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GENERALIZED HOPF MANIFOLDS, LOCALLY
CONFORMAL KAEHLER STRUCTURES
AND REAL HYPERSURFACES

By SORIN DRAGOMIR

Abstract

We study the geometry of submanifolds of complex Hopf manifolds en-
dowed with the (locally conformal Kaehler) Boothby metric.

1. Generalized Hopf manifolds and the Boothby metric.

Let a=C, 0<|a|<1, be a fixed complex number; let G, be the discrete
group of complex analytic transformations of W=C"—{0}, n>1, generated by
z—az, z€W. Then G, acts freely and properly discontinuously on W, see [28],
vol. II, p. 137, so that the quotient space H;=W /G, becomes in a natural way
a complex n-dimensional manifold. This is the well known complex Hopf mani-
fold. In their attempt to construct complex structures on products S'X L,
where S! is the unit circle and L an odd dimensional homotopy sphere, E. Bries-
korn & A. Van de Ven, [3], have generalized Hopf manifolds a follows. Let
n=1 and (b, -+, by)€Z"™, b,=1, 0<7<n. Let (z,, ---, z,) be the natural
complex coordinates on C™*!. Define X2"(b)= X®"(b,, ---, b,)CC™** by the
equation :

(20 -+ +(22)' =0

Then X*®*"(b) ia an affine algebraic variety with one singular point at the origin
of C"* if b,=2, j=0, --- n (and without singularities if b,=1 for at least one
7). Next B*™b)=X*"(b)—{0} is a complex n-dimensional manifold, referred
hereafter as the Brieskorn manifold determined by the integers b, ---, b,. See
[2]. There is a natural holomorphic action of C on B?"(b) given by:

twe

t(Zo, e z,.)::(zo exp (_ bo )’ see, Zn €XP (__ t;:ia )) (1)

where t€C, w,=—log |a|—i®,, D,=arctan (Im(a)/Re(a)), —n/2<D,<x/2,
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GENERALIZED HOPF MANIFOLDS 367

i=+/—1. Then Z acts freely and properly discontinuously on B*"(b) as a sub-
group of C. The resulting complex manifold :

H:(b)=B™0b)/Z

is referred to as the generalized Hopf (g.H.) manifold determined by @ and b,,
0<j=n. Note that H;(1, ---, 1) and W/G, are diffeomorphic.
Let D' be the punctured open unit disk in C. Consider:

f: D'} B*(b) — D'X B*(b)

defined by f(a, x)=(a, U,x), for any a= D!, x< B**(b), where U,=GL(n+1, C)
is the matrix:

Uazdz'ag<exp (__ 1_”()%)) v, eXp (‘%))

Note that f is an automorphism of D'X B*"(b). The action of GL(n+1, C) on
C"*' induces an action of Z={f™/m<Z} on D'XB*"(b). Let:

X"=(D'X B*(b))/ Z
be the quotient space. We establish the following :

THEOREM 1. X" is a complex n-dimensional manifold. Moreover, if n=2,
then there exists a surjective holomorphic map n: X?*—D' which makes X* into a
complex analytic family of compact complex surfaces, for any a<D' there is a
diffeomorphism between n~'(a) and HZ(b).

We recall that a triple (X, =, M) is a complex analytic family of compact
complex manifolds if X, M are complex manifolds and n: X--M is a proper
holomorphic map which is of maximal rank at all points of X. Then each
fibre #7'(a), a= M, is a compact complex manifold. Note that the action (1)
of Z on B*"(b) generalizes slightly the one in [3], p. 390. There B**(1, ---, 1)/Z
is diffeomorphic to W/G,.. The proof of Theorem 1 is organized in several
steps, as follows.

STEP 1. Z acts freely on D'X B**(b).
Let (a, x) be a fixed point of f™, m&Z. Thus Ux=x, and consequently :

mwd
z,expl— =z
J ( b] ) J
for 0<7<n. Since at least one z, is non-zero, it follows that m=0.

STEP 2. {f™/m<Z} is a properly discontinuous group of analytic trans-
formations of D'X B*(b).

Let Kc D', LcB®(b) be compact subsets. It is enough to show that the
set of all meZ with the property:
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is finite. Since K is compact, there is ¢>0 such that |a|<c¢<1 for any a€K.
Let us endow C™*' with the norm:

|x|=1zo]+ -+ + |zl

where x=(z,, -+, z,)€C™"'. As L is compact, there are A>0, B>0 such that
A<Z|x|<B for any x L. Then:

Upx|= 3} |21 1a|™<B 33 ™ —> 0
j=0 j=o
as m—+oo. Consequently, there is NeZ, N=0, such that:
[UZx|<A 2)
for any m=N. Next, we shall show that there is N'eZ, N’=0, such that:

\U;mx|>B 3)

for any (a, x)eKX L and any m=N’. The proof is by contradiction. Assume
that there exists a sequence {Ms}sz1, mes=Z, m<m,<--. and a sequence
{(as: Xs)}sz1, (@s, x)€KX L, such that:

| U;™sxs|<B

for any s=1. Here U,=U,,. Set y,=Ui™x,, »:=", -, £¢). Hence:

(e (552, sn (<52

where w,=w,,. Thus:

1x)= 2 1T7 1@, ™S B 3 emts — 0
=0 7=

as s—+o. Thus 0 Lc B*(b), a contradiction. Let m&Z such that f™(KX L)
N(KXL)#@. Then there is (a, x)€KX L such that (a, Ux)e KX L. Assume
m=N. Then |UZx|<A by (2), a contradiction. Similarly, the assumption
m<—N’ leads to a contradiction by (3). It remains that —N’'<m<N, i.e. the
set {meZ/f™(KXLN(KXL)+@} is finite.

Thus X" is a complex manifold. Let p:D'XB**(b)—»X" be the natural
surjection. Moreover, let #: D*X B**(b)— D!, #(a, x)=a. As #f=*, there exists
a map =: X"—D' so that #p=#. As p is a covering map, it follows that =
is surjective, holomorphic and of maximal rank (at all points of X").

Assume from now on that n=2, i.e. each z7'(a), a= D" is a complex
surface.
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STEP 3. n: X®— D' is a proper map.

Let KC D' be a compact subset. We shall show that = !(K) is compact in
X® To this end, one shows that any sequence {P;},;, in 7 *(K) admits some
convergent subsequence. Set a,=n(P,), s=1. Then, by passing to some sub-
sequence if necessary, one may assume that a, converges to some a<K, as
s—+4oco, Thus there are ¢;>0, ¢,>0 such that:

a<la, i1 4

for any s=1, j=0,1,2. Choose x,=B*b) such that p(a,, x,)=P,; set x,=
(287, 2", 2).

