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GENERALIZED HOPF MANIFOLDS, LOCALLY

CONFORMAL KAEHLER STRUCTURES

AND REAL HYPERSURFACES

BY SORIN DRAGOMIR

Abstract

We study the geometry of submanifolds of complex Hopf manifolds en-
dowed with the (locally conformal Kaehler) Boothby metric.

1. Generalized Hopf manifolds and the Boothby metric.

Let fleC, 0 < | α | < l , be a fixed complex number; let Ga be the discrete
group of complex analytic transformations of W—Cn— {0}, n > l , generated by
z^az, z(=W. Then Ga acts freely and properly discontinuously on W, see [28],
vol. II, p. 137, so that the quotient space Hn

a=W/Ga becomes in a natural way
a complex w-dimensional manifold. This is the well known complex Hopf mani-
fold. In their attempt to construct complex structures on products SιxL,
where S1 is the unit circle and L an odd dimensional homotopy sphere, E. Bries-
korn & A. Van de Ven, [3], have generalized Hopf manifolds a follows. Let
n > l and (fe0, ••• , bn)^Zn+1, bj^l, 0£j£n. Let (z0, ••• , zn) be the natural
complex coordinates on C n + 1 . Define X2n(b) = X2n(b0, ••• , fc»)cCn+1 by the
equation:

Then X2n(b) ia an aίϊine algebraic variety with one singular point at the origin
of Cn+1 if bj^2, / = 0 , -" n (and without singularities if b3—\ for at least one
/). Next B2n{b)—X2n(b)— {0} is a complex n-dimensional manifold, referred
hereafter as the Brieskorn manifold determined by the integers b0, ••• , bn. See
[2]. There is a natural holomorphic action of C on B2n(b) given by:

t(Zo, —, ^ n ) = ( ^ O e X p ( - - y ^ ) , ••• , Zn ΘXp (—-y^ ) ) (1)

where f e C , wa=— log \a \— iΦa, Φα=arctan(/m(α)//?β(fl)), —π/2<Φa<π/2,
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2 = V—I. Then Z acts freely and properly discontinuously on B2nφ) as a sub-
group of C. The resulting complex manifold:

H"aφ)=B2nφ)/Z

is referred to as the generalized Hopf(g.H.) manifold determined by a and b},
0^j£n. Note that #2(1, ••• , 1) and W/Ga are diffeomorphic.

Let Dι be the punctured open unit disk in C. Consider:

/ : Dι x B2n{b) — > D1 x 52»(«

defined by f(a, jc)=(α, ί/αx), for any a e D 1 , xe=B2n(b), where £/αe=GL(n+l, C)
is the matrix:

Note that / is an automorphism of DιxB2nφ). The action of GL(n+l, C) on
C n + 1 induces an action of Z « { / 7 m e Z } on DιxB2nφ). Let:

be the quotient space. We establish the following:

THEOREM 1. Xn is a complex n-dimensional manifold. Moreover, if n—2,
then there exists a surjective holomorphic map π: X2-^D1 which makes X2 into a
complex analytic family of compact complex surfaces, for any a^D1 there is a
diffeomorphism between π~\a) and Hl(b).

We recall that a triple (X, π, M) is a complex analytic family of compact
complex manifolds if X, M are complex manifolds and π: X-*M is a proper
holomorphic map which is of maximal rank at all points of X. Then each
fibre π~\a\ G G M , is a compact complex manifold. Note that the action (1)
of Z on B2nφ) generalizes slightly the one in [3], p. 390. There B2n(l, ••• , 1)/Z
is diffeomorphic to W/G1/e. The proof of Theorem 1 is organized in several
steps, as follows.

STEP 1. Z acts freely on DιxB2n(b).
Let (a, x) be a fixed point of / m , m e Z . Thus Ufx = x, and consequently:

for O^tj ^n. Since at least one z3 is non-zero, it follows that m=0.

STEP 2. {/m/meZ} is a properly discontinuous group of analytic trans-
formations of DxxB2nψ).

Let KdD1, LcB2n(b) be compact subsets. It is enough to show that the
set of all m e Z with the property:
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is finite. Since K is compact, there is c>0 such that | α | ^ c < l for any

Let us endow Cn+ί with the n o r m :

where x=(zQ, •••, zn)^Cn+1. As L is compact, there are τ4>0, B>0 such that
A£\x\<B for any x<=L. Then:

| ? l Σ \Λ\\^Jϊcm<bJ—>0

as m->-f oo. Consequently, there is iVeZ, iV^O, such that:

\U?x\<A (2)

for any m^N. Next, we shall show that there is ΛΓ'GΞZ, iV'^0, such that:

\Uamx\>B (3)

for any (a, x)^KxL and any m>N'. The proof is by contradiction. Assume
that there exists a sequence {ms}s^ίf ms^Z, mι<m2< •••. and a sequence
{(a*, xs)\s2i> (as, XS)$ΞKXL, such that:

ίor any s^l. Here U s=Uα,. Set y,=lJ7m 3c., )>s=(Co*\ - , ζ^β)) Hence:

where ws—was> Thus:

1 Xi] = Σ! Iζ^l) flsΓ
ί;b^BI! c m ^ > —> 0

a s s->+oo. Thus 0^LaB2n(b), a contradiction. Let WIGZ such that fm(KxL)
Γ\{Kx L)Φ0. Then there is (α, x)e/iίx L such that (α, U%x)<=Kx L. Assume
m^N. Then |ί/?x|<i4 by (2), a contradiction. Similarly, the assumption
m<—N' leads to a contradiction by (3). It remains that —N'<m<N, i.e. the
set {m£ΞZ/fm(KχL)Γ\(KxL)Φ0} is finite.

Thus Xn is a complex manifold. Let p: DιxBin{b)^Xn be the natural
surjection. Moreover, let π : D'xB^φ^D1, π(a, x)=a. As £/=£, there exists
a map π : Xn->D1 so that πp=^π. As /> is a covering map, it follows that TΓ
is surjective, holomorphic and of maximal rank (at all points of Xn).

Assume from now on that n=2, i.e. each π~\a), a^D\ is a complex
surface.
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STEP 3. π: X2-*Dι is a proper map.
Let KdD1 be a compact subset. We shall show that π~\K) is compact in

X2. To this end, one shows that any sequence {Ps}s^i in π~\K) admits some
convergent subsequence. Set as=π(Ps), s ^ l . Then, by passing to some sub-
sequence if necessary, one may assume that ag converges to some α e ί , as
s-*+oo. Thus there are Ci>0, c2>0 such that:

l (4)

for any s^ l , / = 0 , 1, 2. Choose x^B\b) such that p(as, xs)=P8; set xs—

(4'\ 2?\ ZP).

