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SOME EXAMPLES ON UNIMODALITY OF

LEVY PROCESSES

BY TOSHIRO WATANABE

§ 1. Introduction and results

Many works have been done on unimodality of Levy processes on R1. Sato
[4] surveys the results of these works and indicates open problems. In this
paper we answer some questions raised by Sato.

A measure μ on R1 is said to be unimodal with mode a if μ(dx)=f(x)dx
+ cδa(dx), where c^O, δa is the delta measure at α, and f(x) is increasing on
(—00, fl) and decreasing on (α, oo). In this paper we use the words "increase"
and "decrease" in the wide sense. A probability measure μ on R1 is said to be
strongly unimodal if, for every unimodal probability measure η, the convolution
μ*η is unimodal. We say that a random variable is unimodal (resp. strongly
unimodal) if its distribution is unimodal (resp. strongly unimodal). Let \Xt((o) :
ίϊΞ.0} be a Levy process on R1 defined on a probability space (Ω, 3, P) (that is,
a stochastically continuous process with stationary independent increments start-
ing at the origin). Then the characteristic function of Xt is represented as

(1.1) E exp (ί>*t)=exp (tψ(z)) ,

where f^R1, <72^0, l (_1 ( 1 )(;t) is the indicator function of the interval (—1, 1),

and v is a measure on R1 satisfying v({0})=0 and \(l/\xz)v(dx)<°°, called Levy

measure of {Xt} We say that a Levy process {Xt} is unimodal if Xt is
unimodal for each t. A Levy process {Xt} is called self-decomposable if, for
each ce(0, 1), there are a probability space (Ω', <3> ', P') and two Levy processes
{Yt} and {Zt} defined on it such that ( i ) {Yt} and {Zt} are independent, ( i i )
{Yt} and {cXt} are equivalent in law, and (iii) {Yt+Zt} and {Xt} are equivalent
in law. A self-decomposable Levy process is simply called a self-decomposable
process. A Levy process \Xt} with Levy measure v is self -decomposable if and
only if v(dx)=\x\~1k(x)dx with k(x) increasing on (—°°, 0) and decreasing on
(0, oo). Yamazato proves in the celebrated paper [11] that every self-decom-
posable process on R1 is unimodal. The author proves in [9] the following
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theorem.

THEOREM 1.1. // {Xt} and { Y t } are independent unimodal increasing Levy
processes, then {Xt—Yt\ is a unimodal Levy process.

Sato raises in [4] three related questions:

Question ( i ) . Does Theorem 1.1 exhaust unimodal Levy processes with

Levy measure satisfying \(1Λ \x\)v(dx)<oo without Gaussian part?

Question ( i i) . Can all unimodal Levy processes be approximated by unimodal

Levy processes with Levy measure satisfying UlΛ x\)v(dx)<oo?

Question (iii). If (Xt) with σz>0 in (1.1) is a unimodal Levy process, is
the Levy process having the identical Levy measure without Gaussian part a
unimodal process?

Question ( i ) has answer 'no' in symmetric case. In symmetric case Ques-
tions ( i i ) and (iii) have answer 'yes' by Proposition 3.2 of Sato [4]. The pur-
pose of this paper is to show that, in non-symmetric case, Question ( i ) has
answer 'no' and Question (iii) has answer 'no' in general by giving concrete
examples. However Qestion ( i i ) still remains unanswered in non-symmetric
case. Further we give an interesting example on unimodality of Levy processes.

Namely our results are as follows.

PROPOSITION 1.2. There are independent increasing Levy processes {Xt} and
{ Y t } such that {Xt} is not a ummodaί Levy process, { Y t } is a unimodal Levy
process, and {Xt—Yt} is a non-symmetric unimodal Levy process.

PROPOSITION 1.3. There are an increasing Levy process {Xt} and a Brownian
motion { B t } such that {Xt\ and { B t } are independent and {Xt} is not a unimodal
Levy process, but {Xt + σBt} is a unimodal Levy process for sufficiently large
σ>0.