CASE 1. There exists a sequence s,<s$;< -+ so that z§**=0, for any k=
1,2, .
As x,,€B*bo, by, by) it follows that (z{*#’, z{**’)& B*b,, b,). Thus 2§ 0,
z{*»#0, for any k=1,2, ... Note that for any 0<r<l1, p>0, there exists
meZ so that r<r™p<1. Apply this for:

r=las, """,  p=|z{'®|
Then there exists m,<Z so that:

aslag, V=] as, | ™0 200 | <1 ®)

Set :
y8h=UI:nhx:k

for k=1, 2, ---. Here U,=U,,. Then:

Pskzp(aaky ylk)
Set:

myW,
) —200 exp [ — ——2k
C§k o ve p( bj )

for j=0,1. By (5) one has:
as|fiw|<l
and thus one may assume that:

Cf‘k)-——)zb k—)—l—OO

for some z,€C, ¢,<|z,|<1. Set:
C=C\{x}
As C is compact, then:

Cé‘k) —> 2o, k—-)—'—OO

for some z,&C. If z,# 00, set x=(z,, 2, 0). Then x=B*b) and P,,—p(a, x),
as k—+oo, Note that z,=o0 does not occur since (z,)°0+4(z,)"1=0 and z,+ oo.
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CASE 2. For any s=1, z{®=+0.
Then there exists m;=Z so that:

a=las| 2 a | ™02 250 | <1 6)

for any s=1. By replacing x; with UPsx, if necessary (this is always possible
due to the invariance of p under the action of Z on D'X B%b)) we may assume
that :

=121, szl
Thus :

289 —> z,, s—+4o0
for some z,=C, ¢,<|z,|<1. As C is compact:
z2¥ —>z, s>t

for some z,&C, j=0,1. If z,#co then z,#oo, since (z,)°0+4(z,)"1+(z,)’2=0.
Then set x=(z,, z,, z,). Clearly:

Ps_‘)p(a, x), S*‘>+OO
If zy)=o then z,=o0, too, and we may assume that:
1]z 2P| < e >4 0

for =0, 1. There exists m;&Z such that:

a<lag|'m< a0 2P| <1 )
for all s=1. Set:
E;s)=zj(s)exp (_ m;w:;)
b,

for j=0,1,2. By (7) one has ¢,<|&{"|<1. Also ¢;< |2V | <1 yields 0 |&§%]
<1. As |&®|>0 there is mi=Z such that:

o= las | a0 660 <1 ¢))
Set:
(8) — &(8) _M
u{P=E&¢ exp( b, )

for =0, 1, 2. By (8) one has:

asjui®l=1
Also:
0<lu®|<1

for j=1, 2. Therefore, one rhay assume that u{®—u, and u{®—u, for some
Uo, U;EC, 1= |uol £1, 0 |0y £1, j=1, 2. .Set x'=(u,, U1, ). Then x’&B*b)
and P,—p(a, x'), as s—-+ oo,
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Thus (X?, =, D') is a complex analytic family of compact complex surfaces.
Actually, each fibre #7'(a) may be identified with the g.H. surface HZ(b,, b,)
by p(a, x)->pu(x), where p,: BY(b)—H2(b) is the natural covering map. Our
Theorem 1 is completely proved.

Let (M*®*", g,, J) be a Hermitian manifold of complex dimension n=2, where
Zo denotes the Hermitian metric, while J stands for the complex structure. Let
£, be its Kaehler 2-form, i.e. 2¢(X, Y)=g¢(X, JY). Then M?" is a locally con-
formal Kaehler (I.c. K.) manifold if :

dgo:-wo/\go (9)

for some closed globally defined 1-form w, on M*?". See e.g. T. Kashiwada,
[27].

Let (M*", g,, J) be a Hermitian manifold. If a globally defined l-form w,
satisfying (9) exists, then it is uniquely determined, i.e.

1
W= n—__T(ago)] (10)

where ¢ denotes the usual codifferentiation operator (the adjoint of d with
respect to g,). For instance, if M* is a Hermitian surface (i.e. n=2) then w,
defined by (10) satisfies (9), yet generally w, is not closed. See [53].

Let M?" be a l.c.K. manifold. The 1-form (10) is the Lee form of M?**,
Clearly, if w,=0 then g, falls into nothing but a Kaehler metric. Several ex-
amples of I.c.K. manifolds which admit no global Kaehler metrics are known,
see e.g. F. Tricerri, [47].

Let M?* be a l.c.K. manifold and let V be the Riemannian connection of
go. We shall need the Weyl connection D, i.e. the torsion-free linear connec-
tion on M?*" expressed by :

DrV =Ta¥ — (@ X)Y +aiV )X~ giX, V)By} an

Here Bo=(w.)* is the Lee field. Also # denotes raising of indices with respect
to g, i.e. go(X, A¥)=A(X), where A is any 1-form on M?*". Let K, R be respec-
tively the curvature tensor fields of D and V. As a consequence of (11) one
has:

1

K(X, Y)Z=R(X, Y)Z—-—z- {Lo(X, 2)Y

~ LY, DX +84X, D)LY, )
—8ulY, LXK, =S (XAY)Z (12
where :

1
Lozvmo + 5@)@‘00 (13)
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and (XAY)Z=g,Y, Z2)X—g«X, Z)Y ; also c=|w,l, ccC(M?").
A PK-manifold (cf. the terminology in [49]) is a l.c.K. manifold whose
Lee form is parallel (with respect to V). If M?" is a PK-manifold then c€R.
Let M** be a l.c.K. manifold. As dw,=0, by the classical Poincare lemma,
there exists an open covering {U;:}:c; of M®* and a family {f.}:c; of smooth
real valued functions, f;=C>(U,), i€, such that:

(wo).t:(df()x (14)

for any x<U,. Let us consider the local metrics g;=exp(—f.)g, i=I. Each
Uy, g4, J) is a Hermitian manifold. Let £, be its Kaehler 2-form. Then (9)
yields d2,=0, i.e. g; is a (local) Kaehler metric. Any such two metrics are
conformally related, i.e. g,=exp(f:—f,)g:on U;NU,, and thus (being Kaehler)
they are homothetic, i.e.

fi'—fJZCtjy C,jER

This agrees with (14). Let V¢ be the Riemannian connection of (U, g.). Then:
1
VY =VyeY — 5 {X(fOY +Y (f)X—gX, Y) grad (f.)}

where grad (f.)=(df:)*. Consequently, the local connections V¢ glue up to D,
i.e. the Weyl connection is precisely the Riemannian connection of the local
metrics g;, ¢=I. Since these are Kaehler, it follows:

