
I.R. AITCHISON
KODAI MATH. J.
17 (1994), 549—559

SURFACES IN 3-MANIFOLDS: GROUP ACTIONS ON

SURFACE BUNDLES

BY IAIN R. AITCHISON

Abstract

We discuss briefly some conjectures concerning surfaces in 3-manifolds, and describe two

results on finite group actions on surface bundles over the circle.

1. Manifolds of dimension 1 and 2

The classification of closed orientable surfaces can be achieved by studying embed-
ded circles on surfaces. Analogously, approaches to the classification of closed orientable
3 dimensional manifolds involve studying embedded circles and surfaces. We review these
approaches, often illustrating more general results by their statements in the closed, ori-
entable context: unless otherwise clear, manifolds considered will be closed (compact
with empty boundary), connected, and orientable. Manifolds and maps are smooth. Ref-
erences are necessarily incomplete.

Any closed connected 1-manifold is diίfeomorphic to the circle 51. In dimension 2,
either genus or Euler characteristic determine a closed orientable surface, as does the
fundamental group. Any closed, orientable surface 5 can be decomposed as a connect-
sum 5 ~ #*T2 = ftkS1 x 51 of k tori, for a unique k > 0. (We denote by M#N the
connect sum of two n-manifolds M and JV, obtained by removing an open ball from each,
and identifying the two resulting boundary spheres.)

There are 3 classes of surface, according to whether the Euler characteristic is posi-
tive, zero, or negative. These correspond to the sphere 52, the torus S1 x S1, and surfaces
of higher genus; these classes correspond to the 3 types of homogeneous 2-dimensional ge-
ometry. Representatives admit metrics of constant curvature +1, 0 and — 1 respectively.
Moreover, fundamental groups are respectively finite (in fact, trivial), infinite abelian
(polynomial growth), and infinite non-abelian (exponential growth). Surface types play
different but important roles in the study of 3-dimensional manifolds. As motivation, we
consider common approaches to classifying a surface 5. These usually involve cutting
S along τrι-mjective circles: these are circles representing non-trivial homotopy classes.
Very importantly, if a surface contains an immersed τrι-injective circle, it contains an
embedded πi-injective circle.

One approach is to seek an embedded circle 7 which is non-trivial homologically on
5, and which is thus non-separating. Another embedded circle 7' meeting 7 transversely
at one point can easily be found. Each of these circles has an annular neighbourhood on
the surface, chosen so that their union is a torus with a disc removed. The boundary of
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this punctured torus in S separates S into two components (5 being their connect-sum),
one of which having homology of strictly lower rank than that of S. In this approach it is
necessary to show that a surface S with Hι(S, Z) = 0 is a sphere, or equivalently, that a
homologically trivial surface with boundary a circle is necessarily a disc. Summarizing,
any closed surface S can be cut open along a disjoint family of non-separating circles to
obtain a 2-sphere with an even number of open discs removed. This in turn can be cut
open along disjointly embedded arcs to yield a disc.

The classification of surfaces can also be achieved by consecutively cutting a given
surface into simpler pieces, using disjointly embedded non-parallel separating ττι-injective

circles. Each of these determines a splitting 5 = SΊ#S2, with each summand having
homology of lower rank.

Suppose M is an n-dimensional manifold with boundary dM -φ. 0. Given an em-
bedded sphere S*"1 C dM with neighbourhood N = 5*"1 x Bn~k, we can attach a
k-handle to M to form a new manifold M'. This is a quotient space of the disjoint union
of M and Bn, where we identify a standardly embedded Sk~l x Bn~k in dBn with
N C dM by some diffeomorphism. With this notion, the classification of surfaces leads
to the following statements:

THEOREM 1. 1. Every closed onentable 2-manifold contains embedded disjoint
circles whose complement embeds in the 2-sphere.

2. Every closed onentable 2-manifold contains an embedded l-manifold whose com-
plement consists of two copies of a (planar) surface obtained by attaching 1-
handles to a 2-disc.

