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A FORMULA FOR ANALYTIC SEPARATION CAPACITY

By TAKAFUMI MURAI

1. Introduction.

For a compact set E in the complex plane C, H*(E®) denotes the Banach
space of bounded analytic functions in E¢=C\U{oo} —FE with supremum norm
II-lz=. The analytic capacity of E is defined by

1(E)=sup{|f'(e2)|; fEH™E"), || fla==1},

where f'(co)=lim,..z{f(o0)—f(z)} [5, p. 6]. The analytic capacity of E at
asC—E is defined by

cg(a)=sup{|f'(a)| ; fEHE"), | fllr==1} [10, Chap III].

These set-functions play various important roles in the study of bounded
analytic functions. As a general set-function, we define the analytic separation
capacity of E at a, bE°® a+#b by

o(E, a, by=sup{|f(b)—f(a)l; FeHE"), |fln==1} [6, 7].

We easily see that

. . O(E, a, b)

llglolblﬁ(E, oo, D)=7(E), IDIEW':CE((Z)
and that 0(E, a, b)>0 if and only if 7(£)>0. Hence d(E, a, b) is applicable to
study 0(E) and cg(a), and this set-function is important to investigate bounded
analytic functions which separate a and b. The purpose of this note is to show
a formula for d(E, a, b). Let o denote the totality of finite unions of mutually
disjoint analytic arcs. Here an arc is analytic, if it is a portion of an analytic
Jordan curve. For E<J, L*FE) denotes the L? space of functions on £ with
respect to the length element [dz|. For a bounded function g on E, M,
denotes the multiplier feL*E)—gfe L E), and Idy denotes the identity
operator. The operator Hy from L*E) to itself is defined by

HEh(z):%p. v.S _hag

E{—2z

L 5 h g (heruEy,

=—lim
T evo Jig-21>eteE (—2
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and the operator Hy is defined by Hgh=Hzh. For the computation of 8(E, a, b),
we may assume that E< 4. (See Proposition 9.) Since d(E, a, b) is conformally
invariant, we may assume that a, b# . In this note, we shall establish

THEOREM. For E< A and a, b C—E, a+b,

[b—a
det A,

where A, is a (3,3)-matrix defined by

o(E, a, b)= (G935, —A51053),

an=1+—{ ——U (g5 Hpgldz

a,z_%SE-;la—Uo(%gal) dl,

013:711'—&52 a 1( )go)ldzl

a21=%§E{1+HEU0<go*HEgo»goldzl

an=—{ HoU(—= ga‘) guldzl—1,

au=| (s e®) 2l 421,

an= o e el dz
%Ss(z == )izl
%Sg(z ae=p (e a)l(.—b)gal)'dz"

o= T U UdeMus FeMi He)

As application of our theorem, we shall deduce

COROLLARY 1. For ECR and a=C—FE, Ima+0,

o(E, a, d)=2tan{%|lm5£ x‘ffa '},

where Im{ is the imaginary part of € and R is the real line.

COROLLARY 2. For ECR and a, b=R—E contained in a component of
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RU{eo}—E,

5(E, a, b)zZtanh{%HE%)—H.

COROLLARARY 3. If E is a compact set on the unit circle T, then
o(E, 0, o)=2tan(| E|/8), where |-| is the 1-dimensional Lebesgue measure.

Pommerenke [11] shows that
1) rE)=IE|/4 (ECR).

The method given in [9] shows that
(2) r(E)=sin(|E|/4) (ECT).

(See [2], also.) Our corollaries correspond to (1) and (2). In the section 2, we
shall give the proof of our theorem. In the section 3, we shall show a propo-
sition concerning the Hilbert transform, which plays an important role in the
computation of capacities induced from the Hilbert transform. In the section
4, we shall deduce Corollary 1 from our theorem. Our method is not short,
however, this shows a method to construct the extremum pair (f,, ¢,) (cf.
Lemmas 4 and 6) and this is applicable to compute various capacities. We shall
give another proof of Corollary 1 also; once the extremum pair (f,, ¢,) is
found, a short proof is possible. The proof of Corollaries 2 and 3 will be given
in this section. In the last section, we shall show some applications of our
method. The author expresses his thanks to Professors Suita, Shiba, Yamada
and Masumoto for their variable comments about 0(E, a, b).