Dj=0 (15)

Let M?"* be a PK-manifold. It is said to be a PoK-manifold (cf. [49]) if its
lgcal Kaehler metrics {gi}«c; are flat, i.e. K=0. Thus, by (12), the curvature
R of a P,K-manifold has the following expression :

2
RX, V)Z= %(X/\Y)Z

n % (Lol X)Y —0o(Y)X Joo Z)

+[go(X, 2)0l(Y)—goY, Z)ws(X)]B,} (16)

Our standard example of P,K-manifold is the complex Hopf manifold H?~
H1, ---, 1); let us consider the Hermitian metric:

ds*=|z|"%0:;dz*Qd 2’ 17

on W=C"—{0}, where |z|*=0:;z2'z’, z=(2%, ---, z"), z€W. Note that (17) is
G.-invariant and thus determines a (globally defined) Hermitian metric g, on
H;. This was discovered by W. Boothby, [1], for n=2. It was observed by
I. Vaisman, [49], [52], that actually g, is a I. c. K. metric on Hj}. It is referred
to as the Boothby metric of HZ. It is known that Hj~S'xS?"! (a diffeomor-
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phism); thus Hj; is compact. It follows also that the first Betti number is
by(H%)=1, so that H? admits no global Kaehler metrics. It is easily verified
that the Lee form (locally given by w,=d log |z|%) of (Hj, g,) is parallel.

Let CI? be the Inoue complex surface, cf. M. Inoue, [25]; let (2, w) be
complex analytic local coordinates on CI: Set z=x+7y. The Hermitian

metric :
go=y"%dzQdz+ydwQdw (18)

makes CI® into a l.c.K. manifold (with the Lee form w,=y 'dy). The com-
plex Inoue surface is compact. Also b,(CI?)=1, so that CI*® carries no globally
defined Kaehler metrics. According to [47], CI? with the metric (18) is not a
PK-manifold.

2. The complex sphere.
Let Q,_,CH? be defined by:
(21)2+ +(zn)2=0 (19)

Note that (19) is G,-invariant, so that Q,_, is well defined. It is a complex
hypersurface of H] and it is referred as the complex sphere in Hi. Let b,eZ,
b;20, 1<j;<n. Let B**b,, -+, b,)CW be the Brieskorn monifold determined
by the integers b;, cf. our section 1. Let:

L#3(by, -+, ba)=B""%(by, -+, ba)NS™"!

be the Brieskorn (exotic) sphere determined by b, 1<j<n. We establish the
following :

THEOREM 2. Let a=R, 0<a<l, and n=5. Then the complex sphere Qn._,
in H3 is a compact l.c. K. manifold which admits no globally defined Kaehler
metrics.

Proof. Let n:W—H} be the natural surjection. Define f:Hz;—S'xS*"!
by :

fir(z) —> (exp (Zj%ggg_alil), l—z—l) (20)

for any ze&W. Note that the right hand member of (20) is G.-invariant, i.e.
f(=(2)) is well defined. Then f is a diffeomorphism with the obvious inverse:

i (w, §) — m(a?e /2L (21)
for any weS?, {=S?""!. Then (20) induces a diffeomorphism :

Qnoa=S'X L2, -+, 2) (22)
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By Corollary 2.10 in [11], p. 58, it follows:
H{Qnoy; Z)=H, (L*%; ZYDH(L*™; Z) (23)

where L*"® is short for L®**7%(2, ---, 2). Let G be any abelian group; by the
universal coefficient theorem (e.g. [35], p. 332) the sequence :

00— HyQun_1; Z)QG —> Hy(Qn_y; G) —> Tor (H(Qn-1; Z), G)—> 0 (24)
is exact. Set j=2 in (23); by a result of E. Brieskorn, [2], one has:
H,(L*™*; Z)=0, i=1,2

provided that n=5. Thus Hy(Q,_,; Z)=0. Set j=1 in (21); as L**® is con-
nected and (24) exact, it follows:

HyQn_y; G)=Tor(Z, G)=0

Assume further that G is a principal ideal domain (e.g. Z or a field). Then
HY(Qn-1; G)=Hom(Hy(Qn-1; G), G)=0, (cf. e.g. [34], p. 259). In particular
H*Q,..; R)=0. Therefore Q,_, is a compact (by (22)) complex manifold which
carries no globally defined Kaehler metric. Clearly @,., inherits a 1.c.K.
structure as a complex submanifold of Hj.

Remarks. 1) Note that the complex sphere Q,_, is a g.H. manifold
H% Y2, -+, 2), cf. our section 1. E. Brieskorn & A. Van de Ven, [3], show
that each product between S' and a (2n—1)-homotopy sphere, n+2, bounding a
parallelizable manifold carries a complex structure in a natural way. If b,=2,
1<j<n, our Theorem 2 completes this result, i.e. puts a Riemannian metric
on H3 (2, ---, 2) which is l.c. K. with respect to the complex structure dis-
covered in [3].

2) One may show that b,(L?*"~*)=0 by using results in differential geometry
as follows. By a result of Y. Tashiro, [46], L?®"® inherits an almost contact
metric (a.ct.m.) structure, as a real hypersurface of the Kaehler manifold
B-2(2, ... ' 2). Next, cf. S. Sasaki & C.J. Hsu, [45], this a.ct.m. structure is
actually Sasakian. Finally, one may use Proposition 1 of S. Goldberg, [21], p.
106, to conclude that b,(L?"*%)=0.

3. Submersions from complex Hopf manifolds.

Let p:S?*"'-CP"*' be the Hopf fibration. This is a principal S'-bundle
and a Riemannian submersion, as well. Both S?*~! and CP""! are thought of
as being endowed with their canonical Riemannian structures, i.e. the Rie-
mannian metric induced on S?"~! by the flat Kaehler metric of C*, and the
Fubini-Study metric, respectively. Set:

D={2rim+(log a)k/m, ks Z}
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This is a well defined lattice in C. Consider the complex 1-torus T¢(=C/D.
Define ¢: Hz—CP"* by q(n(z))=[z], where [z] denotes the point of CP""!
of homogeneous coordinates z. Then ¢: Hi—CP" ! is a principal T§-bundle.
Thus ¢ is a submersion. (Recall that for any principal G-bundle P over some
base manifold M, the projection P—M is a submersion; also j: G—P, j(g)=p.g,
g<G, is an immersion. Here p,=P is fixed.) The action of T¢ on Hj is
described as follows:

HXTt—> H?
(n(2), w+ D) — n(zexp (w))

Thus we have an immersion j: T¢—Hj, jla+D)=n(z,exp(w)), where z,cW
is fixed. We obtain the following :

THEOREM 3. Let H?, CP" ' be endowed with the Boothby metric and the
Fubini-Study metric, respectively. Then q: Hz—CP" ' is a Riemannian submer-
sion. Moreover, its fibres are mimamal (and therefore g is harmonic).

