
K. TOHGE
KODΛI MATH. J.
16 (1993). 379—397

THE LOGARITHMIC DERIVATIVE AND A

HOMOGENEOUS DIFFERENTIAL POLYNOMIAL

OF A MEROMORPHIC FUNCTION

BY KAZUYA TOHGE

1. Introduction

In this note, by a meromorphic function we mean a function meromorphic
in the complex plane C. We shall here assume that the reader is familiar
with the standard notation and terminology of value distribution theory (see
for example, Hayman [1] or [3]). For a meromorphic function g(z), which
does not vanish identically, we can consider the logarithmic derivative g/(z)/g(z).
It plays an important role in Nevanlinna's theory of meromorphic functions.
The following occupies the main part.

LEMMA. Let g{z) be a meromorphic function. If g{z) is transcendental, we
have

(1.1) rn{r, ^-)=O(log+ T{r, g)+log r)

as r—>oo through all values if g{z) has finite order and as r—>°o outside a set of
r of finite linear measure otherwise. If g(z) is a rational function and not
identically equal to zero,

(1.2) m(r, - ) = o ( l )

as r_>oo through all values.

For the sake of simplicity, we shall use the symbol "n. e. (nearly every-
where)" instead of tediously saying that possibly outside a set of r of finite
linear measure.

W. K. Hayman pointed out the necessity of treating a homogeneous differ-
ential polynomial g"g—2g'2 of an entire function g(z) in his famous book [1
§3.6, p. 77]. Concerning this proposal E. Mues [4] studied an influence of the
zeros of g"g—agr2 with a complex number a on the entire function g(z) itself.
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He proved that if g" g—agn has no zero, then g(z)=exp(az+β) are the only
transcendental functions with this property if aφl. This result settled a ques-
tion of Hayman made in [1]. Our purpose of this note is to give an estimate
of the zeros of g(z) by those of the homogeneous differential polynomial g"g—
ag'2. With the equation

T(r, ^ ) = r o ( r , ^)+ΛT(r, 0, g)+N(r, g)

for a meromorphic function g(z)^0 and the above lemma, it gains our purpose
to estimate the characteristic function of a logarithmic derivative by the count-
ing function with respect to the zeros of a homogeneous differential polynomial.
Our method to obtain such a result is based on arriving at a homogeneous
linear equation in gf and g after a linearization of g"g—ag'2. The term
"linearization" was introduced by M. Ozawa [5], and Mues [4], Ozawa, G.
Frank and others have made frequent use of this method. We now represent
the differential polynomial g"g—ag'2 by means of a Wronskian determinant

We have indeed for a constant a^C

(1.3) W((a-l)zg'(z)+g(z), g\z))=g''{z)g{z)-ag\z)2,

which we denote by Wa(z). That is a reason why we can treat this homo-
geneous differential polynomial Wa(z).

We shall naturally consider only the case where Wa(z) does not vanish
identically. Because if Wa(z)=0, two functions (a — l)zg'(z)+g(z) and g'(z) are
linearly dependent over C. Then there exist two constants Cλ and C2, at least
one of which is different from zero, such that an equation

(1.4) (C1(a-ϊ)z+Ci)gf(2)+C1g(z)=0

holds. If d ( α —l)2+C 2 =0, we have C 2 =0 and α = l . By (1.4) it thus follows
£(Z)ΞΞO, which is a contradiction. Hence unless g(z)=0, it is equal to
expί-CWCa+const.) if α = l (and thus C2Φθ), and g(z)=Cs(C1(a-l)z+C2y

ιna-1\
Cs<=—C — {0}, if aφl. If CiΦO in the latter case, the exponent — l/(α — 1) must
be an integer m (Φθ), say. The following is a summary of this trivial obser-
vation :

The meromorphic functions g(z) with the property Wa(z)=Q are reduced to
the next three: for a(Φθ), β<=C,

1°. g(z)=β, when a is any complex number;
2°. g(z)=exp(az+β), when α = l ;
3°. g(z)={azJcβ)m, when a=(m — l)/m with a non-zero integer m.
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2. Results

We shall prove the following theorem which gives a desired estimate of
the logarithmic derivative g'{z)/g(z).