3. Every closed onentable surface occurs as the boundary of a ^-manifold (called a
handlebody) obtained by attaching l-handles to a 3-ball.

4. Every closed onentable surface occurs as a 2-fold branched cover of the 2-sphere.
5. Every closed onentable surface which is neither a 2-sphere nor a torus has infi-

nite fundamental group, and admits a complete Riemannian metric of constant
curvature — 1.

2. 3-manifolds: general considerations

In the 1950's Moise [Moi] proved that every topological 3-manifold M admits an
essentially unique piecewise-linear structure (that is, can be nicely triangulated), and
that such a PL-structure gives rise to a smooth structure in an essentially unique way.
It is easy to see that every element 7 £ ττι(M;*), can be represented by an embedded
circle, and every class β G H%(M\Z) can be represented by a (possibly disconnected)
embedded surface. There is the following analogue of the previous result for surfaces:

THEOREM 2. 1. Every closed onentable 3-manifold contains embedded disjoint
circles whose complement embeds in the ^-sphere.

2. Every closed onentable 3-manifold contains a Heegaard surface, whose comple-
ment consists of two copies of a handlebody obtained by attaching 1-handles to a
3-balί



SURFACES IN ^-MANIFOLDS 551

3. Every closed onentable 3-manifold occurs as the boundary of a 4-manifold obtained
by attaching 2-handles to a 4-ball.

4. Every closed onentable 3-manifold occurs as a 3-fold branched cover of the 3-
sphere.

5. (Conjecture) A closed onentable 3-manifold which has no non-trivial 2-spheres or
ton, and has infinite fundamental group, admits a complete Riemannian metric
of constant curvature —1. (See below.)

Part 1 says that every 3-manifold arises by surgery on a link L C S3. This result is
due independently to Lickorish and Wallace [Li,Wall]. Lickorish's proof uses Heegaard
surfaces (arising from the 1-skeleton and dual 1-skeleton of a triangulated 3-manifold);
he deduces the first and third. Wallace begins with the fact that every closed orientable
3-manifold is the boundary of an orientable 4-manifold, and modifies such a description.

Unfortunately, given a surgery description of two 3-manifolds, or a Heegaard surface
description, no general effective algorithm is known to determine whether or not the
manifolds are homeomorphic. Even if they are homeomorphic, although there exists a
finite list of known moves generating a transformation of one description to the other,
there is no effective algorithm to describe an actual sequence of such moves.

Traditional approaches to understanding 3-manifold topology sought to emulate ap-
proaches to the classification of surfaces, using homotopically non-trivial surfaces to cut
open a 3-manifold. But whereas there is only one connected closed 1-manifold, the three
different types of surfaces each play different roles.

There are two additional complicating problems. The first is to identify 'trivial'
building blocks. The second is to find surfaces along which to cut. Concerning the first,
Poincare originally conjectured that a closed 3-manifold with the same integral homology
as the 3-sphere is homeomorphic to the 3-sphere. After discovering a homology 3-sphere
with non-trivial fundamental group, Poincare reformulated his conjecture to

CONJECTURE 3 (Poincare). Every simply-connected homology 3-sphere Σ3 is
homeomorphic to the 3-sphere S3.

This is still unresolved, remaining one of the most famous problems of contemporary
mathematics. By Whitehead's theorem, Σ3 is actually homotopy equivalent to the 3-
sphere; we can ask a more general question. For closed 3-manifold, when does homotopy
equivalence imply homeomorphy?

3. 2-spheres in 3-manifold topology

For any 3-manifold M, M#S3 is homeomorphic to M: if there exists a counterex-
ample Σ3 to the Poincare Conjecture, we do not expect M#Σ3 to be homeomorphic
to M ~ MΦS3. We can fortunately exploit the existence of embedded, 'non-triviaP
2-spheres to sidestep the Poincare Conjecture as an obstacle to a successful study of
3-manifolds, using the notion of prime and irreducible 3-manifolds.