Proof. Let i: S*""'—C™ be the canonical inclusion; let z,&S5%""! be fixed.
Note that the canonical Riemannian structure of S?"~! and the Riemannian
structure induced by (17) actually coincide. Set:

V., =Ker(d,p)

Let moreover H,, be the orthogonal complement of V. in T, (S**7*). The fact
that p is a Riemannian submersion is expressed by claiming that d.p: H.;—
Tp:p(CP™ ") is a linear isometry. Set:

Vo, 7(z¢) = Ker (dn(zo)q)

Let also N, (S*""') be the normal space on S*"~! at z,, i.e. the orthogonal com-
plement of (di)T,(S*"*™') in T, (C™).

LEMMA 1. Let z,=S*""'. Then:
Va, n(zo)=(d,oﬂ)[((dZoi)VZO)®NZO(SZn—1)] .

Proof. Let N be a unit normal field on S**~!, i.e. the position vector at
any point on S*"7'. Set U=—JN, where J stands for the complex structure
on C". Then U,, spans V,. At this point gexei=p and the fact that U is

vertical, yield:
(dﬂ)(dl)VzOC VO. n(zg)

Let p: W—CP"! be the natural map. Note that p is holomorphic. Then:
(dn(zo)q)(dzox ﬂ)Nzoz(dn(zo)ﬁ)]zo(dzoy i)Uzo
:]/5(20)(dzoﬁ>(dzoi)U10: /p(zo)(dzof»Uzo:O
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where J’ denotes the complex structure on CP*"'. The proof of Lemma 1 is
complete.

Let (-, -),, be the inner product on T,(C") induced by the canonical flat
Kaehler metric of C™; since |z,|/=1, this coincides with the inner product in-
duced by (17). Moreover (dz)(di): T, (S** )T .(HG) follows to be a linear
isometry. This fact and Lemma 1 yield:

Hyzap=(dn)(d?)H,, (25)

where H,, .., denotes the orthogonal complement of Vo c:p in Trc,p(Ha). As
p is a Riemannian submersion, the formula (25) shows that:

d2q : Ho,zy —> Ty (CP*Y)

is a linear isometry, for any z=S®**~!. The same holds for arbitrary zeW. In
order to verify this, one should firstly establish :

LEMMA 2. TicCIsom (HZ).
Proof. One needs to show that for each g=T¢ the right translation

R,: H;—Hj is an isometry. Set g=w+D, weC; locally R, is the map z—
zexp (w). Set exp(w)=u-+iv and z/=x’+iy’. THe (real) Jacobian of R, is

given by :
(u&} —v&})
V5! udt)

|Z exp (W)l —2((ng)ai: (de)aJ)z exp (w)
=|z| _2(‘“2"‘112)”(“314‘03;, uaj+vaj)x

Consequently :

=|z| %y

etc. Thus (dR,): Trwy(HZ) =T expwn»(H3) is a linear isometry. Here 9;=
d/dx*, 0;=0/0y".

As g-R,=const., each right translation preserves vertical spaces. By
Lemma 2, right translations will preserve horizontal spaces, too. Then, the
only fact that remains to be proved is that given arbitrarily zeW, there exist
g€Tt and z,&S5*""' such that m(z)=n(z,)g. Indeed, one may take g=log|z|
+D, and z,=2z/|z]|.

Since w—zexp(w), weC, is holomorphic (here zeW is fixed) it follows
that T¢ is a complex submanifold of H7.

LEMMA 3.. & is tangent to the Lee field of H3.

Proof. Let (x!, .-+, x*") be a local system of (real analytic) coordinates on
H;. Then the Boothby metric is locally given by g,,=|x| %0;; and the Lee
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form by w;=2|x|"%x,, where x;=x!. Consequently, the Lee field is locally
given by Bi=g¥w;=2x'; set w=x-+7y. Then:

N
Bj<w+D)=(d])ﬂ

i.e. T¢ is tangent to B.

Finally, one may use Theorem 1 in [13], p. 181, to conclude that j is
minimal. Our Theorem 3 is thereby proved.

Taking the Riemannian submersion ¢: H;—CP"' as a fundamental ex-
ample, it is tempting to consider more generally submersions from complex
Hopf manifolds (with the Boothby metric) with an arbitrary base manifold.
The classification problem for such submersions is open. See also R.H.
Escobales, [16], [17].

4. Submanifolds of locally conformal Kaehler manifolds.

It is the proper point to establish the basic formulae for an isometric im-
mersion in a PyK-manifold. Let ¥: M™—M?" be an isometric immersion of a
m-dimensional Riemannian manifold (M™, g) into the 1. c. K. manifold (M?", g, J).
We shall need the Gauss and Weingarten formulae :

VY =VxY+h(X,Y) (26)
Vrl=—AX+V4¢ @)

where V, h, A; and V* denote respectively the Riemannian connection of g, the
second fundamental form (of ¥'), the Weingarten operator (associated with the
normal section &) and the normal connection.

Let M*®*"* be a P,K-manifold. By a result of I. Vaisman, [49], the universal
covering space of M?®" is W with the metric ¢™%|z| %0, d2’®z*%, i.e. M*" is
locally analitically homothetic to a complex Hopf manifold (with the Boothby
metric). One adopts the notation M**=H} .. If g, is the Boothby metric, then
c=2 (see e.g. [49]). Then H% ,=H?7 (locally).

Let ¥: M™—H? . be an isometric immersion. As a consequence of (16),
the Gauss-Ricci-Codazzi equations of ¥ are:

2
RX, V)2=F(XAY)Z+ Aner.r X— Ancx. oY

+ ¢ ([oX)Y —alV)X Tul2)
+LeX, Z)alY)—g(¥, Z)X)B) 28)

(Vxh)Y, Z)—(yh)(X, Z)=%Eg(X, 2)o(Y)—gY, 2)o(X)1B*  (29)
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g RH(X, Y)§, n)=g([As, Ay]1X, Y) (30)

Here R, R* denote the curvature tensor fields of V, V:. Moreover o=¥*w,.
Next, if E(@)—M™ is the normal bundle (of the given immersion &), let tan,,
nor, be the projections associated with :

Ty (Hg, o)=(d¥)T (M™DEY).

for any xeM™. Set B=tan(B,), B*=nor (B,). As w, is parallel, by (26) it
follows :
(Vxo)Y =wy(h(X, Y)). (31)

Note that although Hj . c+#0, is strongly non-Kaehler (i.e. (w,).#0, for any
x&H? ;) the induced 1-form @ may have singular points.

