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2-TYPE SURFACES IN A HYPERSPHERE

T H . HASANIS AND T H . VLACHOS

0. Introduction

Submanifolds of finite type were introduced by B.Y. Chen in [4]. This
class of submanifolds is extremely large, including minimal submanifolds of the
Euclidean space and minimal submanifolds of hyperspheres. In the last decade
many researchers dealed with the study of finite type submanifolds.

In the present paper we study finite type surfaces in a hypersphere. We
will review the definition of finite type submanifolds. Let Mn be an rc-dimen-
sional submanifold of the unit hypersphere Sm of the (m+l)-dimensional Euclidean
space Em+1 equipped with the induced metric. Denote by Δ the Laplacian
operator of Mn with sign convention such that A— — d2/dt2 on the real line E.
This operator can be extended in a natural way to £m+1-valued maps on Mn.
The submanifold Mn is said to be of finite &-type if the position vector x
admits the spectral decomposition

-\-xl
k,

where x0 is a constant vector and xtj 0 = 1, •••, k) are non-constant £m+1-valued
maps on Mn such that

<λl

If the constant vector x0 is the center of the hypersphere Sm then Mn is said
to be mass-symmetric in Sm .

In terms of finite type terminology the well known Takahashi's Theorem
[14] asserts that the submanifold Mn of Sm is of 1-type if and only if it is
minimal in Sm or in a hypersphere of Sm. Moreover minimal submanifolds of
Sm are mass-symmetric in Sm. From this point of view mass-symmetric 2-type
submanifolds in Sm are the simplest submanifolds next to minimal submanifolds
in Sm.

In [8] it was proved that a surface in S3 is of 2-type if and only if it is a
portion of a Riemannian product of two circles of different radii. Moreover in
[9] it was proved that a hypersurface of Sm is of 2-type if and only if the
scalar curvature and the mean curvature are constants.
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The following interesting problem has been posed in [5] by B.Y. Chen:
Do there exist mass-symmetric 2-type surfaces which lie fully in an even-
dimensional hypersphere ?

In [1], M. Barros and B.Y. Chen proved that a compact stationary mass-
symmetric 2-type surface in Sm is flat and lies fully in S5 or in S7. Furthermore
they proved that there exist no mass-symmetric 2-type surfaces which lie fully
in S\ After that O.J. Garay [7] showed that a mass-symmetric 2-type Chen
surface in Sm, that is a surface with zero allied mean curvature vector ([3],
p. 203), is flat and lies fully in S3 or in S5 or in SΊ unless it is pseudoumbilical.

In [12] Y. Miyata based on a powerfull result of R. Bryant [2] treated
mass-symmetric 2-type surfaces M2(c) in Sm with constant Gauss curvature c
and proved, among others, that: Let M2(c) be a mass-symmetric 2-type surface
in Sm with 0<Λi<Λ2 then, (i) there exists no such surface with c<0 and (ii) if
c^O and M\c) lies fully in Sm then m is odd. Finally M. Kotani [11] showed
that if M is a compact mass-symmetric 2-type surface of genus zero which lies
fully in Sm then m is odd.

In this paper we will discuss this problem. The paper is organized as
follows. In the first paragraph we prove some basic lemmas that will be
needed in the proofs of the main results. In the second paragraph we give
some local results. Specifically we prove that: If M is a mass-symmetric 2-type
surface which lies fully in Sm and dimNi^2, where Λfx stands for the first
normal space of M in Sm, then m is odd unless M is pseudoumbilical. In the
third paragraph we prove global results for mass-symmetric 2-type surfaces in
Sm. In particular we prove that: If M is a complete mass-symmetric 2-type
surface in Sm with non-negative Gaussian curvature then M is flat and m is
odd unless M is pseudoumbilical. Finally in the last paragraph we prove that
there exist no mass-symmetric 2-type surfaces which lie fully in S6.

1. Basic lemmas

Let M be a surface of the unit hypersphere Sm of Em+1 centered at the
origin O. Denote by H, A, D the mean curvature vector, the Weingarten map
and the normal connection of M in Sm respectively. Moreover H, A and D
denote the corresponding quantities for M in Em+1. We choose a local ortho-
normal frame field {eu e2, •••, em+i} on M such that elf e2 are tangent to M,
ez—x and H=\H\e4, where x is the position vector field with respect to the
center 0. Denote by ωu ω2 the dual frame of eu e2. The connection form
ωAB, A, B—l, 2, •••, m+1 is given by ωAB{X)~<yxeA, eB>, where V stands for
the usual Riemannian connection of Em+ί. By Cartan's Lemma we have

where h?y are the coefficients of the second fundamental form.
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The surface M is said to be pseudoumbilical at the point p^M if the
Weingarten map A± is proportional to the identity map. Moreover M is said to
be pseudoumbilical in UdM or pseudoumbilical if M is pseudoumbilical every-
where on U or everywhere on M, respectively.

