K. TOHGE
KODAI MATH. J.
16 (1993). 379—397

THE LOGARITHMIC DERIVATIVE AND A
HOMOGENEOUS DIFFERENTIAL POLYNOMIAL
OF A MEROMORPHIC FUNCTION

By KAzuyA TOHGE

1. Introduction

In this note, by a meromorphic function we mean a function meromorphic
in the complex plane C. We shall here assume that the reader is familiar
with the standard notation and terminology of value distribution theory (see
for example, Hayman [1] or [3]). For a meromorphic function g(z), which
does not vanish identically, we can consider the logarithmic derivative g’(z)/g(z).
It plays an important role in Nevanlinna’s theory of meromorphic functions.
The following occupies the main part.

LEMMA. Let g(z) be a meromorphic function. If g(z) is transcendental, we
have

g\ _ N
(1.1) m(r, E)—O(log T(r, g)+log 7)

as r—oo through all values if g(z) has finite order and as r—oo outside a set of
r of finite linear measure otherwise. If g(z) is a rational function and not
identically equal to zero,

g\ _
1.2) m(r, E)_oa)
as r—oo through all values.

For the sake of simplicity, we shall use the symbol “n.e. (nearly every-
where)” instead of tediously saying that possibly outside a set of » of finite
linear measure.

W. K. Hayman pointed out the necessity of treating a homogeneous differ-
ential polynomial g”g—2g’? of an entire function g(z) in his famous book [1;
§3.6, p. 77]. Concerning this proposal E. Mues [4] studied an influence of the
zeros of g”g—ag’® with a complex number a on the entire function g(z) itself.
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He proved that if g”g—ag’® has no zero, then g(z)=exp(az+p) are the only
transcendental functions with this property if a#1. This result settled a ques-
tion of Hayman made in [1]. Our purpose of this note is to give an estimate
of the zeros of g(z) by those of the homogeneous differential polynomial g”g—
ag’®. With the equation

/

T(r, %)zm(r, %)-I—N(?’, 0, 2)+N(, g

for a meromorphic function g(z)=0 and the above lemma, it gains our purpose
to estimate the characteristic function of a logarithmic derivative by the count-
ing function with respect to the zeros of a homogeneous differential polynomial.
Our method to obtain such a result is based on arriving at a homogeneous
linear equation in g’ and g after a linearization of g”g—ag’®?. The term
“linearization” was introduced by M. Ozawa [5], and Mues [4], Ozawa, G.
Frank and others have made frequent use of this method. We now represent
the differential polynomial g”g—ag’® by means of a Wronskian determinant

W(fu fZ):fleI—flle .

We have indeed for a constant a=C

(1.3) W((a—1)zg'(2)+g(2), g'(2)=g"(2)g(z2)—ag'(z)?,

which we denote by W,(z). That is a reason why we can treat this homo-
geneous differential polynomial W ,(z).

We shall naturally consider only the case where W,(z) does not vanish
identically. Because if W,(2)=0, two functions (a—1)zg’(z)+ g(z) and g’(z) are
linearly dependent over C. Then there exist two constants C, and C,, at least
one of which is different from zero, such that an equation

(1.4) (Ci(a—1z+C,)g'(2)+ Cig(2)=0

holds. If C,(a—1)z+C,=0, we have C,=0 and a=1. By (1.4) it thus follows
g(z)=0, which is a contradiction. Hence unless g(z)=0, it is equal to
exp(—C,z/C,~+const.) if a=1 (and thus C,+0),and g(z)=C3(C,(a—1)z+ C,)~ /@,
Css—C— {0}, if a+1. If C,#0 in the latter case, the exponent —1/(a—1) must
be an integer m (+0), say. The following is a summary of this trivial obser-
vation :

The meromorphic functions g(z) with the property W ,(z2)=0 are reduced to
the next three: for a(+0), f=C,

1°. g(z)=pB, when a is any complex number ;

2°. g(z)=exp(az+p), when a=1;

3°. g@)=(az+pB)™, when a=(m—1)/m with a non-zero integer m.
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2. Results

We shall prove the following theorem which gives a desired estimate of
the logarithmic derivative g’(z)/g(2).