CASE 1. There exists a sequence sx<s2< ••• so that zb'k:>~0, for any k=

As xSk(=B\bo, blf b2) it follows that (zί'*>, ar{ *>)ei3»(6β, bj. Thus z?*
, for any yfe=l, 2, -•-. Note that for any 0 < r < l , /o>0, there exists

so that r^r™^^!. Apply this for:

Then there exists mk^Z so that:

(5)

Set:

for * = 1 , 2, .. Here Uk—Un. Then:

P,h=P(ath, y,k)
Set:

for y=0, 1. By (5) one has:

and thus one may assume that:

ζ ί f *>—>z u

for some Zi&C, c^\zι\^l. Set:

As C is compact, then:

ζί *>

for some 20<ΞC. If z<>φoo9 set JC=(Z0, -2Ί, 0). Then x^B\b) and PSk^>p(a, x),
as &-»+oo. Note that 2 0 = : 0 0 does not occur since (zo)δ°+(zi)δl:=O and
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CASE 2. For any s^ l , z^ΦO.

Then there exists raseZ so that:

i:>\£l (6)

for any s ^ l . By replacing xs with ί/fsxs if necessary (this is always possible
due to the invariance of p under the action of Z on Dιx B\b)) we may assume
that:

Thus:
^ s ) > Z2, S->+oo

for some z2^C, Cι^\z2\^l. As C is compact:

for some zj^C, j=0, 1. If z0Φ°° then zίφoo> since
Then set x=(z0, zlf z2). Clearly:

If ZQ—OO then z1=oof too, and we may assume that:

for y=0, 1. There exists ms^Z such that:

^\^l (7)
for all s ^ l . Set:

for ; = 0 , 1, 2. By (7) one has c . ^ l ^ l ^ l . Also c^\zP\^l yields 0 ^ |
^ 1 . As | ^ " | > 0 there is m's<ΞZ such that:

l ^ l (8)
Set:

for ; = 0 , 1, 2. By (8) one has:

Also:

for y = l , 2. Therefore, one may assume that Wos)—>w0 and wjs)—>w; for some
Mo, W e C , Ci^lKol^l, O^lw.l^l, ; = 1, 2. Set x'=(i/0, «i, w2). Then x'(=B\b)
and Ps-+p(a, x'), as s-*+oo.
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Thus (X2, π, D1) is a complex analytic family of compact complex surfaces.
Actually, each fibre π~\a) may be identified with the g. H. surface H%,(b0, bx)
by p(a, x)*->pa(x), where pa : B\b)->Hl(b) is the natural covering map. Our
Theorem 1 is completely proved.

Let (M2n, g0, J) be a Hermitian manifold of complex dimension n>2, where
£0 denotes the Hermitian metric, while / stands for the complex structure. Let
Ωo be its Kaehler 2-form, i.e. Ω0(X, Y)=go(X, JY). Then M2n is a locally con-
formal Kaehler (l.c.K.) manifold if:

dΩ0=ω0ΛΩ0 (9)

for some closed globally defined 1-form ω0 on M2n. See e.g. T. Kashiwada,
[27].

Let (M2n, g0, J) be a Hermitian manifold. If a globally defined 1-form ω0

satisfying (9) exists, then it is uniquely determined, i.e.

\ (10)
72 — J

where δ denotes the usual codifferentiation operator (the adjoint of d with
respect to g0). For instance, if M 4 is a Hermitian surface (i.e. n—2) then ω0

defined by (10) satisfies (9), yet generally ω0 is not closed. See [53].
Let M2n be a l.c.K. manifold. The 1-form (10) is the Lee form of M2n.

Clearly, if ωo=O then gQ falls into nothing but a Kaehler metric. Several ex-
amples of 1. c. K. manifolds which admit no global Kaehler metrics are known,
see e.g. F. Tricerri, [47].

Let M2n be a l.c.K. manifold and let 7 be the Riemannian connection of
g0. We shall need the Weyl connection D, i.e. the torsion-free linear connec-
tion on M2n expressed by:

DxY=VxY-j {ω0(X)Y+ωo(Y)X-go(X, Y)BQ} (11)

Here B0=(ω0)* is the Lee field. Also # denotes raising of indices with respect
to g0, i.e. go(X, λ*)=λ(X), where λ is any 1-form on M2n. Let K, R be respec-
tively the curvature tensor fields of D and 7. As a consequence of (11) one
has:

K(X, Y)Z=R(X, Y)Z-j{L0(X, Z)Y

-Lo(Y, Z)X +go(X,Z)LQ(Y, •)*

-go{Y, Z)Lo{X, )*}-j(XΛY)Z (12)

where:

1
TΓWo^XOa (13)
z
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and (XΛY)Z=go(Y, Z)X-go(X, Z)Y also c=||αio||, ceC°°(M2w).
A PK-manifold (cf. the terminology in [49]) is a 1. c. K. manifold whose

Lee form is parallel (with respect to 7). If M 2 n is a Pif-manifold then c^R.
Let M2n be a l.c.K. manifold. As dωo=O, by the classical Poincare lemma,

there exists an open covering {Ui\i&1 of M2n and a family {/Ίhe/ of smooth
real valued functions, / t <=C°°(£/ι), /<=/, such that:

(ωo)x=(dfi)x (14)

for any x^Ut. Let us consider the local metrics gi=exp(—fι)g0, I'<ΞJ. Each
(#<> £<> /) is a Hermitian manifold. Let i? t be its Kaehler 2-form. Then (9)
yields dΩt—^y i.e. gt is a (local) Kaehler metric. Any such two metrics are
conformally related, i.e. gj=exp(fi—fj)gi on UtΓλUj, and thus (being Kaehler)
they are homothetic, i.e.

fi~fj~Cιjy Cij^R

This agrees with (14). Let 7* be the Riemannian connection of (Ut, gx). Then:

7 | r = 1 X Y - 1 {X(fi)Y+Y(fι)X-g0(X, Y)grad (ft)\

where grad(ft)=(dfi)*. Consequently, the local connections 7* glue up to D,
i.e. the Weyl connection is precisely the Riemannian connection of the local
metrics giy i<=L Since these are Kaehler, it follows:

Dj=0 (15)

Let M2n be a Ptf-manifold. It is said to be a PQK-manifold (cf. [49]) if its
local Kaehler metrics {giji^i are flat, i.e. K=0. Thus, by (12), the curvature
R of a Λ/£-manifold has the following expression:

R(X, Y)Z=j(XΛY)Z

, Z)ωo(Y)-go(X, Z)a>o(X)-]Bo} (16)

Our standard example of P0^-manifold is the complex Hopf manifold /f£«
Hl(l, ••• , 1); let us consider the Hermitian metric:

ds*=\z\-%6ijdzx®dz? (17)

on W=Cn-{0}> where Iz^δtjz1?, z=(z\ •••, zn\ ZΪΞW. Note that (17) is
Gα-invariant and thus determines a (globally defined) Hermitian metric g0 on
Ha* This was discovered by W. Boothby, [1], for w=2. It was observed by
I. Vaisman, [49], [52], that actually g0 is a 1. c. K. metric on Hi. It is referred
to as the Boothby metric of Hi. It is known that Hl^SιxS2n~ι (a diffeomor-
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phism); thus Hi is compact. It follows also that the first Betti number is
6i(J5Γj)=l, so that Hi admits no global Kaehler metrics. It is easily verified
that the Lee form (locally given by α>0=^log \z\2) of (Hi, g0) is parallel.