THEOREM. Let g(z) be a non-constant meromorphic function and define a
homogeneous differential polynomial Wa(z) in g{z) for a complex number a by
(1.3). // Wa(z) does not vanish identically, then an inequality

(2.1) T(r, ̂ )^Aam{r, ξ
a {N(r, 0, , g)} + Ua(r)

holds as r—»°o, except for two cases (i), (ii) below. Here the constants Aa, Ba, Ca

depend only on the number a and satisfy

4, if aΦl, 1/2,

2, if α = l,

5, if aΦl, 1/2, 0,
2, if fl = l,
4, if a = 1/2,
1, ί/ α=0,

fl, flwύf also Ua(r) is a real-valued function on [0, oo) such that if we fix
the number a, then it satisfies

[log+r(r, ^ + {N(r, 0, Wa)+N(r, g)\ +log r],

if a* 1/2, 0,

0, W0)+N(r, ^)}+logr], // α=0,

θ

10(1), if α = l/2,

as r-><x> possibly outside a set Ea of r of finite linear measure depending on the
number a.

(i) When a —1/2, g(z)=az2jrβz+y, where a, β, γ are complex constants with
β2-4:aγ-£θ; and

(ii) when a — I, giz)—Cγe
λιZJrC2e

λ<ιZ, where λu h, Clf C2 are complex con-
stants with λιΦλ2 and C1-C2Φθ;
are the exceptions as mentioned above.

Remark. It is easy to see that g(z) as in the cases (i) and (ii) indeed fails
to satisfy the inequality (2.1). In fact:

(i). g(z)=az2+βz+γ gives Wί/2(z)=-(l/2Xβ2-4a7) (^0). Then we deduce

and

mix, g'/g)=o(X),

m{χ, W[/2/W1/2)=N(r, 0, Wί/2)=N(r, g)=0,

ί/i/s(r)=O(l)
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as r—»°°, while

T(r, g'/g)=m(r, g'/g)+N{r, g'/g)=e log

as r->cχD, with ε = l if a=0 and ε=2 if
(ii). In this case, W1(z)=(/(ι-λ2)2CίC2e

aι+λz)z, and that g(z) is an entire
function of order 1. Thus we have

w(r, g'/g)=O(\ogr),

m(r, WV>Wi)=O(logr),

J7(r, 0, ^ ) = i
and

f/1(r)=O(log r) as r-»oo .

Using an expression g(z)=Cίe
λ2Z{eai~λ2)z + C2/C1}, we are led to

T(r, g'/g)=N(r, 0, £)+O(logr)= J A * J

as r—>°° (see for example, Hayman [ 1 : p. 7]), however.

Our way to prove this theorem also applies to the following

COROLLARY. Besides the hypothesis of our theorem we assume that g{z) is
an entire function and that as r->°o, n.e.,

(2.2) mix, Wa)=o{m(r, g)}.

Then Wa(z) must be a constant (Ψθ) and g(z) is at least one of the following;
( i ) when α = l/2, g(z)=azz+βz+γ, where a, β, γ^C with β2-4aγ^0;
(ii) when α = l, g(z)=C1e

;ίz-\-Cze-λz

f where λ, Cu C 2 ^ Ξ C - { 0 } ; and
(iii) when aΦO, 1/2, g(z)=az+β, where a(Φθ), β^C.

Remarks Γ. If we further suppose that g(z) is of finite order p and Wa(z)
has the order λ satisfying λ<p, the case (ii) is the only possible one and then
ρ = l and Λ=0 (in particular, WΊ(z) is a constant). We may regard it as a
partial answer to a problem of A. Edrei (see Hayman [2: Problem 2.25]) when
f—gf there.