THEOREM. Let g(z) be a non-constant meromorphic function and define a
homogeneous differential polynomial W,(z) in g(z) for a complex number a by
(1.3). If W.(2) does not vanish identically, then an inequality
w,’ — —

)+ Ca AN, O, Wo)+N(r. )} +Ua(r)
holds as r—oo, except for two cases (i), (ii) below. Here the constants A,, B, C,
depend only on the number a and satisfy

ey 7(r %)gAum(r, %>+ Bm(r,

4, if a+1, 1/2, 5 if a#1, 1/2, 0,
2, if a=1,
<A, < = <B,< <C,<
0 A8 2, of a=1, 0<B.< 4 if a=1/2, 0<C,<5
1, if a=1/2, 1, if a=0,

for any a, and also U,(r) 1s a real-valued function on [0, o) such that if we fix
the number a, then it satisfies

7

+ g + Wa + (AT, N
IO[Iog T(r, g)—i—log m(r, Wa)+log {N(r,0, W )+ N(r, g)} +log r],
if a+1/2, 0,
+ g/ + (AN N : —
01og T (1, £ ) +1og" (N (r, 0, W) +-N(r, gl +logr], if a=0,
o), if a=1/2,

Udn)= [

as r—oo possibly outside a set E, of r of finite linear measure depending on the
number a.

(1) When a=1/2, g(z)=az*+Bz+7r, where a, B, 1 are complex constants with
B:—4ayr+0; and

(ii) when a=1, g(z2)=Ce*1*+C,e*2?, where 2., A, C,, C, are complex con-
stants with A,# 2, and C,-Cy#0;
are the exceptions as mentioned above.

Remark. It is easy to see that g(z) as in the cases (i) and (ii) indeed fails
to satisfy the inequality (2.1). In fact:

(D). g(@)=az’+PBz+71 gives W, 5(2)=—(1/2)(f2—4a7) (#0). Then we deduce
m(r, g'/g)=o(1),
m(r, Wie/Wy)=N(r, 0, W,2)=N(r, 9)=0,

and
U.(r)=0(1)
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as r—oo, while
T, g'/g)=m(r, g’/2)+N(r, g’/g)=¢log r+o(1)

as r—oo, with e=1 if a=0 and ¢=2 if a+0.
(ii). In this case, W(2)=(4,—2,)?C,Cse*1**»? and that g(z) is an entire
function of order 1. Thus we have
m(r, g'/g)=0(log r),
m(r, W,/ /W,)=0(log 7),
N(ry 0’ W1>=N(T, g)EO;
and
U,(r)=0(log r) as r—oo
Using an expression g(z)=_C,e*2*{e*1-*»24C,/C,}, we are led to

T(r, g'/2)=N(r, 0, 2)+0(log r)= Jz‘;xz_lﬂrO(log r)

as r—oo (see for example, Hayman [1: p. 7]), however.

Our way to prove this theorem also applies to the following

COROLLARY. Besides the hypothesis of our theorem we assume that g(z) is
an entire function and that as r—oo, n.e.,

(2.2) m(r, Wa)=o0{m(r, g)}.

Then W (z) must be a constant (+0) and g(z) is at least one of the following;
(1) when a=1/2, g(z)=az*+PBz+7, where a, B, r=C with f*—4ay=0;
(i) when a=1, g(z)=C,e**+Cye*?, where 2, C,, C,=C— {0} ; and
(iii) when a+0, 1/2, g(z)=az+B, where a(+0), B=C.

Remarks 1°. If we further suppose that g(z) is of finite order p and W,(z)
has the order 2 satisfying A< p, the case (ii) is the only possible one and then
o=1 and A=0 (in particular, W,(z) is a constant). We may regard it as a
partial answer to a problem of A. Edrei (see Hayman [2: Problem 2.25]) when
f=g’ there.

