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EXISTENCE AND SMOOTHNESS OF TRANSITION

DENSITY FOR JUMP-TYPE MARKOV PROCESSES:

APPLICATIONS OF MALLIAVIN CALCULUS
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Introduction.

Let Xt be a d-dimensional stable Levy process with exponent 0<α<2,
defined on a probability space (Ω, 3, P). Then its Levy measure is given by

(1) K(A)=\
Jsά~l

where M(dσ) is a bounded Borel measure on a (d— l)-dimensional unit sphere
S^"1. For each t>Q denote by Pt(dx), the distribution of Xt. It is known that,
under the following non-degeneracy condition on M(dσ) :

(2) M({σ: x σ^Q\)>0 for every

Pt(dx) is absolutely continuous with respect to the Lebesgue measure on Rd,
and moreover its density pt(x) is a C°°-f unction of x^Rd for all t>0 (cf. [7]).

Next let Yt be a ^-dimensional Levy process of class L (simply called an
L-process). Then its Levy measure is expressed by

ί k ( u f a}du ,

where M(da) is a bounded Borel measure on Sd~l and k(u, σ) is a nonnegative
measurable function on (0, co)χSd~1, nonincreasing, right continuous in u

satisfying that 0<&(0-K σ)^oo for each σ^S^1 and f M(dσ)Γ (u i\u~l)
Jgd-l JO

k(u, σ)du<°o. Then the distribution Pt(dx) of Yt has a density pt(x) with
respect to the Lebesgue measure on Rd (henceforth we simply say "a density
pt(x)") for ί>0 under the condition (2) ([8]). Moreover for any r^O, pt(x) can
be chosen a Cr -function of x^Rd, provided t is larger than some constant
depending on (M(dσ\ k(Q+, σ), rf, r) (cf. [7], [10]).

On the other hand Bass [1] discussed the martingale problem for the Levy
generator L :
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(3) Lφ(x)=Dxφ(x) a(x)+φ(x + y)—φ(x)—Dxφ(x) yl^yι<1^K(xr ay)

and proved the well-posedness of the martingale problem for a fairly wide
class of the Levy generator L. In fact, his class includes the following case :

(4) £=_(_Δ)α C a ί>'2,

where a(x) : Rd-^R is Dini continuous and satisfies the inequalities

(5) 0<ζι^α(jt)^ζ2<2 for all x^Rd with some constants d and ζ2.

In this case the Levy kernel of this operator is expressed by

(6) K(x, A)=θa< JSd-ι

where

To the Levy generator (4) there corresponds a Markov process on Rά, which
is called a stable-like process following Bass [1],

Generalizing the Levy kernels (1) and (6), we introduce the following class
of Levy kernels :

(7) K(x, A)=M(dσ)lA,lQ](y(x, u, σ))u^-Λ^m(κ9 u, σ)du ,

where
( i ) M is a bounded Borel measure on a topological space S,
(i i) y(x, u, a): /2dX[0, co)χS-*Rd is measurable, of class C1 in u on

[0, oo) and y(x, 0, σ)=0,
(Hi) m(x, u, σ): /2dx(0, oo)xS->72 is a bounded nonnegative measurable

function,
(iv) a(x) : /2d->[0, 2) is a measurable function.
Our main concern in the present paper is to investigate the absolute con-

tinuity of the transition probability and the smoothness of the transition density
for the Markov process on Rd associated with the Levy generator L of (3)
with (7). In particular, in the case where the condition (5) holds, it would be
expected that the transition probability Pt(x, dy) has a density pt(x, y) which
is smooth in y or in (x, y) for every ί>0 under a regularity condition and a
non-degeneracy condition on K(x, dy). Furthermore we shall also discuss the
Levy kernel (7) with a(x)=Q. In this case the result on one-dimensional L-
processes ([10]) would suggest that for any r^O the transition density pt(x, y)
would be of class Cr in y or in (x, y) only for sufficiently large t' s.

To avoid some technical difficulties, we shall mainly consider the following
Levy generator obtained by cutting off big jumps in (7) :
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(8) Lψ(x)=:Dxφ(x) a(x)+j\:φ(x + y)-φ(x)-DIφ(x) y^K(x, dy)

with

(9) K(x, A)=\ M(dσ)\UtlA^tl(y(x, u, σ))g(x, u, σ)du,
J S JO

where ι/0>0 is a fixed constant and we assume that
(i) y(x,u,σ) is a bounded measurable function on /2dX[0, w0]xS, of

class C1 in u on [0, w0] and y(x, 0, <r)=0,
(ii) g(*, M, σ)=u~ί-a^m(x, σ)

with O5jα(»<2 and a bounded positive function mO, σ). In particular, if
S=Sd~1, y(x, u, σ)=uσ and m(x, σ)=θa<;x) then the corresponding Markov process
should be called a stable-like process with bounded jumps, since big jumps are
suppressed in (6).

Our main results in the present paper are summarized as follows : Suppose
that a smoothness condition on a(x), y(x, u, σ), m(x, σ) and a(x\ and a non-
degeneracy condition on M(dσ) and y(x, u, σ) are fulfilled. Then

(a) if a(x) satisfies (5), the transition probability Pt(x, dy) has a density
Pt(x> y) which is smooth in y or in (x, y) for every Z>0.

(b) If a(x)=Q, then also Pt(x, dy) has a density pt(x, y), and for a given
integer r^O it is of class Cr in x or in (#, y\ provided t is larger than a con-
stant depending on (y(x, u, σ), M(dσ), m(x, σ}, d, r).

The smoothness and non-degeneracy conditions are rather complicated in
the general case (which are given in § 3) however we can simply describe the
result for a stable-like process with bounded jumps : the transition probability
has a C°°-density if a(x) is a C°°-function whose derivatives of all order are
bounded, it satisfies (5) and Dxa(x)\ is sufficiently small. We remark that
these results should, at least partially, hold for a stable-like process itself
because its Levy generator is a perturbation from that of a stable-like process
with bounded jumps by adding a bounded operator.

