such that fϋ)/gυ) is entire and zero-free for /=0, 1, 2. We shall prove
the following theorem.

THEOREM 1. (i) Suppose that f and g are functions meromorphic of finite
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order in the plane, with g non-constantf such that fig and f//g/ have only finitely
many zeros and poles. Then one of the following holds:

(a) fig is constant.
(b) / ' / / and g''/g are both rational.
(c) There exist a rational function S and a non-constant polynomial Q and

constants d3 such thet

(d) There exist non-constant polynomials Q and Pi such that

f / f g / g

(ii) //, in addition, f" I g" has only finitely many zeros and poles then we
have either (a), (b), or (c), with d2—±l.

Gundersen [2] proved a result similar to (i), for / and g entire of finite
order, such that fig and f'/g' have no zeros or poles. Our approach is differ-
ent to those of [2, 4, 8], being based not on Nevanlinna theory but rather on a
simple application of the following lemma, proved in [7] using a modified form
of the forward-difference argument of [9, p. 52].

LEMMA A. Suppose that h(z) is analytic in the closed half-plane
with log+ |/iθ) | <;θ( l+log + | z | ) there, and suppose that for all sufficiently large
positive integers n, we have h(n)^Z. Then h is a polynomial.

Theorem 1 serves partly as an auxiliary result for the proof of the following
theorem, in which we relax the assumption that / and g share °o CM.

THEOREM 2. Suppose that f and g are functions meromorphic of finite order
in the plane such that fϋ) and gϋ) share the value 0 CM, for / = 0 , 1, 2, and
such that f and g share the value oo IM. Then one of the following holds.

(i) fig ι s constant.
(ii) f(z)=(az+b)di and g{z)—c(az-\-b)d<2, with a, b, c constants and dlf d2

negative integers.
(iii) f(z)=eaz+b and g{z)^ecz+d with a, b, c, d constants.
(iv) f{z)—dx{eq^—d2y

ι and g(z)=ds(l—d2e~Q^~1, with the d3 constants and
with Qι a non-constant polynomial.

(v) f(z)=d1(ed^z-dz) and g(z)=di(l~d3e~d^), with the d3 constants.
(vi) ^(2r)=d1(βd«*+d8)/(eίia'+3d8) and f(z)=dt(ed*z+dz)l{ed*+?>dzY, with the

dj constants.

Of course, / and g may be interchanged in (vi), and it is easy to verify
that / and g as given in (vi) do satisfy the hypotheses of Theorem 2. Further,
simple examples such as f(z)—{\—ez)~ι and g(z)=(l—ez)~2 show that the hypo-
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thesis on / " and g" in Theorem 2 cannot be deleted. The proof of Theorem 2
uses a combination of Theorem 1 and asymptotic methods which do not readily
extend to the infinite order case. In any case, Theorem 2 as stated would not
be true for infinite order, as the following example, one of several from [2, 8],
shows: set f(z)=exp(ez—z), g(z)—exp(e~z-{-z).

2. Proof of Theorem 1

Given / and g as in the hypotheses, / must be non-constant, since g is.
There exist polynomials P and Q and rational functions R and 5 such that

(2.1) f=Repg, f'=RepSeQg'.

If SeQ=l then (2.1) implies that f'/f=g'/g so that f/g is constant. We as-
sume henceforth that f/g is non-constant. Now (2.1) gives

(2.2) f'=(R'/R+P')Repg+Repgf, g'/g=

If Q is constant then (2.2) implies that g'/g is rational and so is f'/f, by (2.1).
We assume henceforth that Q is non-constant, of degree m ^ l . We choose a
real φ such that arg Q(z)-*π/2 as z-^oo with argz=φ, and we write L(z)=
Q(z)+logS(z) and H(z)=L(z)1/m. There exists anon-zero constant d such that
H'(z)=d+O(l/\z\) in the region D given by \argz—φ\<2π/3m, \z\>cu using

c3 to denote constants. Now, any two distinct points zlt z2 in D can be joined
by a path through D of length O(\z1—z2\) and, integrating along this path