The mean curvature vector H is given by

H=H-e2, 2H=(trA4)e4.

Henceforth we assume that M is mass-symmetric 2-type in Sm. Then we have
the spectral decomposition

Because of the main result in [8] and Theorem 2 in [1] we may assume that
m^5. Moreover from our choice of the frame we have tr^4 α =0 for α^>5 and
so we may set h?ι— — hξ2—pa and hϊ2

z=hξ1=μa. Thus we have

1 ^ 1 2) and AHpa μa) for «^5

Using Chen's formula ([4], Lemma 4.1, p. 271) and the above expression for x
we easily obtain the following necessary conditions for mass-symmetric and
2-type surface in S

(1.1) (trΛ4γ=2(λ1+λ2)-λιλ2-4^(λ2

(1.2) Σ ADβAe%=0

(1.3) trAl+\Dei\
2=λ2+λ2-2

(1.4) tr(AAAa)—trFωia + <De4, Dea>=0, for any α^5,

where
2

(Deif Deay=Σ,^Deie,f De.ea} for any

and

LEMMA 1.1. Let M be a mass-symmetric 2-type surface in Sm (m^5). The
Weingarten map A4 is a Codazzi tensor, that is AA satisfies equation (P'eχA^)e2—

Proof. Since De.ei=^Σa^5ω4a(eι)ea, from (1.2) we have

(1.5) Σ (<θ4a(ei)pa+(θ4a(e2)μa)=0 and Σ (^4«(e1)ioa-a>4
^ 5 Γ 5
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The last equations imply ΛDeM—ADeeι and so from the Codazzi equation
eχ e2

we conclude the desired result.

Let N^p) be the first normal space of M in Sm at the point />GM, Con-
sidering the linear map ζ-*Aξ from the normal bundle (TPM)L of M in Sm

into the bundle whose fiber at / j e M i s the space of symmetric linear trans-
formations of TPM we conclude that dim Nι(p)^3. It is obvious that e4 belongs
to Λfi(/>) for all />GM.

Consider, now, the linear map Lp: T PM-*{T PM)L defined by Lp{X)—Dxe4.
We set dp—ά\m(Lp(TpM)). It is obvious that dp<2 everywhere on M. In the
following let

dp = l] and M2

It is clear that M2 is an open subset of M.

LEMMA 1.2. Let Int(Mo)^0. Every component Vo of Int(Mo) lies fully in
a totally geodesic S3 of Sm.

Proof. The vectors Dβle4 and De2e4 vanish identically on Vo. Since M is
2-tyρe from equation (1.1) we conclude that tr Λ ^ c o n s t . ^ 0 . So Vo has parallel
mean curvature vector in Sm. According to a result due to B.Y. Chen and
S.T. Yau (see for example [3], p. 106), Vo lies in a sphere S3 of Sm. Then,
the main result in [8] implies that Vo is an open portion of a Riemannian
product of two circles of different radii in a great sphere S3 of Sm.

LEMMA 1.3. Let Int(A/i)=£0. On every component VΊ of Int(Mi) we may
choose e5, e6, •••, ea so that A5—0 and Aa=0 for any a^8. Moreover Deιe±—
(i)rt(ex)eb, De2e4—ω4δ(e2)eδ and ωlsie^+ωl^e^φQ everywhere on Vu

Proof. The vectors Dβle4, Dβ2e4 are linearly dependent everywhere on Vx

and at least one of them is nonzero. Denote by £5 its common unit direction.
Then we have

Deie4=ω45(eί)e5 and De2e4=ω45(e2)eb

and ω2

4δ(eι)+ω2

45(e2)Φθ, everywhere on Vx. In this case from equation (1.2) we
find

ω^ie^p^ω^ie^μ^—O and ω45(eί)μδ—ω45(e2)pδ=0

from which we obtain μδ=ρ5—0. Thus Aδ=0, that is eδ nowhere belongs to
the first normal space. Then we choose e6, eΊ so that e6, eΊ(=N1 and thus

λ for any a>8.
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LEMMA 1.4. Let M 2 ^0. On every component V2 of M2 we may choose e5,
e6 so that

Deie4=ω46(eί)e5f De2ei—ω45(e2)e5+ωu(e2)e6 and ω45(e1)'ω46(e2)^0

everywhere on V2. Moreover we may suppose that V2 consists in open neighbour-
hoods V21, V22 such that one of the following holds

A6φ0, AQΦO everywhere on V21

Λδ=0 and AG=0 everywhere on V22.