The proof of our results is essentially based on Malliavin calculus on a
Poisson space which was developed by Bichteler, Gravereaux and Jacod [2],
but we have to modify their framework to apply it to our class including
stable-like processes with bounded jumps. Furthermore we have to emphasize
our smoothness result for the transition density holds for every ί>0 when a(x)
satisfies (5), although [2] discusses the smoothness of the density only for
sufficiently large ί's under a different situation from ours.

The present paper is organized as follows : In § 1 we introduce a Poisson
space and a notion of derivatives of Poisson f unctionals with some modifications
of [2], and by using it we define a Malliavin operator. In §2 we apply
Malliavin calculus to stochastic differential equations and summarize the results
used later. In § 3 we state the main results for the generator L defined by
(8) with the kernel K(x, dy) defined by (9) and for a stable-like process. In § 4
the proofs of our main results are given by using the results in §2.
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Throughout this paper we shall use the following notations:
Λτ: the transpose of a matrix A,

\E\ : the n-dimentional Lebesgue measure of EdRn,
Cr: the totality of r-times continuously differentiable functions,
Cl: the totality of Cr-functions with compact support,
CJ: the totality of C r-functions with bounded derivatives of all order

between 0 and r,
c r r r* c ΓΌ
O—OQ, C o— {-Ό> t-'δ— *-" δ>

(~s°°=Γ\rίίQCr, C^^/lr^o^O? (-'ft '—ίW^O^L

1. Differential calculus on a Poisson space.

Let E be an open subset in the n-dimensional Euclidean space Rn with
\E\=oo and let € be the Borel σ-field on E. Fix 7>0 and let (5, J, M(dσ))
be a topological finite measure space with cS=^(S) (the Borel <; -field of S).
Next we take a Poisson space (Ω, 3, (£F(), P) associated with a Poisson random
measure distributing on [0, T]x£xS with the intensity measure ι>(dsdzdσ)~
dsdzM(dσ) in the following way. Let Ω denote the collection of point measures
A*=Σ»At n . Z n .σ n >on CO, T] x£xS such that μ([0, T]X/fxS)<oo for any compact
set K in £, μ({t}xExS)^l for all fe[0, T] and μ({0}xExS)=0. Set ίJ?=
<7(X4)MeΞ^([0, ί])®έ?®cS)for/e[0, T], 3t=r\u>t<30

u for ίe[0, T), and £F = 2 .̂
Then there exists a unique probability measure P on (fl, 3") such that, under
P, μ is a Poisson random measure distributing on [0, T]x£xS with the inten-
sity measure v(dsdzdσ). As usual we extend 2^ by adding all negligible events,
and we use the same notation £F t as for the original. Then (£?, 2r, (2^), P) is
our basic Poisson space. We define a (/-finite measure Q on flx[0, T~]χEχS
by Q(dμdsdzdσ)=P(dμ)μ(dsdzdσ).

Let Φ(j«) be a Poisson functional, that is, a random variable on the Poisson
space (Ω, 3, P). For μ^Ω and (s, z, (τ)esupp/«, we set μθ(s, 2, o)—μ~d^tZ>σ^
+^(s,2+^,(τ), which belongs to Ω if

DEFINITION 1.1. We define an m-th derivative of Φ by

2>mΦ(μ; s, 2r, σ)=D^Φ(μθ(s, z, σ))\θ=Q (nm -vector)

if it is well defined for Q-a. e. (μ, s, z, σ), where Df is the m-th differential
operator in θ (in the usual sense). Moreover define

Φk(ΦnΦXμ; s, z, σ}=Dk

θ(2)™Φ(μθ(s, z, <τ); s, z+θ,

then £)k£)m=3)k+m.

Next we introduce basic functional spaces ^cm) (m=0, 1, 2, ••• , oo). Let
C^ denote the totality of real-valued measurable functions /(s, z, σ) on
[0, T^xExS those which vanish outside [0, T~]xKxS for some compact set
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K in E, of class Cm in z and their derivatives in z up to order m are bounded
in (s, 2, σ). We set

where χ/)=f f(s,zyσ}μ(dsdzdσ} and C%(Rk) is the totality of real-
J[0,Γ]χ#χS

valued Cw-functions on /2* with polynomial growth derivatives up to order m.
Then j&c m ) is dense in LP = LP(Ω, P) for all l^£<oo, stable under C^-composi-
tion (i.e. if Φ=(Φl, - Φ*), Φ le^ c m ) and F(ΞC$(Rk) then F(Φ)ej^(m)) and
2^— σ(^cm)). Clearly every element of ^(m) is m-times differentiate in the
sense of Definition 1.1.

Now we fix an auxiliary function p(z)^C'b(E->(Of oo)) and introduce some
higher order symmetric differential operators.

DEFINITION 1.2. ( i ) For m^l and Φe^c2m), set

{
m / 777
Σ ( ?

where trace^)2Φ(j«; s, 2, σ)=ΔθΦ(μθ(s, z, σ))\o=o (Δ^ is the Laplacian with
respect to the variable 0). J7(m)Φ is called the ,£w -derivative of Φ.

(ii) For m^l and Φ, ΨεΞ3^2m\ set

Then we have the following proposition by a similar argument to Proposition
9-3 of [2].