\H\z)-d)dz
i

Consequently, H(z1)—H(z2)=(z1—z2)(d-\-O(l/c1))φ0 provided cx is large enough.
Thus w=H(z)=dz(l+o(Y)) is univalent on D, mapping into a sectorial region
on which the mapping w-^wm is univalent. We conclude that L maps a sub-
domain Dx of D univalently onto a half-plane D2 given by Im(L)>c 2 . Points
in D2 with L/2πi a positive integer correspond to poles of gf/g in Dly these
poles having residue (R'/R+P')/(S'/S+Qf). It follows from Lemma A that there
must be a polynomial Px such that

(2.3) R'/R+P'=Pi(L)(S'/S+Q').

Since L=ζ?+logS, the relation (2.3) can only hold if either P1 is a constant,
or S is a constant. If Pi is a constant c then we obtain

Solving for g and using the fact that Rep=c^(SeQ)c we obtain
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(2.4) ^=c 4 ( l-S- 1 e-«) c , f=cB(Sβ^ϊ)e

9

so that conclusion (c) holds. Now suppose that Px is non-constant. Then S is
constant, without loss of generality identically 1. Then R must also be con-
stant, by (2.3), and P/=P1(Q)Q/ and, using (2.1),

which is conclusion (d). We remark that in both cases (2.4) and (2.5), / and g
must have either infinitely many poles or infinitely many zeros, and that in case
(2.5) the multiplicities of these zeros or poles tend to infinity. This completes
the proof of part (i).

We now prove part (ii), and thus assume that f" Ig" has only finitely many
zeros and poles. The first possibility is that f'/g' is constant, from which,
using (2.1), it is easy to solve for / and g, to obtain (c), with d2— — 1. The
second possibility is that / " / / ' and g"Ig' are both rational, in which case the
remark in the previous paragraph implies that either / ' / / and gflg must both
be rational, or we have (2.4), with c = l , and conclusion (c) again.

On the other hand, we may have representations corresponding to (2.4) or
(2.5) for f and gr. To determine / and g in this last case we first suppose
that (2.4) holds. If cΦί we obtain

(2.6) f = c9(Sf/S+Q')Se^SeQ-l)e-\

which implies that f has infinitely many zeros or poles of fixed multiplicity
\c —1|. Since we are assuming a representation analogous to (2.4) or (2.5) for
f we must have

(2.7) f = cΊ{Teu-l)c*

with T rational and U a non-constant polynomial. Clearly, c8=c—l. However,
we now see that the representations (2.6) and (2.7) are incompatible, since (2.7)
implies that there are sectors in which f/(z)=±c1(l-\-o(l)) and this contradicts
(2.6). Thus c must be 1 if (2.4) holds, and once again we have conclusion (c).

Finally, we suppose that (2.5) holds, and that we have a representation cor-
responding to (2.4) or (2.5) for f. Then / has either poles or zeros of large
multiplicities, and this forces a representation

(2-3) /'//'=-S^ew—1

in which V and W are non-constant polynomials. However, (2.5) implies that
in sectors where eQ is large we have f(z)/f(z)=P'(z)+O(\z\~μ), and here it is
possible to choose μ arbitrarily large. This gives f"(z)/f(z)=P"(z)+P'(z)2+
0{\z\^'2) and f"(z)/f(z)=P"(z)/P'(z)+P'(z)+O(\z\-μ<*), possibly in a slightly
narrower sector. Since V is a polynomial in (2.8), this can only occur if P' is
constant. But P/(z)=Pι(Q(z))Q/(z) and Pλ and Q are, by assumption, non-con-
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stant. This is a contradiction, so that (2.5) is impossible here, and Theorem 1
is proved.