Proof. Because the vectors Deie4, De2e4 are linearly independent everywhere
on V2, by Gram-Schmidt orthogonalization process the first part of Lemma is
established. For the proof of the second part it is necessary to prove that there
is no open set of V2 where AδΦθ and A6=0 or Λ>=0 and Ae=£θ. In fact if
such an open set there exists, then from equation (1.2) we have

P5<θ4ϋ(eί)+μ5ω4&(e2)=0, μ^ω^e^—p5ω4δ(e2)=0
or

which are impossible.

Remark 1.5. In the following we refer quite often to neighbourhoods such
as VOy Vίy V2y V2ι and V22 which are defined in the above Lemmas.

In order to state another lemma which is useful in the proof of global
results, we restrict to a nowhere pseudoumbilical neighbourhood U of M. In
this situation we may choose elf e2 as the eigenvectors of AA with correspond-
ing eigenvalues kly k2 (&i>&2). In that case we have, kλ-\-k2—Xx^44=const.^0,
as it follows from equation (1.1) and because M is of 2-tyρe.

LEMMA 1.6. Let M be a mass-symmetric 2-type surface in Sm. In a nowhere
pseudoumbilical neighbourhood U the curvature form ω12 and the Gaussian curva-
ture K are given by

n ~N 1 e2(k1—k2) 1 £i(£i—k2)
(l.Όj (Oι2—

: r γ (i)\ r r (ί)2

CJ R\ R 2 £* R i R2

1

2

Proof. From our choice of the frame we have ωu=kiωiy ^i + ̂ 2

r=const. and
(Oia^Pa^+μaW^ ω2a=μaωι—paω2. Because of (1.6) we find

Σβ>iαΛωΛ4=0 and *Σ(ϋ2aΛ<oa4=0

and thus
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The last equations imply (1.6). By using (1.6) and the Gauss equation

we conclude (1.7).

2. Local results

Let M be a mass-symmetric 2-type surface in Sm, m^5. In this section we
prove some local results.

PROPOSITION 2.1. There zs no neighbourhood of the form Vo which lies fully
in Sm.

Proof. This is a immediate consequence of Lemma 1.2.

PROPOSITION 2.2. Let M be a mass-symmetric 2-type surface in Sm, m^5.
// M has a neighbourhood of the form V\ then M is nowhere pseudoumbilical in
an open set of VΊ and VΊ is flat.

Proof. By Lemma 1.3 we may set ωM^βιωι+βφ>2f where βi-hβi^O. By
exterior differentiation of ω 4 6 =0 and ω^—^) we get respectively

and

Moreover (1.4) for a—6 and a~Ί becomes respectively

and

Hence we find

Pii~p2

= β2+βl

= l l

l l

Differentiation of ωi 5 =ω 2 5 =0 gives
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Substituting α>β5(ei), a>65(£2), <*>n(βi), (on(e2) into the last two equations we get
respectively

Because ki + k2 is a nonzero constant from the last equations we infer βφ2=0.
Moreover from these equations we conclude that M is nowhere pseudoumbilical
in an open set of Vx. Without loss of generality we can suppose that β2=0;
then ft)45=/3iCί>i and by exterior differentiation we find

Pi

Using (1.6) we get

Furthermore (1.4) for α = 5 and taking account that Λ5=0, becomes

ei(βi)+

from which by using (1.6) we obtain

Hence there is a constant d such that βl—dikx—k2). Now, using (1.3) and (1.1),
we easily, deduce that ku k2, βi are constant. The flatness of Vx follows now
from Lemma 1.6.

PROPOSITION 2.3. Let M be a mass-symmetric 2-type surface in Sm, w^6.
If M has a neighbourhood of form V2ι then this lies fully in a totally geodesic
sphere S5 of Sm.

Proof. In V21 by using Lemma 1.4 we set ω4δ=β1ωι-\-β2ω2 and ω46=γ2ω2

where βφl=Q, everywhere in F 2 1 . Moreover μl+ρl=pQ, μl+pl^O and Aa—0
for any α ^ 7 . Since ωίa=ω2a—0 for any a^7, (1.2) implies

(2.1) βiP5+β2

(2.2) βiμ5-β2pB-γ2Pe=0.