PROPOSITION 1.4. There are ^X), ί2>0, c>l, and an increasing Levy pro-
cess {Xt} such that, for each integer n, Xt is unimodal at t=cntι and not unimodal

We prove the propositions above in the following sections. Results of Sato
[4], Sato-Yamazato [5], and Medgyessy [3] are employed for the proof of
Proposition 1.2. Proofs of Propositions 1.3 and 1.4 are based on the integro-
difrerential equations that the densities satisfy. Such equations are extensively
used by Sato-Yamazato [5], Watanabe [8, 10], and Yamazato [11, 12]. Semi-
stability of the process in the sense of Levy [2] plays an essential role in the
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proof of Proposition 1.4.

§ 2. Proof of Proposition 1.2

Let {^fj be an increasing Levy process such that in (1.1)

(2. 1) E exp (i2τ*t)=exp

where ε is a constant satisfying 0<ε^l. Then, as in the proof of Proposition
3.3 of Sato [4], {Xt} is not a unimodal Levy process and, if 0^ί^2ε~1, then
Xt is unimodal with mode 0. Let {Yt} be an increasing Levy process independ-
ent of {Xt\ such that in (1.1)

(2.2)

Let &(x)=(e*+l)e~xl(o.oo)(*). The process { Y t } is self-decomposable and hence
a unimodal Levy process, since k'(x)—(— εx — l-hs)0~Λ ?l<o,«>)(#)<0 on (0, oo).
Hence, if O^ί^l, then Yt is unimodal with mode 0 by Theorem 1.3 of Sato-
Yamazato [5], since fe(0+)=l. Therefore, if O^ί^l, then Xt—Yt is unimodal
with mode 0 by Corollary 2.7 of Sato [4]. Let \Wt} be a symmetric compound
Poisson process such that in (1.1)

(2.3) £exp(ιW()=exp(sfΓ

Since Levy measure of {Wt} is symmetric unimodal, {Wt} is a symmetric
unimodal Levy process by Medgyessy [3]. Let {Zt\ be a gamma process in-
dependent of {Wt} such that in (1.1)

(2.4)

Then we can express the distribution ηt of Zt as

(2.5)

where Γ(f) is the gamma function. Hence, if ί^l, then Zt is strongly unimodal
by Ibragimov [1] and hence Wt—Zt is unimodal. Since {Xt—Yt} and {Wt—Zt}
are equivalent in law, Xt—Yt is unimodal for f^>l. Thus {Xt} is not a
unimodal Levy process, {Yt} is a unimodal Levy process, and {Xt—Yt} is a
non-symmetric unimodal Levy process. The proof of Proposition 1.2 is com-
plete.

§ 3. Proof of Proposition 1.3

Let {Xt} be an increasing Levy process such that in (1.1)
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(3.1)

where m is a constant satisfying 0<m<l. Let k(x)=(l+mx)l(Qιl)(x). Then Xt

is strongly unimodal for ί^l by Theorem 1 of Yamazato [12], since log k(x)
is concave on (0, 1) and &(0+)=1. On the other hand, Xt is unimodal with
mode 0 for 0<t<l— m and {Xt\ is not a unimodal Levy process by Example
4.2 of Watanabe [9]. Let [Bt] be a Brownian motion independent of \Xt} and
let { Y t } — {XtJraBt} for σ>Q. Note that σBt is strongly unimodal for every
<7>0 and for every t by Ibragimov [1]. We shall show that { Y t } is a unimodal
Levy process for sufficiently large σ>0. If ί^l, then F t is strongly unimodal,
since Xt and σBt are strongly unimodal. If O^f^l — m, then F f is unimodal,
since ^ is unimodal and σBt is strongly unimodal. Hence, from now on, we
assume 1— w<ί<l. Let μ t be the distribution of Yt. Then μt is absolutely
continuous with a density function /{(#) of class C^R1) by positivity of σ.
We obtain the following equation as in Theorem 2.1 of Sato-Yamazato [5] :

(3.2) σ z t f i ( x ) = t ( l 'ft(x-uXl+mu)du-xft(x).
Jo

By using integration by parts, we get that

(3.3) σ2tfί(

S x
ft(u)du. Differentiating (3.3), we find that

-00

(3.4) σ 2 t f K x

Put c=l— m. Define the set A={(x,y,t): —l^.x, y<±, c<t<l}. We shall
show that there is σι>0 such that, for every σ^0Ί,