PROPOSITION 1.3. For ra^l, J?(m) : ^c2m)->,OP<ooLp is a linear operator such
that for Φ,

(i.i)

and ^ = ̂ (2); ίΛβ z lϊ holds that for φ-F(μ(fl}> ••• ,

_Cφ=μ(p trace 3)*Φ+Dzp ®Φτ

Σ

= Σ
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Moreover if Φ=(Φ\ ••• , Φd), ΦIΪΞ& and F^Cz

p(Rd\ then

Σ
ι,j=ι

In particular, for Φ,

Proof. We shall show only (1.1) since the proofs of the other parts are
quite routine. Let Φ = F(μ(fJ, -, μ(fk)) and Ψ=H(μ(hί), ••• , μ(hq))^^zm\
and K be a compact set in E such that [0, T^xKxS contains all the supports
of Λ's and λt's. Now set (S<, Zt, Λ)is*=supp/£n([0, T]χ/O<S) with
Sι< ••• <Stf, where N=μ([Q, T]χ/ίxS)^0. Then N is a Poisson random
variable with a parameter T|/<"|, and the random variables (Zl)i^N are con-
ditionally independent on the σ-field β = σ(N, Sίt ~- , SN) with the uniform
distribution over K, Uκ(dz)—dz/\K\ that is, for each r^l and bounded Borel
functions g on Kr, it holds

= \
JK

So it is enough to show that

(1.2)

For simplicity of notation we set fί(z)=fi(Sj, z, Aj) and hi(z)—hi(Sj, z,
For a fixed μcΞβ, set N=N(μ) and

rΣ

then we have <^)mΦ, ®mψy=μ(p ®mΦ S)mΨΎ)=g(Zίf ••• , Z^). Moreover

wl r

-̂
α! J

Σ
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where a~(aλ, ••• , αn) is a multi-index and αl— «ι! ••• α n l . Since suρp/{ and
supp/2ί are contained in K, D«r(F (•••)) and £?r(7/( )) vanish in #c if |α ^1.
Hence by using the classical integration-by-parts formula we get

r = \ | α | = m «! β^a\ β / J KN

On the other hand it is easy to see that

{ m / jγi

k = Q \ k

N

Therefore (1.2) holds, and this completes the proof of (1.1). D

Remark 1.4. (_£, .&) is essentially the same one as in [2]. Note that

Next we want to extend the domains of 3)m and J7cm), which are of
interest for themselves, although they will be later used only in the case m=l.

Let M be the completion of 2Γ0^([0, T])(g)£(g)c$ by Q. For each fe^l
and £e(0, oo ), denote by LfΛ) the set of all (Rn)k -valued ^-measurable functions
F on βχ[0, T]X^XS with the norm |F|p=||χ /o|F|a)1^||Lp<cχ), where Ml^
denotes the ZAnorm in LP=LP(Ω, P). For each k^l and />e[l, oo), (Lf«, | |p)
is a Banach space by identifying two functions which are equal Q-a. e. In
particular, L(W is a Hubert space with the inner product (F, G)L—E[_(F, G>],
where <F, Gy=μ(pFGΎ).

Let us introduce several spaces of Poisson functionals in a similar way to
the case of the Wiener space ([9]).

DEFINITION 1.5. For ρ0, ρl9 •-- , pm^2, it is said that Φ belongs to
H(p0, p!, ••• , j&m) (resp. H ( p 0 \ p ι , ••• , j&m)) if there is a sequence {Φ*} in ^(m)

(resp. ^C2m)) such that Φ*-»Φ in LPQ and, for each i (i—l, ••-, m), {4)*Φ*}ϊLι
(resp. {X c < )ΦΛ}yβ l) is a Cauchy sequence in Lp

(i] (resp. Lp*) Denote the limit
by ^)'Φ (resp. ^COΦ), which is called the ι-fΛ w gα^ derivative (resp. the

derivative) of Φ. Moreover set, for p0, plf •- , pm, qlt ~ , qr^2,

, pi, •" , pm\qι, -•' , <?r)=#(ίo, ίi, - , pm)ι^H(p0\qί, "- , qr).

By using (1.1) we shall show that ®mΦ and J7(m)Φ are well defined for
every Φ^H(p0, plf ••• , pm) and Φ(ΞH(pQ\p1} ••• , ρm) respectively. It is easy to
see that the approximating sequences can be chosen in ^Coo). Suppose that
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->0 in L2 and ®lΦk->Fτ in L?t); then for any Ψ^Sl^

(Ft, W)L=Iim*,co(<Z) fΦ*, W)L

=(-l)<lim^jε[Φ*^^y] (by (1.1))

=0.

Thus Ft\l=(Ft, Ft)L=lim^co(Ft, ^)1Φ,)L-0, i.e., Ft=0 0-a.e. Also suppose
that J7(ί)Φ*->0t in L 2; then for all

Since ^(00) is dense in L2, we have θl—ΰ a. s.
Clearly the above spaces in Definition 1.5 are Banach spaces with the

following norms respectively:

m

,„,„>=l!ΦiU*o+Σ

and

In particular, from (1.3) of the following proposition it follows that

HP>=H(2, 2, - , 2|2, - , 2)=ff(2|2, - , 2),
m m m

PROPOSITION 1.6. a) j?(m) : //|m)->L2 zs α symmetric linear operator
b) ί/ u e s^ Γm(Φ)Ψ)=μ(f)3)mΦS)mΨΊ\ then Γm:H^χH^~>Ll ^s a

continuous bilinear symmetric nonnegative operator satisfying

(1.3)

The proof is obvious.
By using them we can define a Malliavin operator (J7, //Co) as in [2].

DEFINITION 1.7. For <?e[2, oo), denote by Hq the Banach space H(qt q\q)
with the norm \\Φ\\πq = \\Φ\\L<1+\\-£Φ\\L(ί+ ®Φ\q, and set H^=Γ\q^Hq> which is
a Frechet space. Then (J7, /L) (resp. Γ(Φ, Ψ)=Γ\Φ, Ψ)) is called a Malhaυin
operator (resp. a Mdhaυin covariance of (Φ, ?P")).

We here list several properties of the Malliavin operator and the Malliavin
covariance which can be checked by the same arguments as in Theorem 8-18
of [2].

THEOREM 1.8. Let (J:, //„) be the Malliavin operator.
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a) X : //ooCΠp<ooLp~>Πp<ooLp is a linear operator and satisfies the following
properties :

( i ) 7/oc is stable under C2

p-compositιon and £Fj =σ(//oo);
( i i ) X is symmetric in L\ i.e., E\ΦXW~\^E\W XΦ^\
(iii) Γ : H00χH00-^Γ\P<ooLp is a continuous bilinear symmetric nonnegative

operator
(iv) if Φ=(Φl, ••• , Φd\ Φ'eT/oo and F^C2

P(R d) then

/n particular, for Φ,

, Ψ)+ψj:Φ.

b) (i) // Φ=(ΦS •-, Φd), Φle//oo, F^C2

p(Rd) and Ψ^H^ then

Γ(F°Φ, Ψ)=ΣίdiF(Φ)Γ(Φ\ Ψ);

(ii) j?l=0,

C) For Φ=(ΦS •-, Φd)e(//oo)d, F£ΞC2

p(Rd) and Ψ^H^ the int eg ration-by -parts
formula holds:

§ 2. Applications of Malliavin calculus to stochastic differential equations.