Examples. 1) Let ¥:S***—>H; be defined by:

T (O=n(Ca'*)

for any {=S?""!. Here 0<a<l1. By (21), ¥=f"'j, where j: S?" 'S xS*"",
(-G, 8, i=+/—1. Then ¥ is an isometric immersion from S?”~' with the
canonical Riemannian structure, to H%7 (with the Boothby metric).

2) Let E*3*=U(S*"“YN\Q,.,. Then E?""* is a real hypersurface of the
complex sphere. As totally-umbilicity is a conformal invariant, E*"? is totally-
umbilical in Q,_,.

3) Let C*={zeC/Im (z)>0} be the upper half of the complex plane. As
the complex Inoue surface CI*? is a quotient of C*XC by some discrete group
of analytic transformations (see e.g. [47]), let n: C*XC—CI* be the natural
surjection (a local diffeomorphism). Let L={zeC*/Im(z)=1} and ¥: LXC
—CI% ¥T=nr-j, where j: LXC—C*XC is the natural inclusion. Then ¥ is a
minimal isometric immersion. Also LXC is an example of a real hypersurface
of CI® having exactly two constant principal curvatures A=—1 and p=1/2.

The study of the geometry of (the second fundamental form of) submani
folds in l.c.K. manifolds is of recent interest and has been initiated by K.
Matsumoto, [30], [31] and [33], I. Vaisman, [50], and continued further by
B.Y. Chen & P. Piccinni, [9], J.L. Cabrerizo & M.F. Andres, [10], L. Ornea,
[41], S. Ianus & all, [24], and author [12], [13] and [14]. We may formulate
the following.

THEOREM4. Let M*®"! be an orientable connected real hypersurface of the
P,K-manifold Hj,., n=3, having exactly two constant principal curvatures, both
of multiplicity =2. Then M?®*"' is locally isometric to a product LX L' of totally
umbilical submanifolds of HY, . having a flat normal connection. Moreover, either
M?*®"~1 is tangent to the Lee field of Hj .or L, L' are extrinsic spheres of HZ ..

THEOREM 5. Let M?*"! be an orientable connected quasi-Einstein (i.e. Ric=
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08—(@2n—3/HwRw) real hypersurface of Hy ., n=3, tangent to the Lee field of
H:,..

i) If p>(2n—3)c?/4 then M*"! is totally umbilical in H% ..

ity If o=2n—4)c*/4 then either M*®*"*' is totally geodesic in HE . or it has
exactly two principal curvatures, one non-zero of multiplicity 1, and the other zero
(of multiplicity 2n—2).

iii) If p<(@n—3)c*/4 then M*®**~' is locally isometric to a product of two
extrinsic spheres of H} ..

Let M*®*"* be an orientable real hypersurface of HZ ., Let N be a unit
normal field on M*®*"™' and A=Ay the corresponding shape operator. Then
t(x)=rank (A;) is the type number of M**™* at xeM?**"', Let Isom(M?""') be
the group of isometries of M?**~!. Then M?*""! is homogeneous if for any x, y
eM®**"! there exists f<lsom(M*®**™') such that f(x)=y and (d,f)B,=B8B,.
Examples of homogeneous real hypersurfaces of a complex Hopf manifold are
furnished in section 7. We obtain:

THEOREM 6. Let M**~' be an oriented real hypersurface of H: .. If M?*"™*
is homogeneous, then the type numbers of M*"* are either constant or <1 every-
where on M?**71.

5. Real hypersurfaces with two principal curvatures.

Let ¥': M***—H? , be an orientable real hypersurface of the P,K-manifold
H; . Let N be a unit normal field on M?"~!, We set A=Ay for simplicity.
Let 2,&C*(M?**"'), 1<7<2n—1, be the principal curvatures of M?®*""!, i.e.
Spec (A.)={A{x)/1<7<2n—1}, x=M?*"'. At this point, we may prove Theo-
rem 4. This is done in several steps, as follows. Let us assume that A has
exactly two distinct eigen-values at each point of M**!, say 2, p=C=(M*"™?).
Let p, ¢ be multiplicities of 1, ¢ respectively (p+¢=2n—1); it is known
that p, ¢ are constant. Let T'; , be the eigen-space of A, corresponding to
A(x). Then T, (respectively T,) is a smooth p-distribution (respectively g-
distribution) on M*®*"~! by standard arguments.

STEP 1. T, T, are integrable.

Let X, Y<l'(T;). One may use g, h(X,Y), N)=g(AX,Y) such as to pro-
duce the following version of the Codazzi equation (29), that is:

1
(VXA)Y—(VyA)XZZ {o(Y)X—ao(X)Y }wo(N) (32)
Using (32), as V is torsion-free, one obtains:

(A=D[X, V]=w:x(X)Y —0:(V)X (33)
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where :

w=dA+ jll-a)o(N)w

By the uniquences of the direct sum decomposition :
To(M?** )=T3 DTy

for xeM?*~!, it follows that both sides of (33) must vanish, i.e. [X, Y]I'(T)).

Remark. 1f @, has no singular points and B* is parallel in the normal
bundle then the Pfaffian equation w;=0 determines a codimension one foliation
F, on M**-! If, moreover, the multiplicity of A is p=2 then each leaf of T,
is a submanifold of some leaf of &;. Indeed, if V*B*=0, then d(wy(N))=0.
Consequently w; is a closed 1-form on M?*', If p=2 then w:(X)Y=w:(Y)X,
for any X, YeI'(T,), vields (w;),=0 on T;, ..

STEP 2. Assume A, p are constant, A+y. Then each leaf of T, (respectively
of T3) is totally-umbilical, both as a submanifold of M*"~! and as a submanifold
of H,..

Let XeI'(T;), YeI'(T,). The Codazzi equation (32) and comparison be-
tween the T ,-components lead to:

(A= X+ %wo(N Jo(X)Y =0. (34)

By Step 1, T, is integrable. Let L be aleaf of T, and ¢: L—M?""! the natural
inclusion. Let h, be its second fundamental form. Taking the inner product
of (34) with Z&T, one obtains:

(A= 8(X, T Z)t 0N )XY, 2)=0 (3)

where y=i*g. Let ¢3,,: T, (M*)—>T, ., x=L, be the natural projection.
Then (35) leads to:

1
(A—wh,=— ”4‘(00(N Qe B (36)
i.e. L is totally-umbilical in M™"!, Let h, be the second fundamental form of

ji L—H; ., j=%-i. The Gauss formula (26) and (36) give:

1
hy=1®{~ ma'o(N)tzB+#N} 37)

i.e. L is totally-umbilical in H? .