2°. Replacing the condition (2.2) by

T(r, Wa)=o{T(r, g)} as r->oo, n.e.,

we can prove this result for meromorphic functions with the property such that

N{r, g)=o{T(r, g)\ as r-*oo, n.e..
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3. Proof of Theorem: A Preparation

Because of Wa(z)^0, we can consider a second order linear ordinary dif-
ferential equation

(3.1)

with the coefficients

(3.2)

and

(3.3) Ha(z)=
Wa(z)

Since (3.1) is written as (W[wy (a — l)zg'+g, g'~}/Wa)=0, two functions
(a — l)zg'(z)+g(z) and g'(z) form a fundamental system of this equation. Firstly
for w=(a — l)zgf(z)+g(z) Equation (3.1) gives

(a-l)z{g"(z)+Ga(z)g*{z)+Ha(<z)g'(z))

+(2a-l)g»(z)+aGa(z)g'(z)+Ha(zMz)=Q.

Also for w=g'(z),

(3.4) g"(z)+Ga(z)g"(z)+Ha(z)g'(z)=O.

Together with (3.4) the first equation is reduced to

(3.5) (2a-ϊ)g"(z)+aGa(z)g'(z)+Ha(z)g(z)=0.

The two, (3.4) and (3.5), are called a linearization of the differential polynomial
Wa(z). Eliminating g/ff{z) and g"(z) from them we shall obtain an equation in
g'{z) and g(z). To do this, we differentiate both sides of (3.5) with respect to
z and get

(3.6) (2a-l)g'%z)+aGa(z)g»(z)+(aGa'(z)+Ha(z))g'(z)+Ha'(z)g(z)=0.

Using (3.5) and (3.6) we reduce Equation (3.4) to

(3.7) {a(2a-l)Ga'(z)+a(a-l)Ga(zT-2(a-l)(2a-l)Ha(z)}g'(z)

= -{(2a-l)Ha'(z)+(a-l)Ga(z)Ha(z)}g(z),

which is the homogeneous linear equation in g'(z) and g(z) as desired. For
the sake of simplicity, we denote the coefficients by φa(z) and φa(z), i. e.,

(3.8) φa{z):=a(2a-l)Ga'(z)+a{a-l)Ga{zT-2{a-\){2a-l)Ha{z),
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(3.9) φa(z):= -(2a-l)Ha'(z)-(a-l)Ga(z)Ha(z).

Then the above equation (3.7) is of the form

(3.10) Φa'g' = φa g.

Now it makes all the difference in methods whether or not φa^0.

4. Proof of Theorem: Case I where- φa^0

Since g^O, Equation (3.10) gives an expression of the logarithmic deriva-
tive, i. e.,

We shall now distinguish the cases about the value of a to study the value
distribution of meromorphic functions Ga, Ha, φa> and φa.

Subcase i. a is different from 0, 1/2, 1.
Using Equation (3.5) we have

(4.2) # α = - ( 2 α - l ) - ^ - α G β ~

Thus we apply Lemma to (4.2) and obtain

(4.3) m(r, G*)=m(r, -ψ-),

and

(4.4) m(r, Ha)=m(r,^{-(2a-l)^^-(2a-l)^-a

ύ2m{r,^)+m{r, Ga)+m(r, ^ - ) + O ( D

<2m(r, £)+m{r, ψ-)+ θ{\og*τ(r, |)+log r) ,

as r-̂ oo, n. e.. Since the poles of Wa occur possibly at those of g, we have

and thus

(4.5) N(r, Ga)=N(r, ^f-)=N{r, Wa)+N(ry 0, Wa)

^N{r, 0, Wa)+N(r, g).



LOGARITHMIC DERIVATIVE 385

Whenever Ha as well as Gα has a pole, Wa has a zero or g has a pole. Its
multiplicity is at most two as we see from (4.2). Thus

(4.6) N(r, Ha)^2{N(r, 0, Wa)+N(r, g)\.