2°. Replacing the condition (2.2) by

T(r, Wa)=0{T(r, g)} as r—oo, n.e.,
we can prove this result for meromorphic functions with the property such that

N(r, g)=0{T(r, g)} as r—oo, 1. e..
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3. Proof of Theorem: A Preparation

Because of W,(z)=£0, we can consider a second order linear ordinary dif-
ferential equation

(3.1) w” +G (2w +H,(z2)w=0
with the coefficients
_ _WJ@
(3'2) Ga(z)_ Wa(z) »
and
(3.3) H. (=" Ue—Dzg' @)+ g2}, g"(2))

Wa(2)

Since (3.1) is written as (W{[w, (a—1)zg’+g, g’1/W,)=0, two functions
(a—1)zg’(z)+g(z) and g'(z) form a fundamental system of this equation. Firstly
for w=(a—1)zg’(z)+ g(z) Equation (3.1) gives

(a—1)z{g"(2)+Go(2)g"(2)+ Ha(2)g' (2)}
+2a—1)g"(2)+aG.(2)g'(2)+ Ha(2)g(2)=0.
Also for w=g'(2),
(34) 8"(2)+G(2)g"(2)+ Ha(2)g'(2)=0.

Together with (3.4) the first equation is reduced to

3.5) (2a—1)g"(2)+aG .(2)g'(2)+ Ha(2)g(2)=0.

The two, (3.4) and (3.5), are called a linearization of the differential polynomial
W.(z). Eliminating g”(z) and g”(z) from them we shall obtain an equation in
g’(z) and g(z). To do this, we differentiate both sides of (3.5) with respect to
z and get

(3.6) (2a—1)g"(2)+aGq(2)g"(2)+(aG o' (2)+Ha(2)g'(2)+ H,'(2)g(2)=0.

Using (3.5) and (3.6) we reduce Equation (3.4) to

3.7 {a2a—1)G./(2)+a(a—1)G(2)*—2(a—1)2a—1)H,(2)} g'(2)
=—{(2a—1DH.(2)+(a—1)Go(2)H.(2)} g(2),

which is the homogeneous linear equation in g’(z) and g(z) as desired. For
the sake of simplicity, we denote the coefficients by ¢.(z) and ¢.(z), i.e.,

3.8 6.(2) 1= a(2a—1)G ./ (2)+a(a—1)G (2)*—2(a—1)2a—1)H,(2),
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(3.9) do(2):= —(2a—1)H, (2)—(a—1)G(2)H,(2).
Then the above equation (3.7) is of the form

(3.10) Go-8=¢a-g.

Now it makes all the difference in methods whether or not ¢,=0.

4. Proof of Theorem: Case I where ¢,%0

Since g0, Equation (3.10) gives an expression of the logarithmic deriva-
tive, i.e.,
g _ Y
g 0.
We shall now distinguish the cases about the value of a to study the value
distribution of meromorphic functions G,, Ha, ¢., and ¢,.

Subcase i. a is different from 0, 1/2, 1.
Using Equation (3.5) we have

4.1)

g// gJ
4.2 H,=—2a—1)=——aG,=
4.2) ( ) g 2

() ) e

Thus we apply Lemma to (4.2) and obtain

(4.3) m(r, Ga)=m(r, V;/V“/> ,

and

4.4) m(r, H)=m(r, %{—(2(1——1) (é/ ,//‘g —(2a—1>% ~aG.})
<om(r, %)—i—m(r, Ga)+m(r, (i; ,//é;)' )+om

W
Wa

<om(r, %)-{—m(r, )+ 0{1og+T(r, £)+1og r} ,

g

as r—oo, n.e.. Since the poles of W, occur possibly at those of g, we have
N(@r, Wo)<N(r, g),

and thus

W,

W,

<N, 0, W)+N(, 9).

4.5) N(r, Go=N(r, 72 )=N(r, W)+ N(r, 0, W)
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Whenever H, as well as G, has a pole, W, has a zero or g has a pole. Its
multiplicity is at most two as we see from (4.2). Thus

(4‘6) N(ry Ha)éz{]\_](ry 0) Wa)+N(r) g)} .
If G, does not vanish identically, an application of Lemma to (3.8) implies

Go
¢ Ha=DGaf ) m(r, H)+0W)

@n  me, go=m(r, aGa{(Za—l)

<am(r, Gotm(r, S ) mir, Hot0W)

<L2m(r, Go)+m(r, Hy)+0{log*T(r, G,)+log 7}

as r—oo, n.e.. This is also valid when G,=0 so that ¢,=—2(a—1)(2a—1)H,.
We see that H, is not constantly equal to zero. In fact otherwise, ¢,=0 by
(3.9) and therefore g’(z)=0 by (4.1), which is a contradiction. It follows from
(3.9

4.8) m(r, gba):m(r, —H,,{(Za—l) IZI —|—(a—1)Ga})

<m(r, Hy)+m(r, Go)+0 {log*T(r, H,)+log r}

as r—oo, n.e.. We can observe the poles of ¢, and ¢, similarly to those of
G, and H, as in (4.5) and (4.6), respectively, i.e.,

(4'9) “V(r; ¢0~)§2{N(ry 0’ Wa)+1v(r) g)})
and
(4.10) N(r, o)=3{N(r, 0, Wo)+N(r, g)}.