Let CP be the Inoue complex surface, cf. M. Inoue, [25] let (z, w) be
complex analytic local coordinates on CP. Set z=x+iy. The Hermitian
metric:

go=y-2dz®dz+ydw(g)dw (18)

makes CP into a I.e.K. manifold (with the Lee form ω*~y~1dy). The com-
plex Inoue surface is compact. Also bι(CP)=l, so that CP carries no globally
defined Kaehler metrics. According to [47], CP with the metric (18) is not a
PϋΓ-manifold.

2. The complex sphere.

Let Qn-iCZHl be defined by:

(zι)2+ ••• + U n ) 2 = 0 (19)

Note that (19) is Gα-invariant, so that Qn-i is well defined. It is a complex
hypersurface of Hi and it is referred as the complex sphere in Hi. Let bj^Z,
bj>0, l£j<Ln. Let B2n~2(bu ••• , bn)czW be the Brieskorn monifold determined
by the integers bJf cf. our section 1. Let:

be the Brieskorn (exotic) sphere determined by b3, l^j<*n. We establish the
following:

THEOREM 2. Let <κ=R, 0 < α < l , and n ^ 5 . Then the complex sphere Qn-i
in HI is a compact I. c. K. manifold which admits no globally defined Kaehler
metrics.

Proof. Let π:W->Hl be the natural surjection. Define f: Hl-^S'xS271'1

by:

(20)

for any z(=W. Note that the right hand member of (20) is Gα-invariant, i.e.
f(π(z)) is well defined. Then / is a diffeomorphism with the obvious inverse:

f'ι'Λw, ζ) — • π ( α a r β ( l t 0 / ί l Γ ζ ) (21)

for any M G S 1 , ζeS 2 7*" 1 . Then (20) induces a diffeomorphism:

Qn-i~SιxL2n-\2, . . .,2) (22)
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By Corollary 2.10 in [11], p. 58, it follows:

t Z)~H3^L*n-* I Z)®Hj(L2n-* Z) (23)

where L2n~z is short for L2Λ"3(2, - , 2). Let G be any abelian group; by the
universal coefficient theorem (e. g. [35], p. 332) the sequence:

0 — * MίGn-i Zχg)G — > ΛKC-i G) — > Tor(HlQn-. Z), C) — ^ 0 (24)

is exact. Set j—2 in (23); by a result of E. Brieskorn, [2], one has:

-B Z)=0, ι = l , 2

provided that n ^ 5 . Thus H%{Qn^\ Z ) = 0 . Set ; = 1 in (21); as L27l~3 is con-
nected and (24) exact, it follows :

H2(Qn_i;G)~Tor(Z, G)=0

Assume further that G is a principal ideal domain (e.g. Z or a.field). Then
H2(Qn_ί;G)*Hom(H2(Qn.1;G), G)=0, (cf. e.g. [34], p. 259). In particular
H\Qn-ι\ Λ)=0. Therefore <3n_i is a compact (by (22)) complex manifold which
carries no globally defined Kaehler metric. Clearly (?ra_! inherits a I.e.K.
structure as a complex submanifold of Hi.

Remarks. 1) Note that the complex sphere Qn-ι is a g. H. manifold
HT\2, •••, 2), cf. our section 1. E. Brieskorn & A. Van de Ven, [3], show
that each product between S1 and a (2n—l)-homotoρy sphere, nφl, bounding a
parallelizable manifold carries a complex structure in a natural way. If b3—2,
l<^j<Ln, our Theorem 2 completes this result, i.e. puts a Riemannian metric
on Ha"\2, •••, 2) which is I.e.K. with respect to the complex structure dis-
covered in [3].

2) One may show that b2(L2n~B)=0 by using results in differential geometry
as follows. By a result of Y. Tashiro, [46], L2re"3 inherits an almost contact
metric (a. ct. m.) structure, as a real hypersurface of the Kaehler manifold
B2n~\2, •••, 2). Next, cf. S. Sasaki & C. J. Hsu, [45], this a.ct.m. structure is
actually Sasakian. Finally, one may use Proposition 1 of S. Goldberg, [21], p.
106, to conclude that WL a n - 8 )=0.

3. Submersions from complex Hopf manifolds.

Let p: S2n-ι-+CPn~ι be the Hopf fibration. This is a principal S^bundle
and a Riemannian submersion, as well. Both S271'1 and CPn~ι are thought of
as being endowed with their canonical Riemannian structures, i.e. the Rie-
mannian metric induced on S2n~ι by the flat Kaehler metric of Cn, and the
Fubini-Study metric, respectively. Set :

D={2πim+(loga)k/m,
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This is a well defined lattice in C. Consider the complex 1-torus T^=
Define q: Hl-^CP71"1 by g(π(z))=lzJιt where [>] denotes the point of CP71'1

of homogeneous coordinates z. Then ?: Hl-^CP71'1 is a principal T^-bundle.
Thus q is a submersion. (Recall that for any principal G-bundle P over some
base manifold M, the projection P->Mis a submersion; also j : G->P, Kg)=pog,
g^G, is an immersion. Here po^P is fixed.) The action of Tl on Hi is
described as follows:

Thus we have an immersion j:Tk-*HZ, /(α+jD)=π(zoexp(u;)), where
is fixed. We obtain the following:

THEOREM 3. Let Hi, CPn~ι be endowed with the Boothby metric and the
Fubini-Study metric, respectively. Then q: Hl-^CPn~ι is a Riemannian submer-
sion. Moreover, its fibres are minimal (and therefore q is harmonic).