If Ga does not vanish identically, an application of Lemma to (3.8) implies

(4.7) m{r, φa)^m(r, α G α { ( 2 α - l ) ^ + ( α - l ) G α } ) + m ( r , Ha)+O(l)

, Ha)+O{l)

, Ga)+m(r, Ha)+O {Iog+T(r, GJ+logr}

as r->oo, n. e.. This is also valid when Ga=0 so that φa — — 2{a — l)(2α — l)//α.
We see that Ha is not constantly equal to zero. In fact otherwise, ψa=0 by
(3.9) and therefore g'(z)=0 by (4.1), which is a contradiction. It follows from
(3.9)

(4.8) m{r, ψa)=m(r, - /

^m(r, Ha)+m(r, Gα)+O {log+7(r, Ha)+\ogr)

as r->oo;> n. e.. We can observe the poles of φa and φa similarly to those of
Ga and Ha as in (4.5) and (4.6), respectively, i.e.,

(4.9) N(r, φa)£2{N(r, 0, Wa)+N(r, g)),

and

(4.10) N{r, ψa)^{N{r, 0, Wa)+N(r, g)}.

From the estimates (4.7), (4.8), (4.9) and (4.10) we arrive at

Γ(r, φa)^2m(r, Ga)+m(r, Ha)+2{N(r, 0, Wa)+N(r, g)\

+O{log+T(r, Gα)+logr}
and __

T(r, φa)^m(r, Ga)+m(r, Ha)+3[N(r, 0, Wa)+N(r, g)}

+ O{log+T(r, //α)+logr}

as r->oo, n. e.. Also from (4.3), (4.4), (4.5) and (4.6),

T{r, Ga)<m(r, Wa'/Wa)+Ff(r, 0, Wa)+N(r, g)9

and _ _
T(r, Ha)^2m{r, g'/g)+m(r, Wa'/Wa)+2{N(r, 0, Wa)+N{r, g)}
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as r—>oo, n. e.. Combining them with the former two, we obtain the following
two estimates:

(4.11) T{r, φa)^2m{r, ^)+3m(r, ^)+2{JV(r , 0, Wa)+N(r, g)}

+ \og+{N(r, 0, Wa)+N(r, #

and

(4.12) T{r, ψa)£2m(r, ~)+2m(r, ^ )+3{JV(r , 0, Wa)+N(r, g)}

+ log+ {N(r, 0, Wa)+N(r, g

as r-»oo, n. e.. By virtue of (4.1) the characteristic function of g'/g is now
given by

£Πr, φa)+T(r,

Hence from (4.11) and (4.12) we conclude that

r ,^)+5{ iV(r , 0, Wa)+N(r, g)\

+ \og+{N(r, 0, Wa)+N{r, g)}+\ogr\

as r->oo, n. e., which is the inequality as claimed.
Subcase ii. a=0.
Then (3.8) becomes OQ——2HQ. Refining (4.4) in this case we have

<2m(ry ^ ) + θ{log+r(r, ^)+log Λ

as r-»oo, n. e.. Therefore this together with (4.6) leads to an estimate

Tir, φo)£ 2m{r, ̂ -)+2{N(r, 0, W0)+N(r, g)} +θ{log+τ(r, ^)+log r\
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as r—>oo, n. e.. On the other hand (3.9) becomes ψQ=Ho' + G0H0. It gives

w(r, φo)£m(r, H0)+m(r, G0)+m(r, ηf

+{Λf(r, 0, W0)+N(r, g)} + logr] ,

as r-><χ>, n. e. by (4.3) and (4.13), because of H0^0. Estimation of (4.10) is
now valid as well, so we have

T(r, &)£2ro(r,£)+ro(r,^-)+3{ff(r, 0, W0)+N(r, g)}

iV(r, 0, Wβ)+/7(r, g

as r ^ oo, n. e.. Hence we can estimate the logarithmic derivative in terms of
WQ by an inequality

f 0, WQ)+N{r, g)}

, 0, W0)+N(r, ^

as r->°°, n. e..
Subcase iii. α = l/2.
Then (3.8) becomes φι/2——(l/4)Gi/2

2. Since we have

m(r, φm)^

and

ί r, 0, Wί/2)+N(r, g)\

by (4.3) and (4.5), it follows

T(r, 01 / 2)^2m(r,^^)+2{iV(r, 0, Wι/t)+N(r, g)}.