From the estimates (4.7), (4.8), (4.9) and (4.10) we arrive at
T(r, §a)<2m(r, Go)+m(r, Ho)+2{N(r, 0, Wo)+N(r, )}

+0{log*T(r, Go)+log r}
and _
T(r, go)<m(r, Go)+m(r, H)+3{N(r, 0, W,)+N(r, g)}

+0 {log*T(r, H,)+1log r}
as r—oo, n.e.. Also from (4.3), (4.4), (4.5) and (4.6),

T(r, G)<m(r, Wo'/W)+N(r, 0, W)+ N(r, g),
and
T(r, H)<2m(r, g’/ @) +m(r, Wo'/W)+2{N(r, 0, W)+ N(r, g)}

+0{log*T(r, g’/g)+log r}
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as r—oo, n.e.. Combining them with the former two, we obtain the following
two estimates:

w7, gosam(r, L) +an(r, G +2(8 0, 0, W+ NG, )

+ 0[10g“T<r, gE/)+log+m(r, V;,)

+log* {N(r, 0, Wo)+N(r, 2)} +log r]

and
4.12) T(r, p)<2m(r, %)—I—Zm(r, %')H{N(n 0, Wo)+N(r, g
+0[log+T(r, %)-l—log +m(r, v;,“/ )

+log* (N (7, 0, W)+ N(r, )} +logr]

as r—oo, n,e.. By virtue of (4.1) the characteristic function of g’/g is now
given by

7(r, £)<T0, 0470, $+00).

Hence from (4.11) and (4.12) we conclude that

7(r, £)stm(r, £)+5m(r, 2 )+5(8, 0, W+, o)

7

+ O[IOg +T(r, %)—Hog *m(r, V;/“a )

+log*{N(r, 0, W)+ N(r, g)} +log r]

as r—oo, n,e., which is the inequality as claimed.
Subcase ii. a=0.
Then (3.8) becomes ¢,=—2H,. Refining (4.4) in this case we have

g oy &
§2m(r, g)-l— O«{log T(r, g)+10g r}
as r—oo, n.e.. Therefore this together with (4.6) leads to an estimate

7, g0)= 2m(r, £) 42487, 0, W+ N, g +0{iog T (r, £ ) +10g 1}
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as r—oo, n.e.. On the other hand (3.9) becomes ¢,=H,’+GH,. It gives

mir, o Smir, H+mir, Gotm(r, 20) o)

I:/VVO )+O[log*T(r, g)

§2m(r, %)—i—m(
+log*{N(r, 0, W)+N(r, ) +logr|,

as r—oo, n.e. by (4.3) and (4.13), because of H,7#0. Estimation of (4.10) is
now valid as well, so we have

T(r, po)<2m(r, )+m( >+3{N(r 0, Wo+N(r, g)

+0[1og+T(r, %)+10g+{ﬁ(r, 0, W)+ N, o)} +log 7’]

as r—oo, n.e.. Hence we can estimate the logarithmic derivative in terms of
W, by an inequality

V4518, 0, Wo+N(r, o)

T(r, %)gélm(r, %)+m(1’, VVI[//”
+O[log+T<r, %’)+1og+ (N, 0, Wo)+N(r, @)} +log r]

as r—oo, n,e..
Subcase iii. a=1/2.
Then (3.8) becomes ¢,,,=—(1/4)G,,,*. Since we have

Wl/; )

m(r, ¢1/2) <2m(r, Guz)—Zm( W

and
N(r, ¢12)=2N(r, Gi;n)<2{N(r, 0, W)+ N(r, &)}

by (4.3) and (4.5), it follows

T(r, gus2m(r, 22 E)H2N G, 0. W+ N, 2

Similarly (3.9) becomes ¢1/2:(1/2)Gl/2H1/2. Reconsidering (4.4) as a=1/2 we
refine it by
m(r, Huz)ém( g—)+m(r, Gir2)

g
(L) ().
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By this and (4.3),
m(r, Q) Em(r, Gyp)+m(r, Hip)

<l L) san(c 1),

which together with (4.10) gives

(r, puoy=m(r, —) 2n(r, S 43N G, 0, W+ N 6, ).