Now exactly in the same way as in [2], we can apply the Malliavin
operator to a solution of the following stochastic differential equation driven
by the Poisson random measure μ(dsdzdσ):

(2.1) Zf=x + ^ f ) d s + χ 5 / ( X f _ , z, σ ) β ( d s d z d σ )

where μ=μ—u is a compensated Poisson random measure and

f ( x , z, <7)=(/*(Λ:, z, σ)):

are measurable functions. We also write (2.1) in the differential form

We give an assumption on a(x) and f ( x , z, σ). Let r^l.
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Assumption (A—r). (i) a(x) is a Cj-f unction on Rd

(ii) /(#, z, σ) is r-times differentiable in (x, z) on RdxE and moreover

/(O, , )GΞ Π Lp(ExS, dzM(dσ)},

, dzM(dσ))

^>(7 Dl

xD
J

zf(x, z, σ) |< for

for

and

We shall always assume at least (A-l). Then (2.1) has a unique solution
Xϊ, which satisfies supt^τ\Xf I ^Γ\P<^LP and defines a standard strong Markov
process Xx with the generator L:

> d y )

where K is given by

K(x, A)=
E~x S

From now on, we fix a Malliavin operator with an auxiliary function p
satisfying

Condition (p). p : jE->(0, oo) is a C^-function such that
, dz\ where d(z)=miy^EC\z-y \ Λ l(i) p(z)/d(z)*9

(if Ee=Rn\EΦ0\ =1 (if E=Rn);
(ii) for r^O, |

For simplicity we consider the equation (2.1) with a fixed initial value
and we denote the solution by Xt=X{. Then we have

THEOREM 2.1 (cf. [2], Theorem 10-3). Assume (A-3). Then for each t<,T
the components XI of the solution Xt belong to H^. Moreover set UlJ=Γ(Xl, XI)
and V \-XX\\ then the processes U=(UlJ)i,j<d and V=(Vl)i<d are solutions to
the following equations, respectively :

lί/0=o,
and

f(X_W-dμ
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where dlj=d2/(dxidxj).

Finally we modify the results of [2] according to the present situation,
which will be used to prove our main results of § 3.

Denote by 7Xf the Frechet derivative of the map x^Rd-*Xf^Lp' Then
under (.4-2) 7J?f exists for each x^Rd and ίe[0, T], and it is a unique
solution to the following linear stochastic differential equation :

([2] Theorem 6-29). Let us introduce the /Z^/^-valued process Kx defined
by

dKx=Dxa(Xx)dt+Dxf(Xx)dμ, Kξ=0.
Then

Define the sequence of stopping times:

77=0, Tg=inf{ί>T5.1:det(/+J/ίf)=0} ( = T i f {•}=

where UKf—Kf—Kf-. We further define the process ^Xx(ri) by

ή)- , 7* *(n)β=/,

where Jff J ?(n) ί=A'f-A'fΛrg_ 1 . Clearly #*(!)=#* and 7^X(1)=7-XΛ. Since

Kx is a right continuous process with left-hand limits and {0<ί < T : det(/+ JAf )=0}
is a finite set, Tg | T. It is also known that ([5])

7**(n)ί=7 if

^Xx(n)t is invertible if ί<Tg,

^Xx(n\ is not invertible if ί^Tg,

7X*(n)t. is invertible if f r g T g .

Moreover we define the process Hx by

dHx=pDzfD2f
Ύ(Xx)dμ and #?=0.

Then it is shown in [2] (Proposition 10-22) that under (Λ-3)

ί/f =7 '̂(

(l+Dxf)-l τ(Xϊ-, z,

if
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γ and ί/f =0 .

Therefore, by Theorem 10-30 (a) of [2], we see that, under (^4-4), if Uf
is invertible a. s. then the distribution of Xf has a density. Furthermore, using
the above formulae and the arguments in § 11 of [2], we can obtain the follow-
ing lemma, which will be used to prove Theorem 3.1.

LEMMA 2.2. Let f>0. Under (.4-4) if, for each n^l,

rί r
JT^_1JExS

is invertible a.s. on { μ : T%_1(μ)<t<T%(μ)}, then the distribution of Xf has a
density.

To obtain the smoothness results, we introduce a function h(z) on E follow-
ing [2], which is related to the integrability of (Uf)'1.

DEFINITION 2.3. Let ζ, 0>0 be given. A measurable function h: E->[0, °o)
is called (ζ, θ)-broad if

Example 2.4. Let E=(η, oo) for some η^R. Let ζ, #>0 be given and
set h(z)=\z\re-*^ (z^E) for some constants γ, δ^R. If δ<θ/ζ then Λ is
(ζ, 0)-broad for all γ<=R. If δ=θ/ζ then Λ is also (ζ, 0)-broad for γ>d/θ = l / ζ .
Otherwise h is not (ζ, #)-broad. In particular, if d=0, that is, /z(z)— |z | r then
/ι is (ζ, 0)-broad for all ζ, 0>0 and γς=R.

The assumption (SB— (ζ, 0)) of [2] is modified as follows:

Assumption :(B—(^ #)). There exist constants ε>0, ίfeO, a (ζ, #)-broad
function h, a function p satisfying the condition (p) and a family of disjoint
sets {Slides with M(Si)=M0>0 such that for each *, 3;e/Zd

Σ i

where F is the function with values in the set of symmetric nonnegative
definite d X ̂ -matrices defined by

(2.2) F(x,

(I+DxfΓDJD,Γ(l+DxfY^(X, z, σ)

if det(l+Dxf(x, z,

0 otherwise.