An embedded 2-sphere 5 in M is called essential or incompressible if it separates M,
with neither complementary component being a 3-ball, or if it is non-separating. In the
latter case, an argument similar to the 2-dimensional case shows that M = M'#S2 x S1.
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We call M irreducible if there are no essential 2-spheres, and prime if there are no essential
separating 2-spheres.

If π2(M) ̂  0, there exists an immersed non-trivial 2-sphere. That there then exists
an embedded 2-sphere representing a non-trivial element of π^(M) is Papakyriakopolous'
celebrated Sphere Theorem [Pa]. (S2 is the only surface for which homotopic non-
triviality of an immersion implies the existence of a non-trivial embedded surface.) If
this sphere separates M, we obtain M = M\ΦM 2, where neither factor is a homotopy
3-sphere.

THEOREM 4. Every closed, orientable %-manifold M has a (unique) decomposition
as a connect-sum M = MiφM^φ . . . #Mfc of pnme Z-manifolds M%.

Existence was proved by Kneser [Kn], uniqueness by Milnor [Miln] (up to ordering).
The fundamental group of a non-trivial connect-sum correspondingly decomposes as a
free product of groups. The study of closed, orient able 3-manifolds reduces to the study
of prime manifolds.

A prime 3-manifold has either finite or infinite fundamental group. In the former case,
the universal cover is a homotopy 3-sphere, and we are in the realm of the Poincare Con-
jecture, and problems concerning the existence of non-standard actions of finite groups
on homotopy 3-spheres (that is, inequivalent to linear actions). The main examples of
3-manifolds with finite fundamental group are lens spaces. These all have Heegaard sur-
faces of genus 1: they contain a separating, embedded torus, which bound S1 x £)2 on
each side. Lens spaces are not determined up to homeomorphy by their homotopy type,
but are determined by their simple homotopy type.

A prime 3-manifold with infinite fundamental group is either 52 x S1, with universal
cover S2xRl, or is irreducible. An irreducible 3-manifold with infinite fundamental group
is aspherical, and has universal cover homotopy equivalent to R3. There are uncountably
many mutually non-homeomorphic contractible 3-manifolds (see [Hel]), but only R3 is
known to cover a compact 3-manifold. The Poincare Conjecture can now be extended to

CONJECTURE 5 (Extended Poincare Conjecture). The universal cover of a pnme
^-manifold is homeomorphic to one of S3, R3 or S2 x R1.

CONJECTUR& (Homotopy equivalence inplies homeomorphy). Two homotopy equiv-
alent, prime, aspherical, closed ^-manifolds are homeomorphic.

In the aspherical case, homotopy type is determined by the fundamental group:
to give an effective classification of aspherical prime 3-manifold types is equivalent to
giving an efffective classification of their fundamental groups. For n ^ 4, classification
of closed n-dimensional manifolds is impossible: every possible group can occur, but the
isomorphism problem for these groups is unsolvable (see [Ma]).

4. Higher-genus surfaces: Haken manifolds

In the following, all 3-manifolds considered are irreducible and aspherical. An im-
mersion / : S — » M of a surface into a 3-manifold is said to be πι-ιnjectιve if the
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induced map /* : ^ι(S) —»• πι(M) is 1:1. A πi-injective embedded orientable surface,
other than the 2-sphere, is called an incompressible surface in M. Heegaard surfaces are
not 7Γι-injective, and have not proved useful in the understanding of the relationship
between homotopy type and homeomorphy.

If an irreducible 3-manifold M contains an incompressible surface (other than a
sphere), it is said to be a Haken manifold, and non-Haken otherwise. Generally, it is not
possible to produce an embedded πi-injective surface from an immersed one: non-Haken
3-manifolds exist containing immersed ττι-injective surfaces.

A non-Haken manifold must be a rational homology 3-sphere, since infinite #2(M3;
Z) guarantees that M3 contains a ττι-injective non-separating surface: this can only be
a 2-sphere if M3 is Sl x S2.

For some time it has been thought that a 'generic' rational homology sphere should
be non-Haken: Thurston has produced many such examples by surgery on knots and
links, all but finitely many appropriate surgeries yielding non-Haken manifolds. However,
Hatcher has recently given an argument suggesting that most may be Haken [Hat].