Similarly (3.9) becomes φi/2=(l/2)G1/2Hι/2. Reconsidering (4.4) as a —1/2 we
refine it by

', Gι/2)
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By this and (4.3),

m(r, ψι/2)<ίm(r, Gι/2)+m(r, HU2)

which together with (4.10) gives

T(r, ψιl2)<m(rX)+2m(r,lζ^)+3{N(r, 0, Wm)+N{r, g)}.

Hence we are led to

τ(rX)<T(r, φm)+T{r, φilt)+O(\)

r, 0, Wut)+N(r, g

Subcase iv. α = l.
In this case Estimates (3.8) and (3.9) become φί=Gi' and φι——Hί

/, respec-
tively. Because of G / ^ 0 and H/^0 we deduce that

m(r, φΰύmir, GO+OClog+Πr, G,)+logr] ,

m(r, ψύ^mir, HL)+O[log*T(r, //J+logr] ,

as r—>oo, n. e., and

N{r, φύ=N{χ, GJ+Nir, Gι)=2N(r, GO,

N(r, ^)=Λ/(r, H^ i

Using (4.3), (4.4), (4.5) and (4.6) we get

m(r, φjίmζr, ^ ) + θ[log+m(r, ^ ) + l o g + {N(r, 0, W^+Nir, g)}+\og r],

+{iV(r, 0, J r ,

as r—>oo, n. e., and

, 0,

, 0, W,
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Then our desired estimate is of an inequality

r, 0, WJ

+ θ[[log+τ(r, ^ ) + log+m(r, ^ ) + l o g + {JV(r, 0, Wx)+N(r9 g)} + log r]

as r—>oo, n. e..

Hence in Case I the inequality (2.1) never fails to hold for any fixed num-
ber a.

5. Proof of Theorem: Case II where φa=Q

Since g^O, (3.10) is reduced to φa=0. Therefore the following two equa-
tions are given

(5.1) a{2a-l)Ga'{z)+a{a-l)Ga(zf-2{a-l){2a-l)Ha{z)=b,

(5.2) (2fl

We now distinguish the cases with respect to the value of a and determine
all the forms of g{z) to satisfy the two equations above.

Subcase i. α=0.
Then these become the equations HQ(z)=0 and Ho

/(z)-{-Go(z)Ho(z)=O, which
we can reduce to H0(z)=0. Applying this to (3.5) we see that g"(z)=0. This
is however the g(z) listed in §1, 3°, so that W0(z)=Q. Hence φQ cannot vanish
identically if a—Q.

Subcase ii. α = l/2.
Then Equations (5.1) and (5.2) become Gί/2(z)2=0 and G1/2(z)HU2(z)=0.

Using Equation (3.5) with α = l/2 and GI / 2(2)ΞΞ0 we get H1/2(z)=0 by
Applying these to (3.4) we see that ^ ' " ( ^ Ξ O , SO that

(1) g(z)=az2+βz+γ, where a, β, y^C.

For this g(z) we find

Wι/%(z)=w(jβz+τ,

Further the constants a, β, y must be taken as β2—AaγφO in (1) (and then
clearly Gιί2=H1/2=0). It is such a condition that immediately follows from the
negation of that in § 1, 3° with m—2 as well.