3. Proof of Theorem 2

Suppose that / and g satisfy the hypotheses of Theorem 2. We can as-
sume that f/g is non-constant, since otherwise there is nothing to prove. If /
is constant then so is g, and we assume henceforth that / and g are both non-
constant. Then each pole of f'/f is a zero or pole of / and so a simple pole
of g'Ig. Further, each zero of f'/f is a zero of f/ which is not a zero of /,
and hence a zero of g'/g. Applying the same reasoning to / ' and g'y we see
that there are polynomials Q and S such that

(3.1) f'/f=e*g'/g, f"/f'=esg«/gf.

In addition we write

(3.2) H=g/g'=e*f/f', H'd-e^QΉ+eQ-e8.

Suppose first of all that all but finitely many poles of / and g are such
that the multiplicities corresponding to / and g coincide. Then we may apply
Theorem 1, and we have either conclusion (b) or conclusion (c) of that theorem.
In the first case eQ and es must both be constant and, by (3.2), either es=eQ=l,
in which case f/g is constant, or H' is constant and we obtain (i), (ii) or (iii).
On the other hand, if conclusion (c) of Theorem 1 holds, we can write f(z)=
dxiS^ί—l)d2, with dι constant, d2—±l, and with Sι rational and Qx a non-
constant polynomial. If d2=—1 then f'/g' is constant, so that es=l and (3.2)
gives g'/g—Q'/(l—eQ). Thus we have conclusion (iv). Finally, if d 2 = l , we
can write, in a sectorial region, /=di(eΓi—1) and g^D^l—e~τή with Dλ a
constant and Ti=Qi+logSi . This gives

/"//^TY/TY+TY, g»/g'=T1"/T1'-T1',

which is only compatible with (3.1) if 7Y is constant, and this leads to (v). We
assume henceforth that / and g have infinitely many poles at which the multi-
plicities corresponding to / and g do not coincide.

Since / and g have finite order, there exist positive constants Mu M2 and
a set V, which is the union of discs D3—B(zJy \zj\~Mi), where Zj-+oo as 7-»oo,
such that for \z\ large with z lying outside V we have, for 0<Lj<k^2, the
estimate

(3.3) \f<kKz)/fυKz)\ + \g{kKz)/guKz)\£\z\M*

The set V can be constructed from discs centred at zeros and poles of /, / ', g
and gr and, by taking Mx large enough, we can ensure that the sum of the
radii of the discs of V is finite. We note [5, p. 84] that the set of 0e[O, 2ττ]
such that the ray a r g ^ = 0 meets infinitely many of the discs of V has measure
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0. We now consider two cases:

CASE 1: Suppose that Q and 5 are both non-constant.

We use the following notation [5]. If Q has degree m, and leading term
a*zm, then we write, for θ real, δ(Q, θ)=Re (a*) cos (mθ)-lm (a*) sin (mθ),
which is positive or negative according to whether eQ is large or small on
arg;r=#.

Proceeding with the proof, we first note that the degrees of Q and S must
be the same. To prove this, we assume that Q and S have different degrees,
and it is then easy to see that there exists a real number φ such that the ray
argz=φ meets at most finitely many of the discs of V and such that δ(Q, φ)
<0 and δ(S, φ)<0. From (3.1) and (3.3) we see that if s is large then

and this implies the existence of a non-zero constant c0 such that f'(z)=cQ+
0(121 ~2) on the ray zxgz—φ. A further integration yields, for some constant
dOf an estimate f(z)=c0z+d0+O(\z\~1) on argz=φ, so that we have, on this
same ray, f'(z)/f(z)=(l+o(l))/z. But this, on combination with (3.1) and (3.3)
and the fact that δ(Q, φ)<0, yields a contradiction, proving our assertion.

We can now write

(3.4) S(z)=CQ(z)+P(z),

in which C is a non-zero constant and the degree of P is strictly less than the
degree of Q, and we assert:

(3.5) C is real and negative.

If C is not real, then the rays avgz—θ with δ(Q, #)=0 are simply the rays
aτgz=φ with 3(5, 0)=O rotated through an angle αi<Ξ(0, π/m). Therefore, if
(3.5) does not hold, we can again find a ray a r g z = 0 with δ(Q, φ) and δ(S, φ)
both negative, such that this ray meets only finitely many of the discs of the
i?-set V. As before, we obtain a contradiction, and (3.5) is proved.