(3.5) inf f t ( y ) / f t ( x f e l / 2 .
(ar. y t)<ΞA

Let Ί]t and ρt be the distributions of Xt and σBt, respectively. Then ηt is

absolutely continuous by Tucker [7], since \ x~\l-{ mx)dx=oo. The distribu-
Jo

tion pt is Gaussian with mean 0 and variance σ2t. Let ηt(dx,)—gt(x}dx and
ρt(dx)=ht(x)dx. Then we see that

(3.6)

Since {Xt} is increasing,

(3.7)
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for Af>0 and for c<t<l. Hence there is A^X) such that

(3.8) inf
c < ί < l o

Define the set B={(x,u,t): — 1^*^4, Ό^u^Nlf c<t<l}. Then there is
sufficiently large <7ι>0 such that, for every σ^σi and for every (x, u, t)^B,

(3.9) (2/3)Λ t(0)^Λί(Λ;-M)^Λ£(0).

Hence we obtain (3.5) from (3.6) and (3.8). We divide the proof of unimodality
of Yt for £<£<! and for σ^tfi into four cases.

( i ) We find from (3.2) that

(3.10) Λ'(*)>0

for x^Q.
( i i ) Let us prove that if /t(*ι)=0 for some x^ with 0<%ι^3, then fi'(Xι)

<0. Indeed, we see from (3.4) and (3.5) that

(3.11) σ2tft\xί)=(t-l)ft(xί)--tft(xl

noting from (3.5) that \ ft(Xί — u)du^

(iii) We obtain from (3.2) and (3.5) that

(3.12) σ*tfί(x)=t\lft(x-uXl+mu)du-xft(x)
Jo

for
(iv) Let us prove that fί(x)<Q on (4, oo). Suppose, on the contrary, that

/ί

/(jc2)=0 for some x2>4. Define ^ 3 =inf{%: fί(x)^0, x>4\. Since /ί(w)<0 for
by (iii), and Λ:3^4,

(3.13)

for 0<^^<1 and

(3.14)

Hence we get by (3.4) that

(3.15) σ z t f ί f ( x 3 ) = ( t - l )

which contradicts (3.14). Consequently f't(x)<0 on (4, oo). It follows from ( i ),
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(ii), (iii), and (iv) that Y t is unimodal for every σ^oΊ and for every t satisfy-
ing c<t<l. Thus we have proved that \Yt] is a unimodal Levy process for
every σ^σί9 but {Xt} is not a unimodal Levy process.

§ 4. Proof of Proposition 1.4

Let 0<m<2"1, 0<λ<l, b>l and c=bλ. Let ζ(jc) be a positive right con-
tinuous periodic function on R1 with period logb defined by

(4.1)

on [ — logb, 0). Let \Xb(t)} be an increasing Levy process such that in (1.1)

E exp (ί> 6̂(ί))=

(4.2) f0o
$6(2)= I (β'̂ -

Jo

Then the distribution μ f } of Xb(f) is semi-stable in the sense of Levy [2] and
satisfies the following equation:

(4.3) μ

By (4.1) φ(z) in (4.2) is represented as

(4.4) Φ(z)= Σ Γ" (elzx-l)b-λ(n+l\l+mb-n-lx)χ-ldx.
n = -oojbn

We note that

(4.5) j

^2 f] (bn+lb-λ(n+ί)(l+mb-n-lx)χ-ldx
n=0 Jbn

b-1)} — >0

as 6-»cχ> and similarly

(4.6) Σ Γ* (elzx — l)b'^n+1\l+mb-n-1x)χ-1dx
n~-oojbn

as b—>oo, where we use Iβ1** —1| ̂  |2*|. On the other hand, we see that

(4.7) Γ (et*x-iχi+mx)χ-1dx —> ('(β^-lXl+mx'ίx^dx
Jδ-i Jo

as b-^oo. Hence we find from (4.5), (4.6) and (4.7) that μlb) converges weakly
to the distribution ηt of Xt defined in the proof of Proposition 1.3, as &->oo.
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Since {Xt} is not a unimodal Levy process, there is bQ>l such that, for every
b^b0, {Xb(t)} is not a unimodal Levy process. For nonnegative integers n,
let k n ( x ) be functions on Rl defined by

(4.8) k0(x)=0 for *^

= l+mx for

=b-λ<k+l\l+mb-k-lx) for bk<

for every nonnegative integer k and, for n^l,

(4.9) ^n(Jc)=l(0 l 6-

For nonnegative integers n, let {Zn(f)} be increasing Levy processes without
drift such that processes (Zn(t)} are independent and Levy measures ι>n of
{Zn(t)\ are expressed as