An incompressible surface gives an initial surface along which to begin cutting open
a manifold M, to obtain a 'simpler' manifold with incompressible boundary components.
Finitely many further cuts (along a 'hierarchy' of ττι-injective surfaces) decompose M
into recognizable pieces. This technique enabled Waldhausen [Wa] to prove

THEOREM 7. Homotopy equivalent Haken manifolds are homeomorphic.

5. Toroidal and atoroidal manifolds

The role of tori in Haken 3-manifolds is now well-understood. If M3 contains no
7Γι-injective torus, we call M3 atoroidal.

Any Z 0 Z subgroup of ττι(M) can be realized as the image of the fundamental
group of an immersed torus: an atoroidal 3-manifold has fundamental group containing
no Z Θ Z subgroup. An embedded torus in an atoroidal, irreducible 3-manifold must
bound a handlebody of genus 1. For manifolds with boundary, an immersed torus is said
to be peripheralif it can be homotoped into the boundary. Thurston [Thl,Th2,Th3] has
proved

THEOREM 8. A closed Haken manifold is atoroidal if and only if it admits a metric
of constant curvature — 1. If an irreducible manifold with boundary has only peripheral
ton (if any), then it admits a metric of constant curvature —I.

A foliation of M by circles is called a Seifert-fibenng. Seifert-fibered manifolds (see
[JS]) also admit canonical metrics [Thl,Sc]. Thurston has constructed many non-Haken
3-manifolds admitting metrics of constant curvature —1 [Thl].

CONJECTURE 9 (Thurston's Geometrization Conjecture). An irreducible, atoroidal
3-manιfold with infinite πi admits a hyperbolic structure. Every closed, irreducible 3-
manifold is a canonical union of pieces, each admitting geometry based on one of the 8
possible homogeneous geometries.
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This includes the Poincare Conjecture. For toroidal Haken manifolds, we have the
decomposition theorem of Jaco-Shalen and Johannson [JS,Jo]:

THEOREM 10. A closed Haken ^-manifold contains a maximal collection of non-
parallel incompressible ton, unique up to isotopy. Complementary components are either
Seifert fibered, or have only peripheral ton.

Thus the Geometrization Conjecture is true in the Haken case. The simplest exam-
ples of torus decompositions arise from the Thurston/Nielson classification of surface
diffeomorpisms [Th5]. If h : S —* S is a homeomorphism, the mapping torus of h is the
closed 3-manifold S X Λ S1 = S x [0, !]/(#, 0) ~ (h(x), 1) obtained by glueing together
the two ends of a product of S with the interval using h. We call this a surface bundle
over 51, with fiber S and monodromy h. Any homeomorphism h1 of a closed surface S
is isotopic to a homeomorphism h preserving setwise a unique maximal collection C of
embedded, non-parallel circles. Moreover, some power g — hk of h preserves the comple-
mentary components of C, and g restricted to each is either periodic or pseudo-Anosov.
The invariant circles C give rise to incompressible tori, and periodic homeomorphisms
give rise to Seifert-fibered pieces of S X Λ S1. A surface bundle admits a complete hyper-
bolic metric if and only if it is atoroidal and has pseudo-Anosov monodromy [Th3].

Recent work of Scott, Mess, Casson and Gabai [Sc2,Me,Ca,Ga2] shows that if a non-
Haken irreducible 3-manifold M contains a πi-injective torus, then M is Seifert-fibered.

6. Conjectures on surfaces in 3-manifolds

CONJECTURE 11. Every ^-manifold with infinite fundamental group contains a τrι-
injective surface.

If there exists such a surface (other than S2) satisfying the 4-plane, l-line condition of
Hass and Scott [HS], then homotopy equivalence with M implies homeomorphy. Many
examples of such surfaces are given in [AR1,AR2,ALR] and the survey [AR3]. This
conjecture is weaker than

CONJECTURE 12. Every non-Haken manifold is virtually Haken} that is, has a
finite-sheeted Haken cover.