Hence we are led to

(. $)ST, $ua+ T, gua+0M

<m(r, —)+4m( WI/;)+5{1\7(7', 0, Wo)+N@, @t +0Q).

Subcase iv. a=1.
In this case Estimates (3.8) and (3.9) become ¢,=G,’ and ¢,=—H,’, respec-
tively. Because of G,/%#0 and H,’#0 we deduce that

m(r, g)=m(r, G)+O0[log*T(r, Gi)+log r],

m(r, p)=m(r, H)+O[log*T(r, H)+log ],
as r—co, n.e., and

N(r, )=N(r, GO+N(r, G)=2N(r, G,),

N(r, ¢)=N(r, H)+N(r, H)=3N(r, H,).
Using (4.3), (4.4), (4.5) and (4.6) we get

wy . w,’ i 7
m(r, ¢,)§m<r, W)+O[log m(r, WI—)—Hog {N(,0,W)+N(r, g)}+log r],

m(r, ¢1)<2m(r —)—I—m( I&;:)

+0[log +T(r, %’) + log*m(r, I;/VVI: )
+log*{N(r, 0, W)+N(r, g)} +log r]

as r—oo, n.e., and
N(r; ¢1)§2{N(rr O: W1)+N(rr g)})
N(r, p)<3{N(r, 0, W)+N(r, g)}.
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Then our desired estimate is of an inequality

’

)§2m<r, %)+2m(r, W, >+5{N(r, 0, W)+N@, o)}

1

“

T(r, ‘2

/7

+O[1og*T(r, %)Hog*m(r, %/,‘—)Hog* {N(r,0,W)+N(r, g)} +log r],

as r—co, n.e..

Hence in Case I the inequality (2.1) never fails to hold for any fixed num-
ber a.

5. Proof of Theorem: Case II where ¢,=0

Since g0, (3.10) is reduced to ¢,=0. Therefore the following two equa-
tions are given;

(5.1 a(2a—1)G,/(2)+a(a—1)G.(2)—2(a—1)2a—1)H.(2)=0,
(5.2) (2a—1)H, (2)+(a—1)G (2)H,(2)=0 .

We now distinguish the cases with respect to the value of a and determine
all the forms of g(z) to satisfy the two equations above.

Subcase i. a=0.

Then these become the equations H,(z)=0 and H,(z)+G(z)H,(z)=0, which
we can reduce to H,(z)=0. Applying this to (3.5) we see that g”(z)=0. This
is however the g(z) listed in §1, 3°, so that W,(z)=0. Hence &, cannot vanish
identically if a=0.

Subcase ii. a=1/2.

Then Equations (5.1) and (5.2) become G,;(2)?=0 and G,,(2)H,,:(2)=0.
Using Equation (3.5) with a=1/2 and G,,(2)=0 we get H,,(z)=0 by g=0.
Applying these to (3.4) we see that g”(z)=0, so that

1 g(z)y=az*+Bz+7, where a, 8, r=C.

For this g(z) we tind
1 1
W!/Z(Z)zW(§Bz+7, 2az+ﬁ>z—§(ﬁz-—4a7>.

Further the constants «, B, r must be taken as f*—4ayr+0 in (1) (and then
clearly G,,=H,;;,=0). It is such a condition that immediately follows from the
negation of that in §1, 3° with m=2 as well.