Proof. Let i: S2n-ι->Cn be the canonical inclusion; let z^S271'1 be fixed.
Note that the canonical Riemannian structure of S2n~ι and the Riemannian
structure induced by (17) actually coincide. Set:

Let moreover HZQ be the orthogonal complement of VgQ in TZQ(Sin~ι). The fact
that p is a Riemannian submersion is expressed by claiming that dZQp : i/2o-»
TpiZQ-)(CPn~ι) is a linear isometry. Set:

Let also N.^S271'1) be the normal space on S27l~ι at zQ, i.e. the orthogonal com-
plement of (di)TZQ(S2n-*) in TH(Cn).

LEMMA 1. Let z^S2n~ι. Then:

Proof. Let N be a unit normal field on S2n~\ i.e. the position vector at
any point on S2n~\ Set U=—JN, where / stands for the complex structure
on Cn. Then UgQ spans VgQ. At this point q°π°i=p and the fact that U is
vertical, yield:

Let p '.W-ΪCP71'1 be the natural map. Note that p is holomorphic. Then:

π)NZo=(dπCzoip)J2o(dZo, i)UZo
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where / ' denotes the complex structure on CPn~\ The proof of Lemma 1 is
complete.

Let ( , )«0 be the inner product on TH(Cn) induced by the canonical flat
Kaehler metric of Cn; since | * β | = l , this coincides with the inner product in-
duced by (17). Moreover (dπ)(di): TZQ(S2n-1)->Tπ<iZQ^Hl) follows to be a linear
isometry. This fact and Lemma 1 yield:

Ho.^=(dπ)(di)HZo (25)

where i/0.πcz0> denotes the orthogonal complement of VΌ.«c«0) in TnU(^{Hl). As
p is a Riemannian submersion, the formula (25) shows that:

is a linear isometry, for any z<=S2n~\ The same holds for arbitrary z<=W. In
order to verify this, one should firstly establish:

LEMMA 2. ThczIsom(Hl).

Proof. One needs to show that for each g^Th the right translation
Rg\Hl-*Hl is an isometry. Set g=w+D, WΪΞC; locally Rg is the map z*-*
zexp(w). Set exp(w)=u+iv and zj=xJ+iyj. THe (real) Jacobian of Rg is
given by:

(uδj -vδj\

\vδ}
Consequently:

\zexp(w)\'\(dRβ)dt,

= \z\-\u2+v2y\ud

etc. Thus (dRg):Txω(Hϊy+TxC9expζw»(<Hΐ) is a linear isometry. Here d*=
d/dx\ dt^d/dy*.

As q°Rg=const., each right translation preserves vertical spaces. By
Lemma 2, right translations will preserve horizontal spaces, too. Then, the
only fact that remains to be proved is that given arbitrarily z^W, there exist
g&Tb and Zo^S271'1 such that π(z)=π(zo)g. Indeed, one may take g=\og\z\
+D, and z,=z/\z\.

Since w*->zexp(w), w^Cf is holomorphic (here zeW is fixed) it follows
that Th is a complex submanifold of Hi.

LEMMA 3.. Th is tangent to the Lee field of Hi.

Proof. Let (x1, ••• , x2n) be a local system of (real analytic) coordinates on
Hi. Then the Boothby metric is locally given by gtj=\x\~tδiJ and the Lee
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form by ωi=2\x\~2xt, where xi=xi. Consequently, the Lee field is locally
given by Bi=giJωj=2xi; set w=x+iy. Then:

-β —

i.e. Th is tangent to B.
Finally, one may use Theorem 1 in [13], p. 181, to conclude that j is

minimal. Our Theorem 3 is thereby proved.
Taking the Riemannian submersion q: Hl-*CPn~ι as a fundamental ex-

ample, it is tempting to consider more generally submersions from complex
Hopf manifolds (with the Boothby metric) with an arbitrary base manifold.
The classification problem for such submersions is open. See also R. H.
Escobales, [16], [17].

4. Submanifolds of locally conformal Kaehler manifolds.

It is the proper point to establish the basic formulae for an isometric im-
mersion in a Po^-manifold. Let Ψ: Mm^M2n be an isometric immersion of a
m-dimensional Riemannian manifold (M m , g) into the 1. c. K. manifold (M 2 π, g0, J).
We shall need the Gauss and Weingarten formulae:

lzY=VzY+h(X, Y) (26)

(27)

where V, h> Λζ and V1 denote respectively the Riemannian connection of g, the
second fundamental form (of Ψ), the Weingarten operator (associated with the
normal section ξ) and the normal connection.

Let M2n be a P0#-πianifold. By a result of I. Vaisman, [49], the universal
covering space of M2n is W with the metric c~2\z\~2δjkdzJ®zk, i.e. M2n is
locally analytically homothetic to a complex Hopf manifold (with the Boothby
metric). One adopts the notation M2n—Hn

a%c. If g0 is the Boothby metric, then
c=2 (see e.g. [49]). Then m,%=Hϊ (locally).

Let Ψ: Mm-^Ha,c be an isometric immersion. As a consequence of (16),
the Gauss-Ricci-Codazzi equations of Ψ are:

R(X, Y)Z= j

-g(Y, Z)ω(X)B} (28)

(7χA)(r, Z)-(lYh)(X, Z)=jlg(X, Z)ω(Y)-g(Y, Z)ω{X)-]B- (29)
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gJLRKX, Y)ξ, η)=g&Aξ, AηlX, Y) (30)

Here R, R1 denote the curvature tensor fields of V, V1. Moreover ω=Ψ*ω0.
Next, if E(Ψ)->Mm is the normal bundle (of the given immersion Ψ), let tanx,
norx be the projections associated with :

for any χ(=Mm. Set B=tan(B0), B1=nor(B0). As ω0 is parallel, by (26) it
follows:

?7xω)Y=ωQ(h(X,Y)). (31)

Note that although Hl,c, cΦO, is strongly non-Kaehler (i.e. (ωo)x^O, for any
x<=H%>c) the induced 1-form ω may have singular points.

Examples. 1) Let Ψ\S2n-ι->Hn

a be defined by:

for any ζ^S2n~\ Here 0<α<l . By (21), Ψ=fιoji where j : S^-^S'xS271-1,
ζr-*(i>Q, i=V—l. Then Ψ is an isometric immersion from S2n~x with the
canonical Riemannian structure, to H% (with the Boothby metric).

2) Let £ l n - s =y(S ί n - 1 )Γ\ί?n.i . Then E2n~d is a real hypersurface of the
complex sphere. As totally-umbilicity is a conformal invariant, E2n~* is totally-
umbilical in Qn-i.