Subcase iii. a = l.
Then Equations (5.1) and (5.2) become G/(z)=0 and ///(Z)ΞΞO. Therefore
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we can obtain the functions g(z) to be determined as entire solutions of a
second order linear differential equation

(5.3) wff + k1w
/ + kow=0

with the constant coefficients kι and k0. Let λι and λ2 be the roots of its
characteristic equation λ2j

Γkιλ
JrkQ—0. If λι^λ2, a general solution of this (5.3)

is given by

(2) w=C1e
λi*+C2e

λ**

for arbitrary constants Clr C2. In order that W1(z)=W(w, w/)=C1C2(λι-λ2)
2'

exp{(λι+λ2)z} does not vanish identically, both C1 and C2 should differ from
zero. If λι=χ2—Xf say, a general solution to (5.3) has a form

(3) w=(C2z+Cx)eXz,

where Cx and C2 are arbitrary constants. For the w we have W(w, w')=
— C2

2exp(2λz). Hence it is sufficient for our purpose to choose a non-zero con-
stant C2 in (3). In this subcase g(z) must be of the form either (2) or (3) for
suitable constants d and C2.

Subcase iv. a is different from 0, 1/2, 1.

Firstly suppose that Ha(z)~0. Then Equation (3.5) gives

(5.4) (2a - l)£"(z)= - ag\z)G a(z)

and (5.1) also gives

(5.5) (2a-l)Ga'(z)+(a-l)Ga(z)2=0.

If Ga(z)=0, g"(z)Ξ=0 by (5.4), so that

(4) g(z)=az+β

for a(Φθ), β, CΞC. Then Wa(z)=-aa2φQ. Unless Ga~0, Equation (5.5) leads
us to

2 α - l 1

and then Equation (5.4) gives

"(z) a a 1
-Lra(Z)— — ~g'{z)~ 2a-l aKJ~~ a-l z-z0'

Therefore it follows

g'(z)=C(z-zor
a^a'1\ CeC-{0},

so that — α/(α —l)=m, say, is an integer different from 0, — 1, 1, and
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(5) g(z) ^

Noting α=m/(m + l) we see that ζΦO in order that Wa{z)— — aC%(z—zQ)m~ι

should not vanish identically.
After this we may suppose that Ha(z)^Q. By Equation (5.2) we obtain

(5 6) C (z)- 2 α ~ X H Λ Z )

Then (5.1) gives

a(2a-l)2 Ha»{z)Ha{z)-2Ha'{zY
a-l ' Ha(z)2

and thus

Ha»{z)Ha{z)-2Ha'{zf_ 2 ( f l - l ) 2

Ha{zf -β(2α-l)

Hence we deduce

α(2α-l) 1 n β c = r
Ha{z}- J^Λf ' ~{z-a){z-β) ' a ' β e C

In virtue of this expression we get

Oa(Z)- a-ί \z-a + z-βl

from Equation (5.6) and thus it follows from (3.2) that

(5.7) Wa(z)=C{(z-aXz-β)}-{2a-1^a-1)

for a non-zero constant C. Here —(2α —l)/(α —l)=m, say, is a number different
from —2, — 1, and 0, which is equal to an integer if aφβ and to half an
integer if a=β. Then we can transform (3.5) into an equation

( 5 . 8 ) ί . ( z

Therefore g(z) is able to posess the poles possibly at z—a or β. Let f(z) be
an entire function with f(a)=t=Q and f{β)Φ$, and both k and / be integers if
a-^β and half integers with k=l if a=β, such that

g(z)=(z-a)k(z-β)ιf(z).

Using Equation (5.8) we write
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8"tz) , _ , „ / ! , 1 \S'{z) (m+iXm+2)
g{z) κ'"^\z-a ' z-β* g(z)

and thus an expression

Wa{z) = ^ ω
g(z) m+2\g{z))

m+lf/g'(z)\* / 1 1 xg'(z) (^+2)2 I
" 2 IV / ^ "^Λ "^ β) () ^ (-a)(z-β)ϊm+2 IV #(*) / ^ "^Λz-α "^ z-β) g(z) ̂  (z-a)(z-β)

l-rn-2 f\z)\

β / ( )~~ m+2V z-a ^ z-β ^ f(z) Λz-a^ z-β f{z) >'