STEP 3. T3, T, are parallel (with respect to V) provided that p=2 and g=2.
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As p=2 one has w;(X)=0 for any X<I'(T;). Next, by (34) and A=const.,
one obtains:
(A—2A)Vp X=0 (38)
and:
@o(N)w(X)=0 (39)

for any XelI'(T,), YI'(T,). Similarly to (38), one also has (A—p)VxY =0.
This is enough for establishing parallelism of both T, T,. For instance, if
ZeT,;, as Vg=0, one has 0=g(V;X, Y)+g(X, V;Y) and thus v, X&I'(T,), etc.

Remark. B* has singular points. The proof is by contradiction. Suppose
Bi+0, for any xeM?""!, Then (39) yields ®=0 on T;. Since, similarly to
(39), one may obtain wo(N)w(Y)=0, for any YI'(T,), it is clear that w=0.
This has the following geometric meaning. Let &, be the canonical foliation
of H; . (see [49]) whose leaves are the maximal connected integral manifolds
of the Pfaffian equation w,=0. Thus M?"~! appears to be a leaf of F,. Con-
sequently M*"~! would be (by (31)) totally-geodesic in Hj . and therefore A=
¢=0, a contradiction.

STEP 4. The following formula holds :
ct 1, — — .
24(3e+ ) =7 IVG B+ VP (@B (40)

Let XeI'(T,), Yel'(T,). By Step 3, T, is parallel, so that R(X, Y)Y I'(T,).
Thus:
g(R(X, Y)Y, X)=0 (41)

On the other hand, by the Gauss equation (28), one obtains:

RO, V¥ =(2p+ IV 12X

+% {La(X)Y —(Y) X Jo(Y)—Y ||P(X ) B} (42)
Take the inner product of (42) with X and use (41). This procedure leads to:
(et VXY 1= a0V FIX I+ o X PV 2} =0 (43)

Let {E:}isisen-: be a (locally defined) orthonormal frame on M?"~!, chosen in
such a way that {E,}izasp and {Eayp}isas, are respectively frames of T, T,.
Use (43) for X=E,, Y=E,,, and take the sum (over a, a) in the resulting
equation. This yields (40), Q.E.D.

At this point we may prove Theorem 4. We distinguish two possibilities.
Either B+=0, i.e. M*"*™' is tangent to B,, or there exists x,=M?®*""! such that
By, :,#0. Then, by (39), w.,=0 on T, .. Similarly w.,=0 on T, ., i.e.,
®:,=0. Thus B,,=0 and by Step 4 one has:
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62
'Z/JH‘Z:O- (44)

By Step 3 each leaf L of T, is totally geodesic in M?"~'. Then (36) gives
h,=pur®N. Therefore, the mean curvature vector H, of L—Hj  is H)=uN,
and consequently H, is parallel, To prove that L is an extrinsic sphere of Hj, .
we still have to show that H,#0. Suppose H,=0. Then p¢=0 and, by (43), &
follows to be a Kaehler metric, a contradiction. Finally, we apply a result of
[28], p. 182, vol. I, such as to conclude that M?""' is locally isometric to a
product LX L’, where L (respectively L’) is a leaf of T, (respectively of T,).

Remark. By the Ricci equation (30) any leaf L of T; (being totally um-
bilical) has a flat normal connection as a submanifold of Hj ..

6. Quasi-Einstein real hypesurfaces.

Let ¥': M™—H?" . be an isometric immersion of a real m-dimensional Rie-
mannian manifold (M™, g) in the P,K-manifold HZ? . Let Ric be the Ricci
tensor of M™, 1If:

Ric= pg—mT_za)@w (45)
where o= ¥*w, for some p=C(M™), then M™ is said to be quasi-Einstein.

Remark. See [22], p. 118. Nevertheless, the definition in [22] is more
general, i.e. it is requested that Ric=ag+bw@w, for some a, b C(M™).

Let M?""! be a quasi-Einstein orientable real hypersurface of H; ., n=2.
Firstly, we need to establish the following :

LEMMA 1. If M*®"' is tangent to the Lee field of H; . then p is constant.

Proof. Set m=2n—1. We follow the ideas in [28], vol. I, p. 293. Suitable
contraction of indices in the second Bianchi identity (satisfied by the curvature
of M?""') leads to:

7’|k—2g”Rik|;=0 (46)

where r=g* R,, denotes the scalar curvature, while a bar stands for covariant
derivatives. Next (45) furnishes:

—2
Riku:{?ugik—m'—4_{(0ﬂj¢0k+wkuwi} (47)

As B*=0, (3l) yields w:,=0. Then (46)-(47) show that (m—2)p,,=0. Also
m=3 as n=2. Q.E.D.
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LEMMA 2. The principal curvatures A,. 1<:i<2n—1, of M?**"* satisfy the
quadratic equation -
t*—mHt+p— @iﬁcz=0 (48)
provided that B*=0. Therefore, at any point of M?*" ! there are at most two
distinct principal curvatures. Here mH=T race (A).

By suitable contraction of indices in (28) one obtains:
Ric(X,Y)=mHg(AX, Y)—g(A*X,Y)
1 . . m—2
+Z{(m—1)c —lwl*} g(X, Y)——Tw(X)w(Y) (49)

Let {E.}is.sm be principal directions on M?®*"~! corresponding to the principal
curvatures {4,},s.sm. Let us use (45), (49) for X=Y =E,. This procedure
gives:

p=mHi— I+ ((m—Det— i)
i.e. each A, satisfies (48), (as B*=0 yields |ol=c¢). Q.E.D.

At this point we may prove our Theorem 5. By Lemma 2, let 4, u be the
two principal curvatures on M?""!, If p>(2n—3/4)c* then, by (48), Ax>0 and
thus 4, ¢ have the same sign. Let us show that =g, i.e. M**"! is umbilical.
The proof is by contradiction. Suppose A#p. Then 2A+p=Trace(A)=
pA+(m—p)y, i.e. p=1, m—p=1. Thus m=2, a contradiction (m is odd).

If p=(2n--3)c?*/4 then A¢=0. Then either A=p=0, i.e. M**™' is totally
geodesic, or A#0, p=0. In the last case pA=Trace(A)=mH=2+p=4, i.e.
(p—1A=0. Thus p=1.