(4.10)

Note that (Xb(f)} and { f j Zn(ί)l are equivalent in law. Let ft^S1'*. If 6 ,̂
U=o }

then log ftn(jc) is concave on (0, b~n) and 2-1*n(0+)=2-16*(n-1)(fe*-l)^l for every
n^l. Hence Zn(2~1} is strongly unimodal for n^l and /?^6ι by Theorem 1 of
Yamazato [12], We shall show that Z^(2~l) is unimodal with mode 0 for b^bi.
If this is true, then Xb(2~l) is unimodal for b^bi. The distribution μ of Z^(2'1}

is absolutely continuous by Tucker [7], since \ vo(rf^)=°°. Let μ—f(x}dx. Put
Jo

ί=2~1 and α = l-fra— ̂ '^(l+m/?'1). Then we have a relation by Steutel [6]:

(4.11) xf(x)=t[ f(x-u)(l+mu)du
Jo

+f Σ
n=0

for %>0. By using integration by parts, we get that

(4.12) xf(x)=tF(x)+mt(ίF(x-u)du-at Σ F(x-bn}b~λn

Jo n = 0

+mί Σ
n=O

S x
f(u)du. Differentiating (4.12), we find that

-00

(4.13) xf'(x)=(t-l)f(x)+mt[l f(x-u)du-at Σ f(x-bn)b~λn

Jθ 71 = 0

+mt
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for x>0 except at x=bn with nonnegative integers n. Let E0— (0, 1) and Ek

—(ft*'1, ft*) for integers k^l. We shall prove by induction in k that

(4.14) /'(x)<0 on \JEkfc=0

for
( I ) For x<=E0, we obtain from (4.13) that

(4.15) xf'(x)=(t-l)f(x)+mt\X f(x-u)du .
Jo

We get by (4.11) that

(4.16) x f ( x ) = t ( * f(x-u)(l+mu)du>t\X f(x-u)du
Jo Jo

on E0. Hence we obtain from (4.15) that

(4.17) xf'(x)<(t-l)f(x)+mxf(x)<(-2-ι+m)f(x)<0

on EQ. Therefore, we see that

(4.18) f(x)^Ax-^+m

on EO with a positive constant A, which implies that

(4.19)

as x 10.
(Π) Let x<=ΞEk for fe^l. We find from (4.13) that

(4.20) xf/(x)=(t-l)f(x)+mt f(x-u)du-atΣ f(x-bn)b'λn

n=o

f(x-u)b-(λ+1>kdu.
b k-ι

Since f(x-bk~l)->°° as x | bk~l by (4.19), we see from (4.20) that

(4.21) //(*)_>_«>

as c jb*" 1 . Suppose that there is xl such that Xι^Ek and /x(^i)— 0. Define
x2=mf{x: x<E:Ek, f'(x)=Q}. We find from (4.21) that x2<=Ek and /'(;c)<0 on
(ft*"1, ^2). Hence the induction assumption says that

(4.22) /XW<0 on \J En\J(bk-\ x 2 ) .
n = o

This implies that
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(4.23) k

n=0

and

(4.24) f(x2-u)du<f(x2-l).
Jo

On the other hand, we get by (4.11) that

(4.25) ίΓ2 f(xz-u)b-^+1)kdu<t(X2f(x2-u)b-kk0(u)du=b-kx2f(x2).
jb k—i J o

Therefore, we obtain from (4.20), (4.23), (4.24) and (4.25) that

(4.26) Q=x2f'(x2)<(t-l+mb-kx2)f(x2)-tf(x2-l)(a-m)

noting that t— I— mb~kx2<— 2~1-fra<0 and a— m>0 for b^blt This is a con-
tradiction. Thus the assertion (4.14) is established. It follows that, for every
b^bvVbi, {Xb(t)} is not a unimodal Levy process and Xb(2~l) is unimodal.
Recalling (4.3), we see from this that, for every b^bQ\/blf there are tl=2~ί and
tzΦ2~1 such that, for every integer n, Xb(t) is unimodal for t—cnt^ and not
unimodal for t—cntz. This completes the proof of Proposition 1.4.
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