3) Let C+={z^C/Im(z)>0\ be the upper half of the complex plane. As
the complex Inoue surface CI2 is a quotient of C+xC by some discrete group
of analytic transformations (see e.g. [47]), let π: C+XC-*CP be the natural
surjection (a local diffeomorphism). Let L={z^C+/Im(z)=l} and Ψ: LxC
->CP, Ψ—πoj, where j : LxC-+C+xC is the natural inclusion. Then Ψ is a
minimal isometric immersion. Also LxC is an example of a real hypersurface
of CI2 having exactly two constant principal curvatures Λ=—1 and μ = l / 2 .

The study of the geometry of (the second fundamental form of) submani
folds in I.e.K. manifolds is of recent interest and has been initiated by K.
Matsumoto, [30], [31] and [33], I. Vaisman, [50], and continued further by
B. Y. Chen & P. Piccinni, [9], J. L. Cabrerizo & M. F. Andres, [10], L. Ornea,
[41], S. Ianus & all, [24], and author [12], [13] and [14]. We may formulate
the following.

THEOREM4. Let M2n~x be an orientable connected real hypersurface of the
PoK-manifold Ha,c, n^3, having exactly two constant principal curvatures, both
of multiplicity ^ 2 . Then M2n~ι is locally isometric to a product LxV of totally
umbilical submani folds of Hn

a>c having a flat normal connection. Moreover, either
M2n~ι is tangent to the Lee field of H\tC or L, V are extrinsic spheres of H%tC.

THEOREM 5. Let M2n~ι be an orientable connected quasi-Einstein {i.e. Ric—
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pg—(2n—3/4)ω<S)ω) real hypersurface of Hl,c, n^3, tangent to the Lee field of
Λla,C'

i) // p>(2n-3)c2/4 then M2n~ι is totally umbilical in Hn

a,c.
iϊ) If ρ=(2n—4)c2/4 then either M 2 n - 1 is totally geodesic in HltC or it has

exactly two principal curvatures, one non-zero of multiplicity 1, and the other zero
{of multiplicity 2n—2).

iii) // ρ<(2n— 3)c2/4 then M2n~ι is locally isometric to a product of two
extrinsic spheres of H%,c.

Let M2n~ι be an orientable real hypersurface of HltC. Let N be a unit
normal field on M2n~ι and A—AN the corresponding shape operator. Then
f(*)=rank (Ax) is the type number of M2n~ι at x<=M2n~\ Let Isom{M2n~l) be
the group of isometries of M2n~\ Then M2n~ι is homogeneous if for any x, y
G M 2 " - 1 there exists f^IsomiM271"1) such that f(x)=y and (dxf)Bx=By.
Examples of homogeneous real hypersurfaces of a complex Hopf manifold are
furnished in section 7. We obtain :

THEOREM 6. Let M2n~ι be an oriented real hypersurface of Hn

a,c. If M2n~ι

is homogeneous, then the type numbers of M2n~x are either constant or ^ 1 every-
where on M2n~\

5. Real hypersurfaces with two principal curvatures.

Let Ψ: M2n~ι-^Hna,c be an orientable real hypersurface of the A
Hn

a>c. Let N be a unit normal field on M2n~\ We set A=AN for simplicity.
Let λj^C^M271'1), l ^ / ^ 2 n — 1 , be the principal curvatures of M2n~\ i.e.
Spec(Ax)= {λj(x)/l<j<2n—l\, x^M2n~\ At this point, we may prove Theo-
rem 4. This is done in several steps, as follows. Let us assume that A has
exactly two distinct eigen-values at each point of M271"1, say λ, μ^C°°{M2n~ι).
Let p, q be multiplicities of λ, μ respectively (p+q=2n — l); it is known
that p, q are constant. Let Tχ,x be the eigen-space of Ax corresponding to
λ(x). Then Tλ (respectively Tμ) is a smooth /^-distribution (respectively q-
distribution) on M2n~ι, by standard arguments.

STEP 1. Tχ,Tμ are mtegrable.

Let X, Y^Γ{Tλ). One may use go(h(X, Y), N)=g(AX, Y) such as to pro-
duce the following version of the Codazzi equation (29), that is:

{1XA)Y-{1YA)X= 1 {ω(Y)X-ω(X)Y }ωQ(N) (32)

Using (32), as 7 is torsion-free, one obtains:

(A-λ)lX, Y]=ωχ(X)Y-ωχ(Y)X (33)
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where:

ωλ=dλ+-rω0(N)ω

By the uniquences of the direct sum decomposition:

for J C G M 2 " " 1 , it follows that both sides of (33) must vanish, i.e. IX, Y]<=Γ(Tλ).

Remark. If ωχ has no singular points and BL is parallel in the normal
bundle then the Pfaffian equation α>^=0 determines a codimension one foliation
$λ on M2n~K If, moreover, the multiplicity of λ is p^2 then each leaf of Tλ

is a submanifold of some leaf of <Ξχ. Indeed, if V±BL=Q, then d(ωo(N))=O.
Consequently ωλ is a closed 1-form on M2n'\ If p>2 then ωχ(X)Y=ωχ(Y)X,
for any X, Y<ΞΓ(TX\ yields (αιA)»=0 on 7 \ * .

STEP 2. Assume λ, μ are constant, λφμ. Then each leaf of Tμ {respectively
of Tχ) is totally-umbilical, both as a submanifold of M271'1 and as a submanifold

of m,c.

Let X(=Γ(Tλ), Y^Γ(Tμ). The Codazzi equation (32) and comparison be-
tween the T^-components lead to :

(A-λ)VγX+ \-ωo(N)ω(X)Y=O. (34)
4

By Step 1, Tμ is integrable. Let L be a leaf of Tμ and i: L-+M2n~ι the natural
inclusion. Let ht be its second fundamental form. Taking the inner product
of (34) with Z<=Tμ one obtains:

(λ-μ)g(X, 1YZ)+ jωo(N)ω(X)γ(Y, Z)=0 (35)

where γ=i*g. Let tλ,x: TJMtn"ι)->TχtX9 χ(Ξ:L, be the natural projection.
Then (35) leads to :

(λ-μ)ht=-jω0(N)γ<g)cχB (36)

i.e. L is totally-umbilical in Mn~\ Let h3 be the second fundamental form of
/ : L->Hlc, j=ψoi. The Gauss formula (26) and (36) give:

(37)

i.e. L is totally-umbilical in H\tC.

STEP 3. Tλ, Tμ are parallel (with respect to 7) provided that p^2 and
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As p>2 one has ωx(X)=0 for any X^Γ{Tλ). Next, by (34) and λ=const.9

one obtains:
\Ji— A)ΊγΛ.—U (ooj

and:
ωo(N)ω(X)=O (39)

for any X<=Γ(TX)9 Y^Γ(Tμ). Similarly to (38), one also has (A-μ)VxY=0.
This is enough for establishing parallelism of both Tx, Tμ. For instance, if
Z^Tλy as 7^=0, one has 0=g(yzX, Y)+g(X91ZY) and thus yzX<=Γ(Tλ), etc.