If po<(@2n—3)c*/4 then Ap<0. Thus (p—DA+(m—p—1p=0, 1<p<m—1,
and Ap=p—(m—2/4)c?, and therefore A*=—(m—p—1/p—1)[p—(m—2/4)c*],
wW=—(p—-1)/(m—p—[p—(m—2)c*/4], i.e. A, p are distinct and constant. By
Theorem 4, the proof is complete.

7. Homogeneous real hypersurfaces.

Let G4, 0<a<l, be the discrete group of transformations of W,=R"—{0}
generated by x—ax, xW,. Then G, acts freely and properly discontinuously
on W, so that the factor space RH3;=W,/G, turns to be a (compact) smooth
manifold. This is the real Hopf manifold. It is a local similarity manifold (see
[43]) carrying the untwisting metric |x|™%0;;dx’®@dx’. Let us denote by
. Wi—>RH} the natural surjection.

Let j: R* !> R® be the natural imbedding, i.e.
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(x1, -, 227N —> (x1, -, 227710, -+, 0)
Let H; be the complex Hopf manifold, cf. our section 1. Then:
RHY ' — H;,  m(x)—> m(j(x))

is an isometric immersion of (RH% !, | x| %d;;) into (HZ, g,). Moreover RH%*™*
is a totally umbilical real hypersurface of H;. Let B, be the Lee field of H%.
Then B=tan (B,) is precisely the characteristic field of RH?*"!, cf. the termino-
logy in [43]. Let us show that RH2""' is homogeneous, in the sense of our
section 4, i.e. Isom(RHZ ') acts transitively on RHZ% ! and ‘preserves’ the
characteristic field. If z,(x), =,(y)€ RH% "}, then there exists Ac0(2n—1) such
that Ax=y~. Let A: RH2'>RH2"* be defined by m,(x)—m(Ax). It is easily
seen that A=Isom(RH%* ') and (d,,,u);l)Bnl(z):Bnl(w-

Let ¥': S**"'>H?" be the isometric immersion constructed in section 4. If
x, y=S?"~! then there exists A=0(2n) such that Ax=y; S**~! is homogeneous
as a real hypersurface of H? since it is normal to the Lee field of H7.

Let us prove Theorem 6. Let M*®*""' be an orientable homogeneous real
hypersurface of H? .. Let xeM?"* be fixed. Let Sy,(x) be the real linear
subspace consisting of all XeT ,(M?®*"* ') obeying the property:

2
R(X,Y) =54-X/\y

T 1@X)Y —al)X T+ (V)X —alX)Y 1IQB}  (50)

for any YT, (M*"'). Here h denotes lowering of indices by g. Let X
Ker (A,;). By the Gauss equation (28) it follows that X verifies (50) for any
YeT . (M*™ "), i.e. Ker(A;)SS)(x). Conversely, let X&S4x), be arbitrary.
Suppose from now on that rank (A;)=2. Now t(x)=dimg(Im(A;)); consequently,
there exists Y T, (M?*"') such that A,Y +#0 and (A.X, A.Y)=0, where g,.=
(-, ). As X&S,(x), by (28), one obtains A, XANA,Y=0 and then:

A X|?A.Y =0
i.e. XeKer(A,). We conclude that:
So(x)=Ker(A,) (51)

provided that #(x)=2. Let yeM?®*"!, y+x. As M?*""'is homogeneous, let f&
Isom(M®**-') such that f(x)=v, (d.f)B.=B,. Then (df)S«(x)SS«(y). Con-
sequently dimgeSo(x)<dimpS,(y). The reversed inequality may be proved in a
similar way. Thus #(x)=t(y). So, if #(x)=2 then #(x)=const. 1If, in turn, #(x)
<1, for some x=M?""!, then by (28) one obtains dimzS.(x)=2n—1. Thus, by
the homogeneity assumption, dimgS,(y)=2n—1, for all yeM**~'. Using again
the Gauss equation it follows that rank(A)<1 everywhere on M?**! Q.E.D.
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8. Strongly invariant and totally umbilical submanifolds.

Let M be a submanifold of the Riemannian manifold (M, g). Let R be the
curvature 2-form of M. Then M is an invariant submanifold (cf. K. Ogiue,
[40], p. 339) if for any x=M, and any u, veT (M) the tangent space T .,(M)
is invariant under the curvature transformation R.(u, v): T.(M)—T (M), that
is R,(u, vXT(M)CT(M). Also M is termed strongly invariant if T (M) is
invariant under R.(#, 9), for any #, 5T (M), x&M. For instance, any sub-
manifold of a real space form is invariant, see [40], p. 390. Also each extrinsic
sphere (i.e. totally umbilical submanifold whose non zero mean curvature
vector is parallel in the normal bundle), is invariant, by the Codazzi equation,
see e.g. B.Y. Chen [5], p. 329. We may finally mention that since any in-
variant submanifold of a complex space form is either holomorphic or totally
real, cf. [7], p. 260, the totally umbilical submanifolds of complex space forms
have been completely classified, see Theorem 1 in B.Y. Chen & K. Ogiue, [8],
p. 225.

The present section aims to the study of (strongly) invariant submanifolds
of complex Hopf manifolds (with the Boothby metric). We may formulate the
following.

THEOREM 7. Let M™ be a real m-dimensional, 1<m<2n, strongly invariant
submanifold of the complex Hopf manifold H, n>1. Then either M™ is normal
to the Lee field of Hy or M™ is a real hypersurface of H3.

THEOREM 8. Let M™ be a totally umbilical submanifold of the complex
Hopf manifold Hj. If M™ is tangent to the Lee field of Hj then M™ is either
totally geodesic or an extrinsic sphere.

Let M™ be a submanifold of H?; the Codazzi equation of M™ in H? may
be written as follows:

nor (R(X, V)Z)="4g(X, Z)oX¥)—g(Y, Z)ak X)) B+ 52

Therefore, any submanifold of H? which is tangent to the Lee field is invari-
ant. Let &, be the canonical foliation of H?%, see section 5. By (52), any leaf
of &, is an invariant submanifold of H%. Conversely, one obtains:

PROPOSITION. Let M™, m=2, be an invariant submanifold of Hj, Then
either M™ is tangent to the field of Hg, or, if Bi#0 at some point xM™,
then x is a singular point of the induced 1-form w on M™.

Proof. 1f M™ is invariant, then by (52) one has:

{(u, ww:(v)—W, ww:(u)}Bz=0 (53)
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for any u, v, weT ,(M™) and any x=M™. Here g,=(-,-). We distinguish
two cases: either Bi=0 for all xeM™, i.e. M™ is tangent to B,, or there
exists xo&M™ such that B #0. If this is the case, let uT . (M™) be arbitrary.
Since m=2 we may consider v=w, |v|=1, (u, v)=0, veT,(M™). By (53) one
obtains @, (u)=0, for all , Q.E.D.