We now set

eQ-l
(3.6) F=ϊ-f~

l,

and note that by (3.1) poles of F arise only from multiple zeros of /. Again
by (3.1), at a pole z1 of / of multiplicity nlf at which g has a pole of multi-
plicity mu we have

the right-hand side being bounded above and below in absolute value. This
implies that if \zλ\ is large then argz1 = /9*+ί?(l) for some θ* with δ(Q—S, θ*)
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=δ((l — C)Q—P, θ*)=0. Further, zeros of / can only occur where eQ—l, and
zeros of / ' where es=l, and the rays a r g z = 0 * with δ(Q, 0*)=O, δ(S, 0*)=O,
δ(Q—S, Θ*)=Q coincide, using the fact that C<0. Let m be the degree of Q
and let θk, l^kg>2m+l, with θk+ι = θk + π/m, be such that δ(Q,θk) = 0.
Further, let ε be small and positive. The estimate (3.3) holds for all z with
\z\ large and

(3.7) argz=0, θk + ε£θ<θk+1-ε.

Suppose first that δ(Q, θ)<0 on the interval (3.7), so that δ(S, 0)>O. Then
(3.1) and (3.3) imply that g"(z)/g'(z)=O(\z\-*) in the corresponding sectorial
region, giving g'(z)=d + O(\z\~*) and g(z)—cίz-\-c2+O(\z\~2), with the c3 con-
stants and d=£0. Further, f'(z)/f(z)=eqwz-\l+o(X)), which gives f(z)=cs+o(l),
with c3 a non-zero constant. (3.6) gives

(3.8) F'(z)=eQ(Q'-f/fyf+Γ/P=Q/(z)eQi'KcB+oa))~1'

Suppose now that δ(Q, θ)>0 on the interval (3.7). Then we obtain f'(z)=d3+
O(|z|~3) and f(z)~d3z+d4-\-O(\z\'2), with the d3 constants, ds not zero. Thus

(3.9) F\z)=eQ(z\Q\z)+0{l/\z\))/f+o(l)=Q\z)e*^\dzz)-\l+o{l)).

Applying the Phragmen-Lindelof principle to the function F/(z)Q/(z)~ίe~Q(z),
which has finite order, we deduce that, for each k, and for each ε>0, the func-
tion F/ has infinitely many poles, and hence / has infinitely many multiple
zeros, in the sectorial region Sk>ε given by \z\ large, |argz— θk\<ε. We can
now assert:

(3.10) P is constant.

If (3.10) is false, we can find θk and ε>0 such that ep->0 as z^cπ in Sk>ε.
This region contains infinitely many multiple zeros of /, at which eQ—es—l}

which gives, using (3.4), 1= \eCQ+p\ — \ep\—>0, a contradiction.
We now have, using (3.1) and (3.4),

{f> lfγ° f* lf' = A(g'lgY°g* lg>

for some non-zero constant A. At a multiple zero of / we must have eQ=1
and AeCQ—l. Writing Q—2πiQ2 and A—e2πiB we therefore have infinitely many
integers Uι such that Crii+B is an integer, from which it follows at once that
C and B are real and rational, and we can write

-C = p1/su A=e**«i' i,

with pu qu Si integers, pu Si positive. Suppose now that / has a pole of order
nu and g a pole of order m1 at some point zλ. Then we have
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from which it follows that mί — nί, so that / and g share 00 CM, and we have

already disposed of this case. This completes our discussion of Case 1.

CASE 2: Suppose that Q or S is constant.

If eQ is a constant cΦl, then we have, by (3.2), H'(l — es)=c—es, which

forces 5 to be constant, for otherwise H' would have to have simple poles.

This makes H—g/gf linear, and leads to (ii) or (iii).