Remark. B1 has singular points. The proof is by contradiction. Suppose
BiΦO, for any x^M2n~\ Then (39) yields ω=0 on Tλ. Since, similarly to
(39), one may obtain ωo(N)ω(Y)=O, for any Y^Γ(Tμ)t it is clear that ω=0.
This has the following geometric meaning. Let %0 be the canonical foliation
of Ha,c (see [49]) whose leaves are the maximal connected integral manifolds
of the Pfaffian equation ωo=0. Thus M2n~ι appears to be a leaf of ffo. Con-
sequently M2n~ι would be (by (31)) totally-geodesic in HltC and therefore λ=
μ—0, a contradiction.

STEP 4. The following formula holds :

~(cμB)\\2 (40)

Let X<=r(Tλ\ YzΞΓ(Tμ). By Step 3, Tμ is parallel, so that R(X, Y)Y^Γ{Tμ).
Thus:

g(R(X, Y)Y, X)=0 (41)

On the other hand, by the Gauss equation (28), one obtains:

R{X, Y)Y^{λμ+~)\\Y\\2X

+j\lω(X)Y-ω(Y)XMY)-\\Y\\2ω(X)B} (42)

Take the inner product of (42) with X and use (41). This procedure leads to :

= 0 (43)

Let {Ei}ι^i^2n-ί be a (locally defined) orthonormal frame on M2n ί, chosen in
such a way that {Ea}^a^P and {Ea+P}ι^a^q are respectively frames of Tx, Tμ.
Use (43) for X=Ea, Y=Ea+P and take the sum (over α, a) in the resulting
equation. This yields (40), Q.E.D.

At this point we may prove Theorem 4. We distinguish two possibilities.
Either £ X E E 0 , i.e. M2n~ι is tangent to Bo, or there exists x^M2n~x such that
Bo.XoΦ0. Then, by (39), ω*0=0 on TX.XQ. Similarly ωXo=O on Tμ,XQ, i.e.,
ωx =0. Thus Bx = 0 and by Step 4 one has:



382 SORIN DRAGOMIR

λμ+j=0. (44)

By Step 3 each leaf L of Tμ is totally geodesic in M2n~\ Then (36) gives
hj—μγ®N. Therefore, the mean curvature vector H3 of L->Hl,c is Hj=μN,
and consequently H3 is parallel, To prove that L is an extrinsic sphere of H%,c

we still have to show that H3ΦQ. Suppose Hj=0. Then μ=0 and, by (43), go
follows to be a Kaehler metric, a contradiction. Finally, we apply a result of
[28], p. 182, vol. I, such as to conclude that M2n~ι is locally isometric to a
product LxL', where L (respectively L') is a leaf of Tλ (respectively of Tμ).

Remark. By the Ricci equation (30) any leaf L of Tχ (being totally um-
bilical) has a flat normal connection as a submanifold of Hl,c.

6. Quasi-Einstein real hypesurfaces.

Let Ψ: Mm->Hl,c be an isometric immersion of a real m-dimensional Rie-
mannian manifold (Mm, g) in the PQK-mamίo\ά HltC. Let Ric be the Ricci
tensor of M m . If:

o

Ric— pg j — ω®ω (45)

where ω=Ψ*ω0 for some p(=C°°(Mm), then Mm is said to be quasi-Einstein.

Remark. See [22], p. 118. Nevertheless, the definition in [22] is more
general, i.e. it is requested that Ric—ag+bω®<t), for some a, b<=C°°(Mm).

Let M2n~ι be a quasi-Einstein orientable real hypersurface of Hn

a<c, n>2.
Firstly, we need to establish the following:

LEMMA 1. // M 2 n - 1 is tangent to the Lee field of Hv

a,c then p is constant.

Proof. Set m = 2 n - l . We follow the ideas in [28], vol. I, p. 293. Suitable
contraction of indices in the second Bianchi identity (satisfied by the curvature
of M271"1) leads to :

r ,*-2s '/?< A I,=0 (46)

where r=gijRtJ denotes the scalar curvature, while a bar stands for covariant
derivatives. Next (45) furnishes:

{ + } (47)

As B±=Qf (31) yields ωUj=0. Then (46)-(47) show that (m-2)pιk=0. Also
m^3 as n^2. Q.E.D.
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LEMMA 2. The principal curvatures λ%. l£i£2n — l, of M2n'1 satisfy the
quadratic equation *

~^c2=0 (48)

provided that B±=0. Therefore, at any point of M2n~ι there are at most two
distinct principal curvatures. Here mH=Trace(A).

By suitable contraction of indices in (28) one obtains:

Ric(X, Y)=mHg(AX, Y)-g{A2Xy Y)

+^{(m-l)c2-\\ω\\2}g(X, Y)-ΐrl^ω(X)ω(Y) (49)

Let {Et}lst^m be principal directions on M271"1 corresponding to the principal
curvatures {λt}1Mm. Let us use (45), (49) for X—Y—Et. This procedure
gives:

j l j + { ( m l ) c | | β ) | | }

i.e. each λt satisfies (48), (as Bλ={) yields ||ω|| = c). Q.E.D.

At this point we may prove our Theorem 5. By Lemma 2, let λ, μ be the
two principal curvatures on M2n~\ If p>(2n—3/4)c2 then, by (48), λμ>0 and
thus λ, μ have the same sign. Let us show that λ—μ, i.e. M 2 n - 1 is umbilical.
The proof is by contradiction. Suppose λφμ. Then λ+μ=Trace(A)=
pλ+(m—p)μ, i.e. /> = 1, m—p—l. Thus m=2, a contradiction (m is odd).

If p=(2n-3)c2/4 then λμ=0. Then either λ=μ=0, i.e. M2n~l is totally
geodesic, or λΦQ, μ=0. In the last case pλ— Trace(A)=mH=λ+μ=λ, i.e.
(p-l)λ=Q. Thus />=1.

If p<(2n~3)c2/4 then λμ<0. Thus (p-l)λ+(m-p-Ί)μ=0, Kp<m—l,
and λμ=p—(m—2/4)c*f and therefore ^8 = —(m—/) —1/ί —l)[/o—(m—2/4)c2],
μ2— — (ρ-~l)/(m—^> — l)ίp—(m—2)c2/4], i.e. A, μ are distinct and constant. By
Theorem 4, the proof is complete.