We proceed by proving our Theorem 7. Suppose M™ is strongly invariant.
Then for any tangent vector fields X, Y on H7, respectively any tangent vector
field Z on M™, one has:

{g ¥, Z)— %wo(}_’)w(Z )}nor()? )
~{8dX, 2)— F o Dyal¥) bror(¥)

+5 184X, 2)auV)—2o¥, Z)en( D} B*=0 N

as a consequence of (16), (where ¢c=2). K. Ogiue, [40], p. 393, has shown that
there exist no strongly invariant submanifolds in a Riemannian manifold of
non zero constant curvature. Following the scheme of proof of Theorem 3.4,
in [40], p. 393, let X=X=Z, Y=¢ where X is tangential, while & is normal.
Then (54) leads to:

(2 (0P IX )64 1X [Fas©)B=0 (55)

We distinguish two possibilities. Either =0, i.e. M™ is normal to B,, or there
exists x,&M™ such that w.,#0. If this is the case then B, ,#0 and, since
m=2, we may choose usT. (M™), |lull=1, (u, B.)=0. Apply (55) for X, =u.
If follows that:

o, z(2) B3, =4z (56)

for any z= E(¥).,. Clearly B;,#0; otherwise, by (56) one would have m=2n,
a contradiction. Thus, by (566), E( W),o is spanned by Bj, i.e. codim(M™)=1.
Q.E.D.
Let M™ be a totally umbilical submanifold of H?. By the Codazzi equation
(e.g. (2.7) in [4], p. 46) and umbilicity :
nor (R(X, Y)Z)=g(Y, ZN3yH—g(X, Z)N¢H (67)
As m=2, for fixed X let us choose Y such that |Y||=1, g(X, Y)=0; then (57)
yields nor (R(X, Y)Y)=V%H. This and (52) yield:
V3H=— zll—w(X)B* (58)

The situations in Theorem 8 correspond to H=0, H+0, respectively.
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Remarks. 1) Let M®™ be an even dimensional extrinsic sphere of the I.c. K.
manifold M?", having a flat normal connection. If w,=0, (i.e. the ambient
space is Kaehler) then the simply-connected complete extrinsic spheres with a
flat normal connection have been classified by B.Y. Chen, [5]. Actually, any
such M?®*™ is isometric to the sphere S®™(1/k) of radius 1/k, k=|H|=const.
See Theorem 1 in [5], p. 328. The classification problem for the case of a
l.c. K. ambient space is not as yet solved.

2) The key ingredient in the proof of Theorem 1 of [5], p. 328, is a result
of M. Obata, [39], p. 334, asserting that a complete Riemannian manifold M?
of dimension p=2 is isometric to the sphere S?(1/7) if and only if the differential
equation (Vxdf)Y =—r2g(X, Y)f admits some non constant solution f&C=(M?P).
Let M®™ be a simply-connected extrinsic sphere in the l.c.K. manifold M?",
having a flat normal connection. While leaving the classification problem open,
one may show that the differential equation :

(Vxd /Y + 5 Xk )= kg(X, V)1 (59

admits non constant solutions f<C*(M*®*™), provided that M?™ is tangent both
to the Lee and anti-Lee (i.e. A,=—JB,) vector fields of M?3".

3) It is expected that the existence of solutions of (59) may be exploited
on the line in [39]. While this is not as yet available, let us prove the result
stated in the previous remark. Since M?™ is taken simply-connected, the as-
sumption R*=0 is equivalent to the existence of a frame in the normal bundle
consisting of mutually orthogonal parallel unit vector fields. Let N=Fk 'H.
Then N is a parallel unit normal field. Choose a frame {Ng}isassa-2m in E(¥)
such that N;=N, go(Na, No)=04s, V*N,=0, for all 1<a, b<2n—2m. Next, let
us construct the functions f,=C~(M?®™) by setting f.=g«JN, Ng), 2=5a=
2n—2m. By (11) and (15) one has:

TaJ6=JTxt+ 5 (04O X~ X~ 24X, OB (60)

for any tangential vector field X, respectively any normal section & in E(Y).
Here 0,=w,°J is the anti-Lee form. Set A*=nor(A,). We establish the fol-
lowing :

LEMMA 1. If A*=0, B*=0 then for each tangent vector field X on M*™
one has:
X(fa)=k24(X, N.) (61)

for any a=2.

Proof. Using (60) we have
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X(fo)=X(go(JN, No))
=8(VxJN, No)+gf(JN, TxNa)=g«(JVxN, No)
+%{wo(]N)go(X, Na)—wo(N)go(J X, Na)—go(X, JN)wo(Na)}.
Use was made of :
UxNo=—Ay,+ViNo=—go(Nao, H)X=0

for any a>=2, (as a consequence of (27) and umbilicity). Thus:
1
X(fa)=kg!X, JNo)+ 5 {@o(N)Ro(X, No)—wo(Na2)2o(X, N)} (62)

for a=2. As M*®™ is tangent to both the Lee and anti-Lee vector fields, the
Lee and anti-Lee forms vanish on normal vectors. Thus (62) leads to (61).

LEMMA 2. There exists 2<a<2n—2m such that at least one function f, is
not constant.

Proof. Suppose the functions f,, a=2, are simultaneously constant. Then,
by our Lemma 1, it follows 0=X(f.)=kg(X, JN,), i.e. JN, are still normal,
a=2. Consequently, the linear space W, spanned by N, ., J:N,. ., a=2, over
the reals, is a J.-invariant subspace of E(¥),. As W, carries the complex
structure [, its algebraic dimension has to be even, i.e. dimgW.>2n—2m—1.
Thus W,=E(¥),, x&€M*™, i.e. M*™ follows to be a holomorphic submanifold
of the l.c.K. manifold M?*, Thus H=—(1/2)B*, i.e. M*™ is minimal, a con-
tradiction.

Finally, let us show that each f., @=2, is a solution of (59). By Lemma
1 and (26) one has:

XV (£ )=k XY SN =R TxY, IN+EELY, Tx N
=kgUVxY, N+ kgh(X, V), INJ+REAY, JTxN.)
o (aINDEAX, V)—giX, INaY )
or (by (61) and umbilicity):
XY (f )=(Tx¥ )X )~ (X, V) o
+ 5 (80X, V)N~ 2K, Nool¥)) 63)

Now (63) shows that f, is a solution of (59), provided that A+=0, Q.E.D.
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