On the other hand, (5.7) gives

W a(z) C

~g(zT = Jz-a)2k~m{z -β)u-™f(zT

In the case where aφβ, g{z) is expressed by

g{z)=ca(z-a)k {l + O{z-a)}, ca^C-{0}

in a neighborhood of z—a. Substituting this into the equation (5.8) and com-
paring the coefficients of the term (z—a)k~2, we get a characteristic equation
k(k—m—2)—0, so that k can be of the value 0 or m+2. Then it immediately
follows that m=— 3 and k = — l, when we compare the behavior of two ex-
pressions above for Wa(z)/g(z)2 in a neighborhood of z—a. In fact we see
that 2k— m—\ in both cases of k—Q and k=m+2. We have m——3 when
&r=m+2, while m— — \ when k—ΰ. The latter is now excluded. The same is
true of the number /. Hence a—2 and

* w (z-a)(z-β)

if aφβ. Concerning f(z) we have

{z-a){z-β)f{zf

and thus

Differentiating both sides of this, we get an identity

(z-β)f"(z){(z-a)f'(z)-f(z)}=-(z-a)f"(z){(z-β)f'(z)-f(z)\.

Unless f"(z)=0,
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{z-β){{z-a)f'{z)-f{z)}=-{z-a){{z-β)f'{z)-f{z)}

and therefore

This is impossible, so that f»(z)=0, i.e., f(z)=D(z—γ) where D(=C—{0} and
r<ΞC-{ayβ}. Then

which satisfies the condition (5.7) with C-— 2D\γ—a)(γ—β).
Next we shall consider the case where a=β. Equation (5.8) is then equal

to

Here we make a similar discussion to the above with

g(z)=(z-a)ikf(z),

and obtain a characteristic equation

2£(2*-l)-2fe 2(m+l)+(m+l)(m+2)=0,

and so 2&=ra+l or 2&=m+2. Since we now have

Wa(z) = C m + 1 ί2£-m-2 /'J>)j *

^ ) 2 (Y-ay^-^fiz)2 m + 2 l " z - α 7U) J '

the latter, 2^=m-h2, gives immediately a contradiction as 2k—m-£θ. For the
former case where 2k=m+l the behavior of two expressions above for
Wa{z)/'g(z)2 is compatible. Then f(z) satisfies the relation

Differentiating this we have fff(z)=Of or f(z)=D(z-γ), D^ΞC-{0\, γ^C-{a}
again. Hence if a=β, α=(m + l)/(m+2) and

(7) g(z)=D(z-a)n+1(z-γ),

provided that m is an integer different from 0, —1, and —2. In order that
g(z) may satisfy (5.7), i.e.,

Wa(z)=C(z-a)2m,

we choose the constant C = — aD\γ—a)2.

We have discussed all the possible forms that g(z) has in Case II:
(1) when α = l/2, g(z)=az*+βz+γ, where β2-4:aγφ0;
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(2) when α = l, g{z)=C1e^'+Cie^', where λ^λ* and d d ^ O ;
(3) when α = l, g ( z ) = ( d * + d y * , where C2Φθ;
(4) when α^O, 1/2, 1, g(z)=C1(z-a), where d ^ O ;
(5) when α=(m—l)/m, g(2)=C 2 {0z-α) w -d}, where d d = £ θ and

1, 2;
(6) when α=2, ^(z)=(C1(2-7")/U-α)(^--i8))ί

 w h e r e d ^ O , and α, /3, r are
mutually distinct

(7) when α=(m + l)/(m+2), ^(z)=Ci(z—«)m+1(z—7), where C^O, α-^^ and

m^O, - 1 , - 2 ,
provided that d , C2f ^1, A2, ^, α, 8̂, r ^ C and m is an integer. As their Wa(z)
we obtain also