Now suppose that es is a constant c. If c—1 then fig' is constant and

f—ag+b, with α, b constants. This means that / and g share oo CM and we

have dealt with this case. We assume henceforth that cψ\y and may suppose

that c is a positive rational number, since otherwise / and g cannot have poles.

Further, we can assume that c>l, interchanging /and g and Q and — Q other-

wise, and we recall that, by assumption, g has infinitely many poles. Now

(3.2) leads to

(3.11) g'/g= TM—- , Λ G C , β=l/(c-l), a=l+β =

We assume for the time being that Q is non-linear, of degree m^2. Since

g has infinitely many poles, we can choose a real φ such that δ(Q, 0)=O and

such that g has infinitely many poles in |argz—φ\ ^π/2m. Repeated integra-

tion by parts shows that, in |argz—φ\ <(π/m)—ε, the denominator of (3.11) is

We can take a pole z of f and g, the multiplicites being nx and mx respectively,

and with \z\ large, and we must have u(z)=Q and eQ(z) — n1/mu and (wi+1)/

)=c, the last equation implying that \\og\n1/mι\ \ ̂ O(l). This gives us

0(1), so that Ax must be zero. Therefore, 7z/m1=(l+o(l))ί:α/i8 =

If Wi takes arbitrarily large values here, we obtain c2^nι/πiι^

)=c, forcing c=l, which we have assumed to not be the case.

Therefore nι and mx are both bounded, and in the relation c2^n1/m1 there are

only finitely many values of nί/m1 which can occur. Therefore, if z is large

enough we must in fact have rii/mi — c2, (ni+l)/(wzi+l)=c, leading to n1 = c>

mi=l/c, and again to c=l. This is a contradiction and we conclude that Q

must be linear.

We can therefore write

β=p/ς, a={p + q)/q, T = Q/q, X=eτ,

with p and q positive integers, with greatest common divisor (p, q)—l, and

(3.12) g'/g^l-c^iA^ce^/βQ'+eU+^/aQ')-1.

Poles of g'Ig occur where K(X)=0, the polynomial K being defined by



60 J. K. LANGLEY

We assume for now that Λ2Φθ. Then the polynomial K(X) has p+q roots, all
non-zero, say Xlf •••, Xp+q, which must be distinct, since g'/g has only simple
poles. Now, at a zero of g we have Xq=eQ=l, and arg (Xp)=arg (A2/(c2—1))
(mod2ττ), this relation being satisfied by at most one q'th root of unity, since
(p} q)=l. Therefore, at most one of the roots X3 can give rise to zeros of g.
Further, at a zero of g we have H—0 and, by (3.2), H'=l, and so all zeros of
g are simple. But we can easily estimate the number of zeros of tτ—X3 in
\z\<Lr, and we see now that

(3.13) nix, g)^(fi+q-l-o(X))n(r, 1/g), r/n(r, * ) =

On the other hand, (3.12) implies that off a set of angular measure at most ε,
we have gf(z)/g(z)=o(\z\"1). Further, it is easy to see that there are arbitrarily
large r for which

max I e 2 1 ^ - ^ 1-^0(1), | z | = r .
3

A partial fractions decomposition of the right-hand side of (3.12), viewed as a
rational function in eτ, now shows that n(r, l/g)—n(r, g)=o(r) for these r,
contradicting (3.13), unless p—q—1.

If p—q—l (and A2 is non-zero), the argument of the previous paragraph
shows that g must have the form given in conclusion (vi) of the theorem.
Further, β—l so that c—2 and (3.1) implies that / ' is a constant multiple of
(g')2 Determining / ' from g and using integration by parts and the fact that
/ and g share the value 0 CM, we obtain the asserted form for /.

The only remaining case to consider is when A2=0. However, here (3.1)
and (3.12) give g'/g— — cQf{eQ—c2γ\ Thus the residue of g'/g at each of its
poles must be —1/c, which contradicts our earlier assumption that c > l . The
proof of Theorem 2 is complete.

The author would like to thank the referee for several helpful comments.
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