7. Homogeneous real hypersurfaces.

Let Gα, 0 < α < l , be the discrete group of transformations of ^ ^ - { O )
generated by x^ax, x&WΊ. Then Ga acts freely and properly discontinuously
on Wt so that the factor space RHl^WJGa turns to be a (compact) smooth
manifold. This is the real Hopf manifold. It is a local similarity manifold (see
[43]) carrying the untwisting metric \x\~2δtjdxJ®dxJ. Let us denote by
τri: Wi-^RHl the natural surjection.

Let j : R2n-ι-+R2n be the natural imbedding, i.e.
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( a 1 , - , x271'1) — > (x\ - , x2n~\ 0, ••• , 0)

Let Ha be the complex Hopf manifold, cf. our section 1. Then:

is an isometric immersion of (RH2

a

n'\ \x\~*δtJ) into (J5Γ2, #0). Moreover
is a totally umbilical real hypersurface of # 2 . Let 5 0 be the Lee field of Hi.
Then B=tan(Bo) is precisely the characteristic field of RH2

a

n~\ cf. the termino-
logy in [43]. Let us show that RHl71'1 is homogeneous, in the sense of our
section 4, i.e. lsom(RH2

a

n~ι) acts transitively on RHl71'1 and 'preserves' the
characteristic field. If π^x), πι(y)^RH2dι~ι

y then there exists A<=O(2n —1) such
that Ax=y. Let A: RHV'^RH?-1 be defined by T Γ ^ X ) - ^ ^ * ) . It is easily
seen that A^I som{RHV"1) and (dΛl(x>Ά)BniW=BXlW.

Let ?F: S271'1^^ be the isometric immersion constructed in section 4. If
*, y^S271'1 then there exists AfΞθ(2n) such that ^4x=3;; 5271"1 is homogeneous
as a real hypersurface of Hi since it is normal to the Lee field of # £ .

Let us prove Theorem 6. Let M2n~ι be an orientable homogeneous real
hypersurface of HΊtC. Let x<^M2n~ι be fixed. Let S0(x) be the real linear
subspace consisting of all X<=Tx(M2n~ι) obeying the property:

R(X, Y) = j

(50)

for any Y&:Tx(M2n~ι). Here b denotes lowering of indices by g. Let Z e
Ker(Ax). By the Gauss equation (28) it follows that X verifies (50) for any
Y<=ΞTx{M2n-χ), i.e. Ker(Ax)QS0(x). Conversely, let Z e S 0 U ) , be arbitrary.
Suppose from now on that rank {Ax)^2. Now t{x)=dimR(Im(Ax)) consequently,
there exists F e T ^ M 2 7 1 " 1 ) such that AxYΦθ and (AXX, AxY)=ΰ, where gx=
( , •). As ZeSo(a), by (28), one obtains AxXΛAxY=0 and then:

i.e. X^Ker(Ax). We conclude that:

S0(x)=Ker(Ax) (51)

provided that t(x)^2. Let j/eM2""1, yφx. As M 2"' 1 is homogeneous, let /G=
hom{M2n-1) such that f(x)=y, (dxf)Bx=By. Then (dfiSMQS^y). Con-
sequently dimRSo(x)^dimRSQ(y). The reversed inequality may be proved in a
similar way. Thus f(*)=f(3θ. So, if ί(x)^2 then t(x)=const. If, in turn, t(x)
<Ll, for some Λ G M 2 " " 1 , then by (28) one obtains efim*So(x)=2n--l. Thus, by
the homogeneity assumption, dimRS0(y)=2n—1, for all j ε M 2 " " 1 . Using again
the Gauss equation it follows that rank(A)<Ll everywhere on M2n~\ Q.E.D.
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8. Strongly invariant and totally umbilical submanifolds.

Let M be a submanifold of the Riemannian manifold (M, g). Let R be the
curvature 2-form of M. Then M is an invariant submanifold (cf. K. Ogiue,
[40], p. 389) if for any X(ΞM, and any u, V<BTX{M) the tangent space_T*(M)
is invariant under the curvature transformation Rx(u, v): T X(M)-^T x{M)y that
is Rx{u, v)(Tx(M))cTX(M\ Also Aί is termed strongly invariant if TX(M) is
invariant under Rx{ύ, v), for any U, v^Tx(M), X E M . For instance, any sub-
manifold of a real space form is invariant, see [40], p. 390. Also each extrinsic
sphere (i.e. totally umbilical submanifold whose non zero mean curvature
vector is parallel in the normal bundle), is invariant, by the Codazzi equation,
see e.g. B. Y. Chen [5], p. 329. We may finally mention that since any in-
variant submanifold of a complex space form is either holomorphic or totally
real, cf. [7], p. 260, the totally umbilical submanifolds of complex space forms
have been completely classified, see Theorem 1 in B. Y. Chen & K. Ogiue, [8],
p. 225.

The present section aims to the study of (strongly) invariant submanifolds
of complex Hopf manifolds (with the Boothby metric). We may formulate the
following.

THEOREM 7. Let Mm be a real m-dimensional, Km<2n, strongly invariant
submanifold of the complex Hopf manifold H%, n>l. Then either Mm is normal
to the Lee field of Hi or M m is a real hyper surf ace of Hi.

THEOREM 8. Let Mm be a totally umbilical submanifold of the complex
Hopf manifold Ήn

a. If Mm is tangent to the Lee field of HI then Mm is either
totally geodesic or an extrinsic sphere.

Let M m be a submanifold of Hn

a the Codazzi equation of Mm in Hi may
be written as follows:

nor(R{X, Y)Z)=j{g{X, Z)ω{Y)-g(Y, Z)ω{X)}B- (52)

Therefore, any submanifold of HZ which is tangent to the Lee field is invari-
ant. Let ̂ o be the canonical foliation of H2, see section 5. By (52), any leaf
of ^o is an invariant submanifold of //£. Conversely, one obtains:

PROPOSITION. Let Mm, m>2y be an invariant submanifold of Hn

a, Then
either Mm is tangent to the field of Hn

ay or, if B$φQ at some point * e M m ,
then x is a singular point of the induced I-form ω on Mm.

Proof. If Mm is invariant, then by (52) one has :

{(a, tt/)ωχ(ιθ-(v, w)ωx(u)}Bi=0 (53)
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for any u, v, w^Tx(Mm) and any x<=Mm. Here #*=(•,•)• We distinguish
two cases: either B^—0 for all x e M m , i.e. Mm is tangent to £ 0 , or there
exists % o e M m such that B$0Φ0. If this is the case, let u<^TXo(Mm) be arbitrary.
Since m>2 we may consider v=w, \\v\\ = l, (w, v)=0, v^TXo(Mm). By (53) one
obtains ωXo(u)=O, for all w, Q.E.D.