(1) Wm(z) =
(2) ^ ( z ) = C
(3) Wx(z)=-
(4) lfα(2)Ξ-
(5) ^ ( m - 1 ) / m

(6) Wt(z)={-
(7) ^ ( m + 1 , , ( B

Finally we need to examine whether the inequality (2.1) holds or not in
each case above. The function Ua(r) in (2.1) grows at least as rapidly as
O(logr) for r->oo, n. e.. Therefore (2.1) is satisfied by g(z) given in (4), (5),
(6) and (7) as rational functions. As proved in Remark 2° in §2, two possi-
bilities (1) and (2) are the very exceptions. With g(z) as in (3) it is easily
shown that

m{r, g'/g)=O{l), m{r, W7/Wi)=0(l),

N(r, 0, W^Nir, g)=0,
and

T{r, g'/g)=\ogr+O{l),

as r->oo. Then Ua(r)=O(\og r) as r tends to infinity, so Inequality (2.1) also
holds. This completes the proof of the theorem.

Remark. Mention needs to be made of rational functions. Reconsidering
the above proof in Case I as a rational function g(z)t we see that all of m(r, Ga),
m(r, Ha), m{r, φa) and m{r, φa) grow possibly in the degree of oil) with the
aid of (1.2) in Lemma. Inequality (2.1) can be therefore sharpened by

(5.9) T ( r , ^ 5 { f f ( r , 0, Wa)+N{r, g

Then there exist such the rational functions g(z) as never satisfy (5.9) only in
(3) with Λ=0, (4), (5) with m>5 or m < - 4 , as well as (1) of Case II. In fact,
since Inequality (5.9) equals
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N(r, 0, g)<5N(r, 0, Tf J+4JV(r, g)+O(l)

in virtue of the equation

^)(r,^)=N(r, 0, g)+N(r, g)+o(ϊ),

this fact can be shown by studying these counting functions in each occasion.
In (5) for example, if m>2,

N(r, 0, g)=m log r, N(r, 0, T^α)=log r, N(r, g)=0

and if ra<0,

JV(r, 0, g)=-m log r, JV(r, 0, ^ α ) s 0 , N(r, g)=\og r

for sufficiently large r. The equality of (5.9) occurs if m=5 or m—— 4.

6. Proof of Corollary

In order to prove this result we shall return to the proof of Theorem. At
first we are concerned about Case I in Section 4. Assume that φa(z)^0. The
present assumption (2.2) reduces the equations (4.3) and (4.4) to

m{r, Ga)=m(r,~^-)=S(r, Wa)=S(r, g)

and
mir, Ha)=S(r, g)+S(r} tΓα)=S(r, g),

respectively. Similarly (4.5) and (4.6) become

N(r, Ga)<N(r, 0, Wa)=m(r, Wr

β)+O(l)=S(r, g)
and

N(r, Ha)£2N(r, 0, Wa)=S{r, g).

All of them hold independently of the value of cn=C. Therefore it follows
also for both ώa &nd ψa that

T(r, φa)=S(r, g) and T(r, ψa)=S(r, g),

so that

(6.D

Using a relation

W

©'-<-«©*'
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we obtain

2T(r, g)<T(r, Wa)+τ(r, ( ^ ) ' - ( α - l ) ( ^

Then from (2.2) and (6.1) we conclude

T(r,g)=S(r,g),

which is impossible. Hence it must be hold φa(z)=0.
Concerning the possibilities in Case II we have made a list in Section 5.

We shall pick out those what give entire functions g(z) with the property (2.2).
Evidently (5), (6) and (7) are beside our object. If g(z) is a polynomial, Wa(z)
must be a constant. Possibilities (1) and (4) come under this heading. If λί-\-λ2

Φθ in (2), then W1(z)=C1C2(λ1—λ2)
2eai+λ^* is an entire function of order one

and

m(r, W,)= i ^ 1 + ^ 2 ' r+O(l) as r-

(See Hayman [1], p. 7.) A similar observation shows

m{r, g)<{\λι\ + \λ2\)-+O{l) as r

Therefore (2.2) fails to hold since

r-«, m(r, g) |.

When yt!+>l2=0, WΊ(z) is a constant and g(z) is such a transcendental entire
function that satisfies all the assumptions in Corollary. Functions in the last
remaining (3) can satisfy Condition (2.2) only if Λ=0. We have thus proved
the corollary.
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