Now we can modify the results of [2] (Theorems 2-27, 2-28 and 2-29) in
the following way.
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THEOREM 2.5. Let r^O and t>0. Assume (A-j) and (£—(ζ, 0)) for some
j and ζ, 0>0. Assume also mfXιtισ\det(I+Dxf(x, zy σ))|>0. Then
a) the distribution of Xf has a density pt(x, •) of class Cr for each
provided either

(i) y^r+d+5, Θ^Mot and ζ>2rf(r+d + l)/[Aίβf/0] (where [α]
integer part of a), or

(ϋ) y^r+5, Θ^M,t and ζ>2ύf2(r+l)/[Moί/0].
b) Moreover the function: (x, y)^>pt(x, y) is of class Cr, provided that j
Θ^MQt and ζ>2d(r+2flH-l)/[Mβf/0] hold.
c) Furthermore assume Ίnfυ&Qtl^XtZι<r\άQt(I+vDxf(x, z, σ))| >0.
0^M0ί and ζ>4d(r+2d+2)/[M0f/0] fή$n ίA^ function: (s, x, y)-*p,(x, y) is of
class Cr on (t, T)xRdxRd.

Remark 2.6. In the above theorem, we only give the result corresponding
to the first assertion ( i ) of Theorem 2-28 of [2] the proof of the second
assertion (ii) of Theorem 2-28 includes trivial mistakes (see the equations (4-24)
and (4-37) in [2]) and it is hard to correct them. Here we need two more
degrees of differentiability on the coefficients (α, /) than that in [2], because
we use Malliavin's approach (see Remark 10-33 of [2]). However if we take
Bismut's approach the regularity assumption on (a, /) would be improved.

§3. Main results.

By using Theorem 2.5 and Lemma 2.2 of § 2 we give some results on the
existence and smoothness of a density for the transition probability Pt(x, dy)
of the jump Markov process associated with the Levy generator L defined by
(8). Here its Levy kernel K(x, dy) is given by (9) with the following functions :

y(x, u, σ):RdXlQ, uolxS-^R* , y(x, 0, σ)=0 (curves);

g(x, u, σ):RdX(Q, w0]xS-<0, oo) (weight).

We restrict the function g(x, u, σ) as follows:

g(x, u, σ)=u'1-a^m(x> σ),

where m(x, <r)>0 and 0^a
In order to relate L and the equation (2.1) we introduce the following

functions :

S UQ
g(x, v, σ)dv for we(0, w0]>

u

(3.1) 0(x, , σ) is the inverse function of G(x, , </) and

(3.2) f ( x 9 z, σ)=y(x, G(x, z, σ\ σ).

Then K is expressed by
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K(x, 4 ) = Λ ^ / < j ) u u β ϊ ( / U , z, σ))dz .

We here choose E=(0, oo) and a Poisson space (Ω, 2r, (£F t), P) over [0, Γ]x£xS
with the intensity measure dtdzM(dσ). Then we can consider the stochastic
differential equation (2.1) associated with a(x) and f ( x , z, σ) of (3.2) on the
Poisson space (β, 3, (3t), P); its solution solves the martingale problem for
the Levy generator L.

Now we give an assumption on (a, y, m, a). Let r^l.

Assumption (L—r). (i) a(x) is a Cj-f unction on Rd

( i i ) X#, M, σ)/w is r-times differentiable in (x, u) on Λdx[0, MO],
DlDu(y(x, u, σ)/u) is bounded in (x, u, σ) for all z, with O^z-f/^r and
Duy(xt 0, σ) is continuous at every <7esuppM(d<7);

(iii) m(jc, σ) is r-times differentiable in x such that 0<£!<;w(*, <7)<^2<
co

and Dk

xm(x, σ) is bounded in (x, σ) for all k with 0<;&^r;
(iv) α(*)Ξθ, or a(x) is a Cj-function on Rd and satisfies the inequality

2 with some constants d, ζ2.

Under the assumption (L-l) the equation (2.1) has a unique solution Zf
for each initial condition Xξ = x. Since XX—(X^) defines a standard Markov
process on Rd, we denote its transition probability by Pt(x, dy).
The next assumption is a non-degeneracy condition for K(x, dy) :

Assumption (N).

$pan{Duy(x, 0, σ): σ^suppM(dσ)}=Rd

for every x^Rd.

Note that under (L-l) and (N), K(x, dy) satisfies K(x, Rd)=oo and

\*K(x,dy) <oo.

The first result of this paper is the following.

THEOREM 3.1 (Existence of transition density). Assume that (L-4) and (N)
hold. Then Pt(x, dy) has a density Pt(x, -) for all f>0, x^Rd.

Remark 3.2. When 5 is a finite set, this assertion was shown in Theorem
3-8 of [2]. Leandre [6] also discussed this problem under a weaker non-
degeneracy condition than (N), in the case where S is finite and g(x, u, σ) is
independent of x. We here generalize S and g(x, u, σ), which enables us to
treat a stable-like process. We shall prove the above theorem by combining
two methods of [2] and [6].

Assumption (SN). There exist a constant ε>0 and a finite number of points
σiesuppM(ί/σ), i—l, ••• , N and disjoint neighborhoods St of στ, i—l, •••, N
such that for all x, y^Rd

Σinf σ e 53> τ£,3>U, 0, σ ) | 2 ^ ε | 3 > i 2 .
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This is stronger than (N). The following assumptions are rather artificial,
but they are required by technical reasons. Let f ( x t z, σ) be defined by (3.2).

Assumption (C). Ί n f X ι 2 > σ \ d e t ( I + D x f ( x , z, <j))|>0.

Assumption (SC). infveιo,ιι,χ,z,σ \det(I+vDxf(x, z, σ))|>0.

These assumptions hold, for instance, if either \ y / u \ , \Dxy/u\, \ D u ( y / u ) \ ,
or \Dxy/u\, \Dxm\, Dxa\ are sufficiently small, or if u0 is sufficiently small.
These conditions will be discussed in Remark 3.6.

Now we can state the main result of this paper.