Subcase iii. a=1.
Then Equations (5.1) and (5.2) become G, (z)=0 and H/,/(z)=0. Therefore
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we can obtain the functions g(z) to be determined as entire solutions of a
second order linear differential equation

(5.3) w”+k,w +kow=0

with the constant coefficients 2, and k,. Let A, and A, be the roots of its
characteristic equation A2+k,;4+k,=0. If 1,+2,, a general solution of this (5.3)
is given by

) w=C,e*1*+ C,yet?*

for arbitrary constants C,, C,. In order that W (z)=W(w, w’)=C,Cy(A,—A:)**
exp{(4,+4:)z} does not vanish identically, both C, and C, should differ from
zero. If 2,=1,=1, say, a general solution to (5.3) has a form

&) w=(Cyz+C,)e’*,

where C, and C, are arbitrary constants. For the w we have W(w, w’')=
—C,*exp(24z). Hence it is sufficient for our purpose to choose a non-zero con-
stant C, in (3). In this subcase g(z) must be of the form either (2) or (3) for
suitable constants C, and C,.

Subcase iv. a is different from 0, 1/2, 1.
Firstly suppose that H,(z)=0. Then Equation (3.5) gives

5.4) (2a—1)g"(2)=—0ag'(2)G o(2)
and (5.1) also gives

(5.5) 2a—1)G./(2)+(a—1)G,(2)*=0.
If G.(2)=0, g”(z)=0 by (5.4), so that

) g(z)=az+p

for a(+0), B, =C. Then W, (z)=—aa’+0. Unless G,=0, Equation (5.5) leads
us to

2a—1 1 B
Ga(z)’_ a_l -Z'_Zo bl ZOCC}
and then Equation (5.4) gives
gz __ _a _ a1
g2~ 2a-—1 Gol2)= a—1 z—z

Therefore it follows
g'(2)=C(z—2z) %", CeC—{0},

so that —a/(a—1)=m, say, is an integer different from 0, —1, 1, and
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_ C S \m+l__ — ("
(5) g(Z)—m+1 {(z—2) ¢, L=
Noting a=m/(m+1) we see that {+#0 in order that W,(z)=—aC¥{(z—z,)™*
should not vanish identically.
After this we may suppose that H,(z)#0. By Equation (5.2) we obtain

_2a-—-1 H’(z)

(5.6) Gula=— "7

Then (5.1) gives

2a—1)2a—DH,(z)=— 2V (AL Qy | eBam L) Ho'2)y:

a—1 \H,(2) a—1 \H,(2)
a(2a—17 H."(2)H.(2)—2H.' (2
- a—1 Hy(2)? ’
and thus
(L B2 2oy
Hu(z)) — Hu(2) “aa-1)
Hence we deduce
Ho(2)= a2a—1) 1 a, BC

(a—17  (z—a)z—p)’
In virtue of this expression we get

2a—1( 1 1
Ca@d="7 { —a+z—ﬁ}

from Equation (5.6) and thus it follows from (3.2) that

5.7) W (2)=Cllz—a)z— ﬂ) —(2a-1)/(a-1)

for a non-zero constant C. Here —(2a—1)/(a—1)=m, say, is a number different
from —2, —1, and 0, which is equal to an integer if a#§ and to half an
integer if a=pB. Then we can transform (3.5) into an equation

(m+1)(m+2)
(z—a)(z—| 19)
Therefore g(z) is able to posess the poles possibly at z=a or 8. Let f(z) be

an entire function with f(a)#0 and f(B8)+=0, and both 2 and / be integers if
a+=f and half integers with 2=/ if a=g, such that

gR)=(z—a)*(z—PB) f(2).

Using Equation (5.8) we write

(5.8) g"(2)— <m+1>(~_~+——) @)+ 8(2)=0.
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g"(z) =(m+1)< 1 1 \&'@@ _(mt1(m+2)

2(2) —a =B  G—aNe—p)
and thus an expression

Wa(z) _g"(z) m+1/g'(2z) )-’-
g@r — gla) m+2\ g2)

__ mt+lpg@y 1 1 \g'(2) (m+2)*
= m—{—Z{ g(z)) (m+2)(; a T 7=8) 42 (z—a)(z——ﬁ)}

__m+1l/g'(2) _m+2)< g'(2) __m+2>
T om+2\glz) z—a/\glz) z—8

_m—l—l(k—m—z l f'(2) k I—m—2  f'(2)
m+2\ z—a + z—P + f(2) Xz—a z—f + f(2) )
On the other hand, (5.7) gives