Because ω 4 α =0 for any a>Πy relation (1.4) implies
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(2.3) βιωa5(eί)-^β2ωa5(e1)
Jrγιωa6(e2)-\-γ2ωae(e2)=0) a^7.

On the other hand by exterior differentiation of ω4a—ωίa=ω2a=0, a^Ί one finds

(2.4) βiωa6(e2)-β2ωa5(e1)-γ2ωa6(e1)=0,

(2.5)

(2.6)

We consider (2.3), (2.4), (2.5) and (2.6) as a linear system with respect to ωaδ(ei),
(Oa5(e2), o)a6(eι), ωa6(e2). Denote by T the determinant of the system. We claim
that T is everywhere positive on F2i In fact by computation we find

which by using (2.1) and (2.2) becomes

which proves the claim. So, the system yields (ύδa—ω6a—0, for any a>Ί. But
ωAa—0, for any a>Π. It follows that the first normal space which is spanned
by 04, eδ, eG is parallel in the normal bundle of M in Sm. So, the codimension
of V21 is reduced to 3 by Erbacher's Theorem [6] and V2l lies in a totally
geodesic sphere S5 of Sm.

Since in the following we shall apply at times the result of Y. Miyata [12]
the following lemma is necessary.

LEMMA 2.4. Let M be a mass-symmetric 2-type surface in Sm Then
0<λ1<2<λ2.

Proof. Taking account of (1.1) one finds

(£i + £2)2 » (k1-k2γ _ , , , λ,λ2 (kr-ktf_
' O — Λ1 + /2 o ^Π o

and because of (1.3) we have

2

which proves the assertion, by using (1.1).

Now we are able to prove the following.

THEOREM 2.5. Let M be a mass-symmetric 2-type surface in Sm, m>5. If
^ 2 and M lies fully in Sm then m is odd unless M is pseudoumbilical.

Proof. If m=5 there is nothing to prove. So, we may suppose ra^6.
Because of Propositions 2.1 and 2.3 M cannot has neighbourhoods of form Vo,
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V21 which are fully in Sm with m>6. So, there is neighbourhood of form Vt

or of form V22 which lies fully in Sm with ra^β. In the first case VΊ must be
flat by Proposition 2.2. But then a result due to Y. Miyata ([12], Theorem and
its Corollary) implies that m is odd.

From now on we suppose that M has a neighbourhood of form V22 nowhere
pseudoumbilical which lies fully in Sm with m^β. Moreover, because of
dimNi^2 and e^Nλ we may assume that p8

τ=μ8=0 everywhere on V22. We
set a)45=/3i0)i4-j820>2 and ω4Q—γ2ω2, where βιγ2φ0 by Lemma 1.4. Taking exterior
differentiation of ωίδ=ω2δ=0, we get

Similarly, from ω16^ω2G—0 we obtain

We claim that pτ~\-μ*Φθ on an open subset of V22. Assume in the contrary
that p2

Ί+μ*~0 in an open subset VaV22. Then it follows from the above
relations that &i &2=0 and since &i+&2=const. we would have from Lemma 1.6
that K=0. On the other hand from Gauss equation we find K=l which is
impossible. Therefore we get

ω75(gi)= 2 , 2{k2βιρq+kιβ2μ1)Pττ~μ

Differentiating ω47—0 we get

(k2—kί)μΊ-{-βιω5Ί(e2)—β2ωδΊ(e1)—γ2ω6Ί(e1)=0.

Moreover (1.4) for a=7 becomes

Substituting o)76(βi), <o75(e2), ωΊ&{ex) and ωΊ6(e2) into the last equations we obtain

(2.7) (kι-k*)μ1+-jJ^(-kιβφ2pΊ + kφ\μ1-kιβ^
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(2.8) (fei-fe,)p7+ * 2(k2β
2

1pΊ-hk1βίβ2μΊ-kίβ
2

2pΊ-k2βίβ2μΊ-k1γ
2

2μ7)=:0.
p7-rμΊ

Eliminating the terms (k1—k2)μ7 and (kι—k2)pΊ from (2.7) and (2.8) we find
j8ij82=O and thus 02=0. Hence (2.7) and (2.9) give

Differentiating ω^=βλωι we obtain

-e2(β1)+β1ωί2(e1)=γ2ωB6(ei)

and using (1.6) we get

On the other hand (1.4) for a=6 on account of β2=0 and (1.6) becomes

Therefore

By a similar argument on ω4G—γ2ω2f (1.4) for a=5 and (1.6) we also have

Consequently,

(2.10) β\-y\=d{kx-k2)

where <i is a constant. Eliminating βx and γ2 from (1.3), (2.9) and (2.10) we get

2(p2

7+μ2

Ί)+kl+kl=λ1+λ2-2-d(k1 + k2)

which implies that the Gaussian curvature of V22 is constant, since ^i + ̂ ^
Using again the result of Y. Miyata [12] we infer that m is odd and the proof
is completed.