Hempel [Hel] shows this for manifolds with orientation-reversing involutions. See
also Millson [Mill]. For hyperbolic 3-manifolds, Long [Lo] proved the conjecture true if
an immersed, totally geodesic surface exists. A resolution of this conjecture would be a
major advance toward resolving the Geometrization Conjecture.

CONJECTURE 13. Every non-Haken manifold has a finite-sheeted Haken cover with
non-zero first Betti number.

If an atoroidal, irreducible 3-manifold M has non-zero second Betti number, the
Thurston norm becomes a useful tool [Th4]. This is a norm on H^(M', R) — Rk derived
from assigning to each lattice point in Zk — Hi(M} Z) a positive number corresponding
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to the minimal possible Euler characteristic for an embedded representative surface.
The simplest examples of such Haken manifolds are surface bundles over 51 the

fibre represents a non-trivial homology class. Stallings [St] made the first major study
of surface bundles. Every 3-manifold is almost a bundle: Gonzales-Acuήa and Myers
[GA,My] have shown that every 3-manifold can be obtained by surgery on a knot in a
bundle over 51. Sakuma [Sa] has proved that every closed, orientable 3-manifold has a
2-fold branched cover which is a surface bundle.

CONJECTURE 14 (Thurston). Every atoroidal, irreducible closed ^-manifold M has
a finite-sheeted cover which fibres over the circle.

A discussion of this conjecture is given by Gabai [Ga]. Luecke [Lu] has proved that
if an irreducible 3-manifold has an incompressible torus, then it is either finitely covered
by a torus bundle over S1, or has finite covers of arbitrarily large first Betti number.
Seifert-fibered spaces are completely understood (see [Ga]).

If M is hyperbolic, there are two kinds of possible immersed surfaces: geometrically
finite surfaces, which are either Fuchsian (totally geodesic), or quasi-Fuchsian, and geo-
metrically infinite surfaces. These two types correspond to the surface subgroup acting
on hyperbolic space having limit set in the 2-sphere at oo either a topological circle
(quasi-circle), or the whole sphere. Fibres of hyperbolic bundles correspond to geometri-
cally infinite surfaces. An immersed geometrically infinite surface is called a virtual fibre.
Thurston has proved that if M contains a virtual fibre, it has a finite bundle cover to
which the virtual fibre lifts as an actual fibre. Virtual fibres have been further studied
by Soma [Sol,So2]. Reid [Re] gave the first example - a 10-fold irregular covering by a
genus 2 bundle - of a non-Haken hyperbolic 3-manifold finitely covered by a bundle.

CONJECTURE 15. Every non-Haken manifold has finite-sheeted covers with arbi-
trarily large first Betti number.

7. Surface bundles: two results

We state two results, and sketch their proofs. The simplest coverings are regular
(Galois) coverings. The simplest hyperbolic bundles are those of genus 2. If the preceding
conjectures are correct, it is natural to seek non-Haken 3-manifolds arising as the quotient
of a bundle by a finite group action. The only group known to act with non-bundle
quotients is ZΊ (see [Ga]). The author has some unpublished examples of other cyclic
group actions with rational homology sphere quotients.

The isometry group of a hyperbolic 3-manifold M is finite. Kojima [Ko] has shown
that every finite group acts as the full group of isometries of some hyperbolic 3-manifold.
We offer

THEOREM 16. Given a finite group G, there exists infinitely many hyperbolic 3-
manifolds M, each fibenng over the circle, on which G acts freely by isometries.