Wal2) C
g2} T (z—a)* ™z — B f(2)*

In the case where a#f, g(z) is expressed by

g(2)=cq.(z—a)* {1+0(z—a)}, ca=C— {0}

in a neighborhood of z=a. Substituting this into the equation (5.8) and com-
paring the coefficients of the term (z—a)*~?, we get a characteristic equation
k(k—m—2)=0, so that % can be of the value 0 or m+2. Then it immediately
follows that m=—3 and k=-—1, when we compare the behavior of two ex-
pressions above for W,(z)/g(z)* in a neighborhood of z=a. In fact we see
that 2k—m=1 in both cases of 2=0 and k=m+2. We have m=—3 when
k=m+2, while m=—1 when £=0. The latter is now excluded. The same is
true of the number /. Hence ¢=2 and

_ fla
8la)= (z—a)(z—B)

if @#p. Concerning f(z) we have

c 1 L @y 1@
e Ty e T e (B

and thus

@)

{z=p) /" (D)= f( Hz—a) (&)~ f(R} === (+0).
Differentiating both sides of this, we get an identity
(z=B)f"(@{(z—a) f'(2)— f(2)} =—(z—a) f"(2) {(z—B) [ "(2)— f(2)} -
Unless f”7(z)=0,

[\
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(z=P)z—a) f'(2)— f(2)} =—(z—a) {(z—B) f'(2)— [ (2)}
and therefore
(a—p)f(a)=0.
This is impossible, so that f7(z)=0, i.e., f(z)=D(z—7) where D=C — {0} and
r=C—{a, B}. Then

_ DE—p
(6) g(z)'— (Z—C(XZ—‘B) ’

which satisfies the condition (5.7) with C=—2D*y—a)(r—p).
Next we shall consider the case where a=f. Equation (5.8) is then equal
to

2m+1) o (mtDm+2)

z—a (z—a)?

8" (z)— &(2)=0

Here we make a similar discussion to the above with

g(z)=(z—a)* f(2),
and obtain a characteristic equation
2k(2k—1)—2k -2(m4+1)+(m+1)(m+2)=0,
and so 2k=m+1 or 2k=m+2. Since we now have
Wald) o = — L P2 T
g2 (z—a)y®* ™ f(2) m+2l z—a f(@

the latter, 2k=m+2, gives immediately a contradiction as 2k—m:£0. For the
former case where 2k=m-+1 the behavior of two expressions above for
Wa(z)/g(z)? is compatible. Then f(z) satisfies the relation

Differentiating this we have f”(z2)=0, or f(z2)=D(z—71), D =C—{0}, r=C—{a}
again. Hence if a=p, a=(m+1)/(m+2) and

) g(2)=D(z—a)""(z—7),

provided that m is an integer different from 0, —1, and —2. In order that
g(z) may satisfy (5.7), i.e.,

W(2)=C(z—a)*™,
we choose the constant C=—aD*7—a).

We have discussed all the possible forms that g(z) has in Case II:
(1) when a=1/2, g(z)=az*+Bz+7, where B*—4ar+0;
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(2) when a=1, g(z)=C,e*1*+Cse*??, where A, %4, and C,C,+#0;
(3) when a=1, g(z)=(C,z+C,)e*?, where C,#0;
(4) when a=0, 1/2, 1, g(z)=Cy(z—a), where C,#0;
(5) when a=(m—1)/m, g(z)=C:{(z—a)™—C,}, where C,C,#0 and m=0,
1, 2;
(6) when a=2, g(z)=(C(z—7)/(z—a)z—B)), where C,+0, and a, B, 7 are
mutually distinct ;

(7) when a=(m+1)/(m+2), g(z2)=C,(z—a)™**(z—7), where C,70, a#7 and
m=0, —1, —2,
provided that C,, Cs, A, 4, 4, @, B, 7=C and m is an integer. As their Wy(z)
we obtain also

(1) Wi)=—(1/2)(§*—4ar);

(2) Wy(2)=CiCo(A— o) M1¥i27;

(3) Wiz)=—Cle;

4) Wi (z)=—aa®;

(B) Wm-vym(@=—m(m—1C,Cy(z—a)™?;

6) Wy(a)=(—2C*(7—a)7—PB))/(z—a)(z—B)*) ;

(M) Wimsnimsn(@=—{m+1)/(m+2)} C;* (r—a)(z—a)’™.