THEOREM 3.3 (Smoothness of transition density). Assume that (SN) and
(C) hold. Let r^l and let MQ=mmίύl^NM(Si) where Sl is found in (SN).
a) Let 0<G^a(*)^C2<2.

( i ) Under (L— (r-f-5)), Pt(x, dy) has a density Pt(x, y) of class Cr in y for
all x<=Rά, t>0.

( i i ) Under (L-(r+2d+5)), pt(x, y) is of class Cr in (*, y) for all ί>0.
(iii) Assume further that (SC) holds. Then, under (L— (2r+4</+8)), pt(x, y)

is of class Cr m (ί, x, y) of (0, oo)χRdχRd.
(iv) In the cases ( i), (ii) and (iii), if (L—r) is fulfilled for all r^l then

the term Cr can be replaced by C°°.
b) Let α(*)=0, and set η=l/ξι.

( i ) Under (L— (r+d+5)) (resp. (L— (r+5)), Pt(x, dy) has a density pt(x, y)
of class Cr in y, if t>{4d(r+d+l~)η+2η2}/M0 (resp. t>{±d\r+l}η

( ii ) Under (L-(r+2d+5)), pt(x, y) of class Cr in (x, y\ if t>{4:d(r+2d+l)η

(iii) Assume further that (SC) holds. Then, under (L— (2r+4d+8)), p,(x, y)
is of class Cr ιs(s, x, y) of (ί, co)χ jβ

dχ jβ
ώ, tf t>{8d(r+2d+2)η+2η2}

/MO.
Remark 3.4. ( i ) The result corresponding to (b) of Theorem 3.3 is found

in Theorem 3-12 of [2], but their assumption involves f ( x , z, σ). However it
would be desirable to give the assumption in terms of the Levy generator (8)
with (9), without using f ( x , z, σ\

(ii) As mentioned in Remark 2.6 it is possible to drop one or two degrees
of differentiability on the coefficients (α, y, m, α) in our results. However it
is not interest for us.

Finally we shall apply our results to a stable-like process with bounded
jumps and a stable-like process itself. Recall that the generator of a stable-
like process is decomposed into L = A°-\-A1 where

( x , d y ) ,

, dy)
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and K(x, dy) is given by (6).
Assume that a(x) is a Co-function satisfying that the inequalities (5).

Since Λ° is a special type of (8), there corresponds a Markov process on Rd

which is defined by the unique solution of the SDE (2.1) with f ( x , z, σ) of
(3.2) on a Poisson space (£?, £F, (g,), P) over [0, Γ]x(0, oo)χSώ-1. We denote
by P*t(x, dy) its transition probability.

On the other hand Bass [1] establishes the well-posedness of the martingale
problem for L, so that L determines a Markov process on Rd uniquely. We
denote by Pt(xt dy) its transition probability. Then we obtain

THEOREM 3.5. Suppose that a(x) is a Ci-functιon on Rd for some j , and
satisfies (5). Let r^O.
a) (Stable-like process with bounded jumps)

( i ) // j>4 then Pl(x, dy) has a density pQ

t(x, y) for all ί>0 and x^Kd.
( i i ) Assume (C). If ^r+5 then p°t(x, y) zs of class Cr in y for all ί>0,

xϊΞR*. If j^r4-2d-i-5 then $(*, y) is of class Cr ιn(x, y) for all ί>0.
(iii) Assume (SC). If / ̂ 2r+4d+8 then p°t(χ, y) is of class Cr in (ί, x, y)

of (0, °°)xRd*Rd.
b) (Stable-like process)

If j:>4: then Pt(x, dy) has a density pt(x, y) given by

(3.5) pt(x, y)=ρi(x,

for all f>0 and x^Rd.

Proof, a) It is easy to check that m(x, σ)—θa^x^ satisfies (L— y)-(iii).
Hence the claims follow from Theorem 3.1 and Theorem 3.3(a).

b) Let C^—C^(R<i) be the Banach space of continuous functions on Rd

vanishing at infinity with supremum norm. It is easy to see that Pl(x, dy)
induces an s-continuous conservative Markov semi-group { T ° t } acting on Coo,
and that A1 is a bounded generator of a Markov semi-group acting on Coo.
Let (G°, 0(G°)) be the generator of {T?}, and set G=G*+Al and ̂  = Φ(G)^S)(GQ).
Then (G, 3)(G)) generates an s-continuous conservative Markov semi-group { T t }
acting on Coo. Furthermore the following perturbation formula holds :

(3.6) Tt^Tϊ+Tt.^T^ds on CTOJo

(see Theorem 3.1 of [3], also Chap. 1 and 4 of [4]). Then there is a Markov
process (Xt, Px) associated with the Markov semi-group {Tt}. Since $l)Cl(Rd)
and G—L on C2

Q(Rd), the probability law of (Xt) under Px is a solution of the
martingale problem for (L, Cl(Rd)). Hence by the well-posedness of the mar-
tingale problem, {Tt\ coincides with the semi-group associated with Pt(x, dy).
Therefore (3.5) follows from (3.6). D

Remark 3.6. a) To obtain the smoothness results of Pt(x, dy) for a
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stable-like process, the formula (3.5) might be useful. But we need more
information on integrability of derivatives of Pl(x, y\ which seems rather
difficult.

b) For the assumptions (C) and (SC) we can give a sufficient condition as
follows: Set n(x, u, σ)—y(x, u, σ)/u. Then, under (L—r\ n(x, u, σ) is r-times
differentiate in (x, u) on J?dx[0, MO], its derivatives are bounded in (x, u, σ)
up to order ry and

f ( x , z, σ)=G(x, z, σ)n(x, ό(x, z, σ), σ).

( i ) In the case of a(x)=Q, G(x^ z, σ)— w0exp[— z/m(x, σ)]. Then we have

Dxf(x,z, σ ) | ^ M β ( ( | n | + Dun\Xx, 0(x, z, σ\ σ}\Dxm(x, σ}\/ξ,

+ \Dxn(x, G(x,z, σ\ σ) |).