COROLLARY 2.6. Let M be a mass-symmetric 2-type surface in Sm. If M
has flat normal connection and lies fully in Sm then m is odd unless M is
pseudoumbilical.

Proof. It is obvious that the flatness of the normal connection implies that
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3. Global results

In this section we give two global results.

THEOREM 3.1. Let M be a complete mass-symmetric 2-type surface in Sm.
If M has non-negative Gaussian curvature and lies fully in Sm then it is either
pseudoumbilical or flat. In the last case m is odd.

Proof. Since M is complete with Gaussian curvature K^O by a theorem of
A. Huber [10] we know that M is either compact or parabolic. At first we
assume that M is compact. If K is not identically zero then M is homeomorphic
to S\ Therefore by a result of M. Kotani [11] m is odd. If K=Q identically,
then the conclusion follows from the result of Y. Miyata [12].

Now assume that M is non-compact and parabolic. We know from Lemma
1.1 that A4 is a Codazzi tensor with constant trace, by using a result of B.
Wegner [13, Satz 1J we get

(3.1) -jAtr Λl^Kik.-k.γ+lFΛ^.

Since K^O the above equation implies that tr A\ is a subharmonic function on
M. On the other hand from Gauss equation we obtain

Therefore tr A\ is bounded from above. Consequently tr A\ is a constant since
M is parabolic and thus ku k2 are constants. It follows then from (3.1) that
K(kι — k2)

2—ΰ. So M is either pseudoumbilical or nowhere pseudoumbilical. In
the last case using Lemma 1.1 we infer that M is flat and applying once more
the result of Y. Miyata [12] we conclude that m is odd.

THEOREM 3.2. Let M be a compact mass-symmetric 2-type surface in Sm

with non-positive Gauss curvature K. If M is nowhere pseudoumbilical and lies
fully in Sm then it is flat and m is odd.

Proof. From our assumption and Lemma 1.1 we have Δlog(&i — &2)^0 on
M. By the compactness of M and the maximum principle we obtain kλ — k2—
const. Since x̂ + ̂ ^const . we get that klf k2 are constant on M. Appealing
again to Lemma 1.1 we deduce K—0 on M and so on.

4. A non-existence theorem

In this paragraph we prove the following non-existence result.

THEOREM 4.1. There exist no mass-symmetric 2-type surfaces which lie fully
in S\



2-TYPE SURFACES IN A HYPERSPHERE 37

Proof. By the proof of Theorem 2.5 it is enough to consider the case
when there is a neighbourhood of the form V22 where M is pseudoumbilical.
By Lemma 1.4 we may suppose that

M4.' D *-•=•• M O
and ωiδ=β1ωi+β2ω2, ωi6=γ2ω2 where βφ^O everywhere on F 2 2 and kx is a
nonzero constant. Differentiating a>iB=0, ω 2 5=0, α>i6=0, ω 2 6 =0 we get respec-
tively

(4.1) Piθ)n{e2)— — kφ2

(4.2) /07<»7 (*l) = *lj8l

(4.3)

(4.4)

It is obvious that ^ 7 is nonzere everywhere on V22.
Taking exterior differentiation of ωAΊ—Q we obtain

(4.5) βi(ϋΊb(

Furthermore (1.4) for a—Ί becomes

(4.6) βi(oΊ5(e

Substituting ωΊb(eγ), ωΊ5(e2), ωΊ^ι), ω76(^2) from (4.1), (4.2), (4.3) and (4.4) into
(4.5) and (4.6) we get respectively

βφ2=0 and βl-βl=O.

From the first of the above equations we conclude that /32=0 and so β\=γl.
Then (1.3) implies that βi and γ2 are nonzero constants.

Taking, now, exterior differentiation of ω45=β1ωί and ω^—γ2ω2 we get
ω^—±ωι2 and so, using dωι2— — KωιAo)2, we obtain

On the other hand

Comparing these equations we deduce that ρΊ is a constant and moreover K is
a nonzero constant. So we have a mass-symmetric 2-type surface with a con-
stant Gauss curvature which lies fully in S6 a contradiction of Y. Miyata [12]
result. This completes the proof.
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