We proceed by proving our Theorem 7. Suppose Mm is strongly invariant.
Then for any tangent vector fields X, Ϋ on Hi, respectively any tangent vector
field Z on Mm, one has:

, Z)-jωQ(Y)ω(Z)}nor(X)

*.(*, Z)-jω0(X)ω(Y)}nor(Y)

+ ~ {go(X, Z)ωo(Y)-go(Y, Z)ωo(X)}B^O (54)

as a consequence of (16), (where c=2). K. Ogiue, [40], p. 393, has shown that
there exist no strongly invariant submanifolds in a Riemannian manifold of
non zero constant curvature. Following the scheme of proof of Theorem 3.4,
in [40], p. 393, let X—X—Zy Ϋ=ξ, where X is tangential, while ξ is normal.
Then (54) leads to :

, 1 N 1

=0 (55)

We distinguish two possibilities. Either ω=0, i.e. Mm is normal to Bo, or there
exists xo<=Mm such that ωXo^O. If this is the case then BXQΦ0 and, since
ra^2, we may choose u(=TXQ(Mm), \\u\\ = l, (w, £* 0 )=0. Apply (55) for XXo=u.
If follows that:

ωOtXo(z)Bio=Az (56)

for any z<=E(Ψ)Xo. Clearly BiQΦθ; otherwise, by (56) one would have m—2n,
a contradiction. Thus, by (56), E(Ψ)XQ is spanned by Bi0, i.e. codim{Mm)=l.
Q.E.D.

Let Mm be a totally umbilical submanifold of Hi. By the Codazzi equation
(e. g. (2.7) in [4], p. 46) and umbilicity:

nor(R(X, Y)Z)=g(Y, Z)l$H-g(X, Z)1$H (57)

As m^2, for fixed X let us choose Y such that ||K|| = 1, g(X, Y)=0; then (57)
yields nor(R(X, Y)Y)=V$H. This and (52) yield:

j (58)

The situations in Theorem 8 correspond to i/=0, HΦO, respectively.
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Remarks. 1) Let M2m be an even dimensional extrinsic sphere of the 1. c. K.
manifold M2n, having a flat normal connection. If ωo^O, (i. e. the ambient
space is Kaehler) then the simply-connected complete extrinsic spheres with a
flat normal connection have been classified by B. Y. Chen, [5]. Actually, any
such M 2 m is isometric to the sphere S2m(l/k) of radius l/k, k = \\H\\= const.
See Theorem 1 in [5], p. 328. The classification problem for the case of a
I.e.K. ambient space is not as yet solved.

2) The key ingredient in the proof of Theorem 1 of [5], p. 328, is a result
of M. Obata, [39], p. 334, asserting that a complete Riemannian manifold Mp

of dimension p^2 is isometric to the sphere Sp(l/r) if and only if the differential
equation (Vxdf)Y=—r2g(X, Y)f admits some non constant solution /eC°°(Mp).
Let M2m be a simply-connected extrinsic sphere in the 1. c. K. manifold M2n,
having a flat normal connection. While leaving the classification problem open,
one may show that the differential equation:

{lχdf)Y+^X{f)ω{Y)=-k2g{X, Y)f (59)

admits non constant solutions /eC°°(M2 m), provided that M 2 m is tangent both
to the Lee and anti-Lee (i.e. A0=-JB0) vector fields of M2n.

3) It is expected that the existence of solutions of (59) may be exploited
on the line in [39]. While this is not as yet available, let us prove the result
stated in the previous remark. Since M2m is taken simply-connected, the as-
sumption Rλ=0 is equivalent to the existence of a frame in the normal bundle
consisting of mutually orthogonal parallel unit vector fields. Let N—k'ιH.
Then N is a parallel unit normal field. Choose a frame {Na)\sa*%a-2m in E(Ψ)
such that N!=N, go(Na, Nb)=δab, 7xAra=O, for all l ^ α , b^2n-2m. Next, let
us construct the functions /αeC°°(M2 m) by setting fa=go(JN} Na), 2<La<ί
2n-2m. By (11) and (15) one has:

{θ(ξ)X(ξ)JXΩ(X ξ)B} (60)

for any tangential vector field X, respectively any normal section ξ in E(Ψ).
Here 0 o =ω o o/ is the anti-Lee form. Set A±—nor(A<>). We establish the fol-
lowing :

LEMMA 1. // Aλ=0, Bλ=Q then for each tangent vector field X on M2m

one has:

X(fa)=kΩ0(X, Na) (61)

for any α^2.

Proof. Using (60) we have
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X(fa)=X(g0(JN, Na))

=goC3χJN, Na)+g0(JN, lzNa)=g,UVzN, Na)

+ ^{ωo(JN)go(X> Na)-ω0(N)g0UX, Na)-g0(X, JN)ωo(Na)\.

Use was made of:

ΊχNa=-ANa+VzNa=-gάNa, H)X=0

for any α^2, (as a consequence of (27) and umbilicity). Thus:

X(fa)=kg.(X, JNa)+ -ί {ωo(N)Ωo(X, Na)-ω0(Na)Ω0(X, N)} (62)

for α^2. As M 2 m is tangent to both the Lee and anti-Lee vector fields, the
Lee and anti-Lee forms vanish on normal vectors. Thus (62) leads to (61).

LEMMA 2. There exists 2^a^2n—2m such that at least one function fa is
not constant.

Proof. Suppose the functions fa, a^2, are simultaneously constant. Then,
by our Lemma 1, it follows 0=X(fa)=kg(X, JNa), i.e. JNa are still normal,
α^2 . Consequently, the linear space Wx spanned by Na.x, JχNa.x, a>2, over
the reals, is a /^-invariant subspace of E(Ψ)X. As Wx carries the complex
structure Jx, its algebraic dimension has to be even, i.e. dimRWx>2n— 2m— 1.
Thus WX—E(Ψ)X, x<=M2m, i.e. M2m follows to be a holomorphic submanifold
of the l.c.K. manifold M 2 \ Thus H=-{l/2)BL, i.e. M 2 m is minimal, a con-
tradiction.

Finally, let us show that each fa, a^2, is a solution of (59). By Lemma
1 and (26) one has:

, JNa)+kg,{Yy ixJNa)

O, JNa)+kg«(Y, J^xNa)

^ Y)-gJLX, JNa)ω(Y)}

or (by (61) and umbilicity):

z(r(/α))=(7^rχ/α)~^2^(z, Y)fa

+ - | {g(X, Y)θo(Na)-Ωo(X, Na)ω(Y)\ (63)

Now (63) shows that fa is a solution of (59), provided that ^ ^ = 0 , Q.E.D.
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