From this we deduce that if either | n | , \Dun\9 \Dxn\ or \Dxm\, \Dxn\ are
sufficiently small then (SC) holds.

For instance, suppose that all the functions a, n, m are independent of
(*a, • - - , xd\ Then det(7+v£χ/)=l+wίι/ for ve[0, 1]. In this case (C) and
(SC) hold if Mβ<fι/((l |n| | + ||^«n||)||Dα.m||+ίιl|^π||), where Ml denotes the
supremum norm with respedt to the variables x, u and σ.

(ii) InthecaseofO<
It is easy to see that

DxO(x, z, σ) |^ |

+ u Q / ζ l ( { \ D x a ( x ) \ ζ ί + \ D x m ( x , σ ) \ / ξ l } \ / \ D x a ( x ) \ \ l o g u < > )

if

\DxO(x, z, σ) |^ |A

if M0<1.

Moreover

, z, σ\ σ}\DxG(x, z, σ}\

+ \Dxn(x, G(x,zy σ\ σ } \ \ G ( x , z, σ)\ .

From these inequalities we deduce that if either | n | , \Dun\, \Dxn\, or \Dxa\,
\Dxm\, \Dxn\ are sufficiently small, or if u0 is sufficiently small, then (SC)
holds. In particular, for a stable-like process with bounded jumps, we have
n(x, u, σ)=σ and m(x, (τ)~θa(ix^ Let
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and

with rι-2sup,Γ/(H-α(%)), r.=sup,Γ/((d+α(x))/2) and r,=sup,Γ'((l+α(x))/2).
Then (K&^flaco^^oo and \Dxθa(ix^^η\Dxa(x)\. Let Mβ=l. In this case
we have

\Dxf(x, z, <j) |^(

Therefore if α(*)=α(*ι) and sup*! Dxa(x)\ <ζffι/(2f1+ζι^), then (SC) holds.

§ 4 Proof.

This section will be devoted to the proofs of Theorem 3.1 and Theorem
3.3. Recall that 0(x, z, σ) and f ( x , z, σ) are defined by (3.1) and (3.2) respec-
tively, and £=(0, °o). The following lemma is obtained by elementary
calculation.

LEMMA 4.1. For r^l, (L—r) implies (A—r) and that for every Q^i+j^

supa.JUS.Di/Cx, z, (τ)|e f\ LP(E, dz) is bounded.

Furthermore, if r^2, then limz-.00supXιff\Dxf(x, z, σ)\=0 and for each ε>0 there
is a constant δ=^δ(ε)>Q such that

^^Pχ,σ,t>δ\Duy(xί 0(x, z, or), σ}— Duy(x, 0, σ)\^ε.

First we prove the existence theorem.

Proof of Theorem 3.1. It suffices to show that the distribution of the
solution Xf of (2.1) with £=(0, oo) has a density for every 0<t^T and χ(=Rd.
For simplicity we drop the super script "*" for Xf, Tf, etc. Let F ( x , z, σ)
be the same as in (2.2) and we define the process Rt with values in the set
of all symmetric nonnegative definite d X ̂ -matrices by

*-> z, σ)μ(dsdzdσ).

This is well-defined by Lemma 7-4 of [2] and satisfies the condition

yΎRty^yΎRsy^Q for all yeS*"1 if O^s^t.

By Lemma 2.2 it is enough to show that, for any fixed n^l and
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(4.1) (tVX(n^ldRsVX(n^l'Ύ is invertible a. s. on {Tn>t} .
Ju

Here we restrict the Poisson space and the time interval to Ω'—Ωr\{Tn>t}
and [u, f] respectively. That is, we take the restricted Poisson space
(Ωf, 3f, (ffί).Gc«.n, PΊ defined by P'( )=P(.\Ω'\ 9't=(nr>iσ({μ(A): A<=
&((u, r])<g)£(g)«S}W32))|β' and 3r/ = £F{, where 32 is the totality of the P-null
sets of 3. Then {3f

s}s&u,ti is right-continuous and 3'u is the trivial field.
The proof of (4.1) will be divided into three steps.

(Step 1) We fix x^Rd and y<=Sd~l arbitrarily. By the assumption (N)
there is a point <70esuppM(c/<7) such that Duy

Ύ(x, 0, σ0)yφQ. Note that
D z f ( x , 2, σ)=—(Duy/g)(x, 0(x, z, σ\ σ). Then, by Lemma 4.1 and the conti-
nuity of Duy(x, 0, σ) at <TO, there exist a constant L>0 and a neighborhood 50

of <TO such that Dzf(IJrDxfY
ί Ύ(x, 2, σ)yφΰ for every z'^L and (τeS0.

(Step 2) Next we prove that

(4.2) for each y^Sd~l and se(w, ί],

P'-a.s.

Suppose that (4.2) does not hold. That is, there exist a vector y^Sd~l and a
time point se(w, ί] such that JP

/(02/0(s)=0)>0. For /3>0 we introduce the
local martingale :

Yβ(s)=exp(-βQ^(s)+^E^{l-exiβl-βp(z)F(r) zy σ)-]}drdzM(dσ)),

where F(s, z, σ)=yo^X(n)^lF(Xs-, z, σ)^JX(n)^'ΊyQ. First we suppose that
Yβ(s) is a martingale. If p*o(s)=o then

limr j8(s)=exp(Γrfrf ^ dzM(dσ)}.
β-+°o \Ju J p(z~)F<ir , 2, σ ) τ t O /

By Fatou's lemma we have

Hence it holds almost surely on {Qy°(s)=0} that

(4.3) \ ^ dzM(dσ) is finite for almost every re(w, s] .
J p(.z)F(μ,r,z, σ)^0

In the case where Γ^s) is not a martingale, we also have the same result by
using a stopping time argument. Since io>0 on E and F(s, zy σ)=
\DgΓ(I+DxfY

l'Ύ(X,-, z, σJ!X(n)^ Ίy,\\ (4.3) contradicts the result in Step 1.
Therefore (4.2) holds.