The proof of the theorem is a simple application of a construction due to Penner
[Pen]. Suppose we are given an embedded circle 7 on a surface 5. A Dehn twist DΊ
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on 7 is a diffeomorphism of S defined as the identity in the complement of an annular
neighbourhood N S S1 x [0, 1] of 7, and on N by the map (eθi,t) ι-> (e('+€27rt)',*), c =
±1. It is a n</λtf twist when e = 1, /e/£ otherwise. Up to isotopy, any diffeomorphism
of an orientable surface is generated by a finite sequence of Dehn twists. Choose two
families F/, Fr of finitely many disjointly embedded circles on S, so that all regions in
the complement of FI U Fr are hexagons. Let Dj and Dr denote the diffeomorphisms
respectively obtained by Dehn twisting to the right along all circles in Fr, and to the
left along all circles in FI. A diffeomorphism φω defined by a word ω in Ό\ and Dr,
containing both non-trivially, is isotopic to a pseudo-Anosov map. The mapping torus
S xφω S1 then admits a metric of constant curvature —1.

The finite group G acts freely on a Cayley graph for G, and so by equivariantly
replacing vertices by 3-balls, and edges by 1-handles, we obtain a free action of G on
a handlebody H, and on its boundary dH. Let 5 denote the quotient surface dH/G,
and π the covering projection. Choose two families F/, Fr as above, and for each circle
7, let nΊ denote the least common multiple of all degrees of π restricted to ττ~1(7). A
power D* lifts to a diffeomorphism of dH if and only if nΊ divides k. There are many

choices for a pseudo-Anosov map φ : S —» S lifting to φ : dH —> dH. The covering
transformation group G then acts as a group of isometries on the hyperbolic manifold

dHx^S1.
The next result concerns uniqueness of fibrations of bundles. If the first Betti number

of a bundle M is 1, the fibres FI = πf1 (point), ί j = πj1 (point) of two fibrations
7Γι, π2 : M —> S1 are isotopic. Any toroidal bundle has non-isotopic fibres of the same
genus (by 'Dehn twisting' along tori). Thurston has proved that if the first Betti number
of an atoroidal bundle M is ^ 2, fibres exist of arbitrarily large genus ([Th4]). This
follows since the unit ball in the Thurston norm is a finite-sided compact polyhedron,
and lattice points corresponding to fibrations lie on rays through the interior of certain
faces. Every other lattice point on a ray through such a face also corresponds to a
fibration.

THEOREM 17. 'Most' genus 2 hyperbolic bundles have a unique fibration of genus
2. The quotient of any such bundle under a regular covering projection is Haken.

Generators for diffeomorphisms of a genus 2 surface can be chosen as Dehn twists on
a collection of circles, each invariant under a hyperelliptic involution. Thus every genus
2 bundle M admits a hyperelliptic involution Λ, and is a 2-fold branched cover over
some 6-braid β in S2 x S1. The hyperelliptic involution acts by isometry r^ on the unit
ball in the Thurston norm on H%(M, R)', the class [F] generated by the fibre spans the
+ 1-eigenspace of TV The orthogonal complement is the — 1-eigenspace. It follows that
Th[Ff] — —[F1] for any genus 2 fibre F1 not homologous to F (from a different fibration).
We may then assume, by Tollefson [To], that two parallel copies F{, F^ of F1 are mapped
to themselves by an orientation reversing involution. These surfaces project to disjoint
surfaces Si, £2 in S2 x S1, with β — dS\ U<9S2 Moreover, each surface S» is a spine for
a handlebody in a standard genus 2 Heegaard splitting of S2 x S1. This places serious
restrictions on the possibilities for /?, and asserts that the purported alternative fibration
with fibre F1 arises by Sakuma's construction [Sa]. Hence we call such a braid a Sakuma
braid.
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At a more basic level, 6-braids induce permutations in the symmetric group 65, which
has order 720. For half of all possible permutations, any corresponding braid cannot have
its component circles partitioned into two classes, each class being the boundary of either
Si or 52- For these cases, F1 cannot exist. It is in this sense we assert 'most' fibrations
are unique, in the statement of the theorem.

Hass [Has] has proved that if every element of a group G acting freely on a 3-manifold
M preserves an element α £ H^M, Z) up to sign, then the quotient manifold M/G
is Haken (with incompressible surface arising from α). This result applies whenever a
manifold has a fibre which is 'unique' in any way forcing it to be homologically preserved
by any group action.
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