Finally we need to examine whether the inequality (2.1) holds or not in
each case above. The function U,(») in (2.1) grows at least as rapidly as
O(log r) for r—oo, n.e.. Therefore (2.1) is satisfied by g(z) given in (4), (5),
(6) and (7) as rational functions. As proved in Remark 2° in §2, two possi-
bilities (1) and (2) are the very exceptions. With g(z) as in (3) it is easily
shown that

m(r, g'/g)=01),  m@r, W,//W)=0(),

N(r, 0, W)=N(r, g)=0,
and
T(r, g'/8)=log r+0(1),

as r—oo. Then U,(r)=0(log r) as r tends to infinity, so Inequality (2.1) also
holds. This completes the proof of the theorem.

Remark. Mention needs to be made of rational functions. Reconsidering
the above proof in Case I as a rational function g(z), we see that all of m(r, G,),
m(r, Hy), m(r, ¢,) and m(r, ¢,) grow possibly in the degree of o(1) with the
aid of (1.2) in Lemma. Inequality (2.1) can be therefore sharpened by

/ — —
(5.9) T(r, £ )58 @, 0. W)+N(r, ) +00).
Then there exist such the rational functions g(z) as never satisfy (5.9) only in

(3) with 1=0, 4), (5) with m>5 or m<—4, as well as (1) of Case II. In fact,
since Inequality (5.9) equals
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N, 0, 9<5N(r, 0, Wo)+4N(r, )+0(1)
in virtue of the equation
T(r, gg:)zm(r, %)+N(r, %)=N(r, 0, 9+N(r, g)+o(l),
this fact can be shown by studying these counting functions in each occasion.
In (5) for example, if m>2,
N(r, 0, g)=mlogr, N(r, 0, W,)=logr, N(r, g)=0
and if m<0,
N, 0, gy=—mlogr, N(r, 0, W,)=0, N(r, g)=logr

for sufficiently large ». The equality of (5.9) occurs if m=5 or m=—4,

6. Proof of Corollary

In order to prove this result we shall return to the proof of Theorem. At
first we are concerned about Case I in Section 4. Assume that ¢o(2)#£0. The
present assumption (2.2) reduces the equations (4.3) and (4.4) to

’

W,
m(r, Ga)=m<r, W, )zS(r, Wa)=S(, g)

and
m(r, H)=S(r, 8)+S(r, W,)=S(, g,

respectively. Similarly (4.5) and (4.6) become
N(r, G)=N(r, 0, Wo)=m(r, W,)+0(1)=S(r, g)

and
N(ry Ha.)gzzv(ry 01 Wa)z5<r) g)'

All of them hold independently of the value of a=C. Therefore it follows
also for both &, and ¢, that

T(r, o)=S(r, g and T(r, ¢.)=S(r, g),
so that

6.1) 7(r, %):S(r, 2.

Using a relation
W,

T (&)
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we obtain

2T(r, )<T(r, Wa)+T<r, (%)/—(a—l)<%)2>+0(1)

g/ gl
<m(r, Wa)+4T<r, E)-I—S(r, E>+0(1)‘
Then from (2.2) and (6.1) we conclude
T(r, g=S(, g,

which is impossible. Hence it must be hold ¢.(2)=0.

Concerning the possibilities in Case II we have made a list in Section 5.
We shall pick out those what give entire functions g(z) with the property (2.2).
Evidently (5), (6) and (7) are beside our object. If g(z) is a polynomial, W ,(z)
must be a constant. Possibilities (1) and (4) come under this heading. If A,+4,
#0 in (2), then W(2)=C,Cy(4,—2.)%‘*1*22? is an entire function of order one
and

m(r’ Wl):

|—'2‘~7:—'221*r-l-0(1) as r—oo .,

(See Hayman [17, p. 7.) A similar observation shows

m(r, g>§<121|+|12|>§+o<1> as r—oo .

Therefore (2.2) fails to hold since

mir, W) | dts]

im e @ = ThlF Al

When A,+2,=0, W(z) is a constant and g(z) is such a transcendental entire
function that satisfies all the assumptions in Corollary. Functions in the last
remaining (3) can satisfy Condition (2.2) only if 2=0. We have thus proved
the corollary.
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