(Step 3) Finally we prove (4.1). Let



MARKOV PROCESSES 47

K9=ker('vX(n)-1dRVX(n)-1'Ύ for SCΞ(M, ί]
Jtt

and #u+=U«>tt#* (note that Krl)Ks if r^s). Then (4.2) implies that for each
~1 and any s>w P'(y£ΞKs)=Q, i.e. P '(3; EΞ #„+)=(). From this we can

deduce that P'(/i:tt+={0})=l as follows. Since rankv^^iWV^rc)::1 '7 is

2vmeasurable, it follows that dimKu+ is S^-measurable. Noting that CI'U is
the trivial field, we have some Q<k<^d such that P '(dim /f „+=&)=!. If k^l
then for each n^l we can choose an ^^/^-measurable unit random vector en

which belongs to Ku+ί/nP'-a.s. Denote by CL({en\) the totality of cluster

points of {em : m^n}, that is, CL({en})=P\n^ι{em '. m^n}. Then from the trivality
of 3'u we see that there is a deterministic non-empty compact subset C of

Sd~1 such that P'(CL({en})—C)—l (note that we can regard Cn=\em: m^n} as
an EF^+i/^-measurable random variable with values in the set of all non-empty
compact subsets of Sd~l, which is a compact metric space with the Hausdorff
metric). Hence for any y^C, P'(y^Ku+)—\, which contradicts (4.2). Thus
we have KtdKu+={0} P'-a.s., from which (4.1) follows. Therefore the proof
of Theorem 3.1 is complete. Π

Next we proceed to the smoothness results. The following inequalities
can be easily obtained.

LEMMA 4.2. ( i ) In the case of 0<d^a(x)^C2<2 there are constants
η, )?'>0 and ^/x^0 such that

supXtag(x, C(x, z, tf), (7)^'(l+2θ* for all z>η" .

(ii) In the case of a(x)^Q there are constants η, η'>0 and ^/x^0 such that

supx,σg(x, G(x, z, σ), σ) ^ r ] f e ^ z for all z>η"

(in this case we can take η — l/ξι).

Proof of Theorem 3.3. First note that for Sτ of (SN) we may assume
M(Si)=M0>Q for z=l, ••• , TV by modifying M(dσ) and m(x, σ) as follows:

where S'=Σί=ιSi, and

m(x, σ)M(Si)/M0 if
m(x, σ)=\

m(x, o) otherwise

(then m(x, σ)^m(
Next we verify the assertion a) by using Theorem 2.5 together with
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Lemma 4.1. For this end, it suffices to prove that for any ζ, #>0, the
assumption (B— (ζ, #)) holds (see §2). By the same argument as in the proof
of Theorem 3-12 of [2] we see that there exist positive constants ε', φ and γ
such that if E'=(φ, oo) then for all x, y(ΞRd

(4.4) 'ΣinfJteE 'σesty
ΎF(x, z, σ)y(l+zγ^ε'\y\2/2.

In fact, set ψ=$up{ \Duy(x, 0, a)\ : x^Rd, σ<=ΞΣ>?=ιSi} then 0<0<oo by (L-l)
and (TV). Since \imz_00supx,σ | D x f ( x , z, <τ) |— 0, for V=(l+DxfY

l—l there is a
constant 0ι>0 such that

(4.5) \\V(x, z, σ ) | | ^ - v i / 3 v Λ j for all 2>^,

where || || denotes the operator norm. Let

U(x, z, σ)=(l+Dxf(x, z} σ)rlD,f(x, z, σ),

which is well-defined by (C). Then

U(x, z, σ)=(I+V(x, z} σWJ(x, *, ̂

= —g(x, G(x, z, σ\ σY\Duy(x, 0, σ)+V(x, z, σ)Duy(x, 0, σ)

(x, 0(x, z, σ\ σ)-Duy(x, 0, σ)]).

Thus Lemma 4.2 (i), (4.4) and (4.5) yield that if φ=φlVδ(^^~εjN\\/'η'' then

for all z>φ, σ^ΣίίiSz and x,

\yΎU(x, z, σ)\>hl+zr'ί\yΎDuy(x, 0, σ)| - l ^ l

Now we fix x, yξΞRd with y^O. From (SN) there is an index i such that
mfσξ=sl\yτDny(x, 0, σ) | 2^ε|^ | 2/^ Hence if z>φ and σ^St, then

1 i
I y Ύ U ( x , z, ( j) l^— (H-z) 7ί-^rVε/N\y .

η f 2

Therefore, for all x, y^Rd

f (4.4) holds (note that yΊF(x, z, σ)y=\yΎU(x, z, <τ)Γ).
Now we can choose a function ρ(z): E=(Q, oo)->(0, oo) such that it satisfies

the condition (p) and ρ(z)=(l+z)~2 for z>φ. If we set /ι(z)—( l+z)~ r ρ(z)l E >(z)
=(l+zTr-2!E'(z) then, for any ζ, 0>0, /z(z) is a (ζ, 0)-broad function on E',
which turns to a (ζ, #)-broad function on E (see Example 2.4). Since

g ; f e C g ) o ^ , 3 e ,

our claim follows.
Finally we prove the assertion b). Let η — 1/ξι and denote by H the con-

stants 2d(r+d+l)/η (resp. 2d\r+l)/η) in (i), 2rf(r+2rf+l)/)7 in (ii), and
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4d(r-f 2d-f2)/)y in (iii), respectively. By Theorem 2.5, for the proof of b) it
suffices to prove that (5—(ζ, 0)) holds for ζ=^, 0=M0f/[/f+l]. This is
proved by a similar argument to the proof of a). In fact, (4.4) holds with
ezrίz instead of (l-f-z)r by Lemma 4.2 (ii). Let p be a function satisfying the
condition (p) and p(z)=z~2 for z>φ, and set h(z)=e-2vzp(z)lE,(z)=z-2e-2yιzlE,(z\
Since 2η<M*t/(η\_H+Y])=θ/η = θ/ζ provided t>2η\H+l)/M* (^2η2{_H+l~\/M,\
h is (ζ, #)-broad on E. Therefore we see that the assumption (B—(ζ, 0)) holds.
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