2. Proof of Theorem.

In this section, we give the proof of our theorem. Evidently, &(F, a, b) is
conformally invariant: d(E, a, b)=0(F, f(a), f(b))if f conformally maps E°¢ onto
Fe. If a and b belong to different components of E°, then §(E, a, b)=2. Hence
it is essential to study the case where ¢ and b are contained in a component
of E°. We may assume that this component contains co. Since d(E, a, b)=
0(0FE, a, b), we assume, throughout this note, that E°¢ is connected. Let T
denote the totality of finite unions of mutually disjoint analytic arcs and
mutually disjoint compact sets bounded by analytic Jordan curves. For EegF
and p=1, H?(E°) denotes the totality of analytic functions f in E° such that
|f]? is integrable on the boundary dF of E with respect to the length element
|dz|. If a component [ of E is an arc, then its boundary has two sides. Here
are some lemmas necessary for the proof; Lemmas 4 and 5 are applications of
the Ahlfors-Garabedian method [1], [4] to &(E, q, b).

LEMMA 4 (Garabedian [4], Lax [7]). Let E€Y and a, bC—E, a#b.
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Then there exists a paiv (f,, ¢,) of functions such that f, & H"(E*), ¢, is analytic
in E°—{a, b}, | Igul1dz|<eo,

d(2)=—1/(z—a)+ -~ in a neighborhood of a,
(3) | 9(2)=1/(z—b)+ ---in a neighborhood of b,
lim 2¢)o(2)=0,

4) |fol=1 almost everywhere (a.e.) on OE,
(5) %fogbodzgo a.e. on OF,

where the orientation of dz s chosen so that E° lies to the left. Moreover, this

pair (fo, ¢y) satisfies

6) &E o, )=Fub)—far=p. |90l Idzl.

Garabeidan [4] shows an analogous lemma by using the Green’s functions
and harmonic measures, and Lax [7] shows this lemma by using the Hahn-
Banach theorem. In this note, we give a sketch of a simplified proof which
shows a relation between f, and ¢, Without loss of generality, we may
assume that E is bounded by analytic Jordan curves. Let

|b—a]
27

where go(z)=1/|(z—a)z—b)|. There exists p,cH(E®), pya)=p,b)=1 which
attains 0#(FE, a, b). A variational method shows that

0+(E, a, b)=inf{ SaElplgoleI ; o EHYE), p(a)=p(b)=l},

Do

7 |, egldz1=0

( ) 9E |p°[ pg!)l I

for all pe H'(E®) satisfying p(a)=p(b)=0. Choosing a point z, in the interior
of E, we put

_ 1 (z=b)C—a) (z—b)E—a)| po
@)= 2n(b—a) S&E‘{ {—z -z, } [ 0ol £l dtl,
b—a

= a)e—b) ")

Sl’o(z):

Then (7) shows that

_(z—a)z—b) P, |dz|
fo(z)=1 (h—a) |.00| o dz a.e. on 0F,

which yields (3)-(5). Equality (6) is immediately deduced from (3)-(5).
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LEMMA 5. Let E, a, b, g, and 0x(E, a, b) be the same as above and let

[b—a]
27

ox«(E, a, b):inf{
Then

gas |§1%g0ldz] s gEHNE), ¢<a>=¢(b>2:1}.

o(E, a, b)=0+(E, a, b)=0d++(E, a, b).

This lemma is deduced from Garabedian’s method [4]. In fact, we have
easily O(F, a, b)=0«(E, a, b)<*+(E, a, b). To prove 0x(E, a, b)=d0*+(E, a, b),
we may assume that E is bounded by analytic Jordan curves. Let p, be the
function attaining &x(E, @, b). Then (3)-(5) yield that +/p, is single-valued,
where a branch is chosen so that v/p,(a)=1. Putting ¢.=+/p,, we obtain
lb—a]

2n

Consequently, 6%(E, a, b)=0++(E, a, b).

3(E, a, b)= [,,1001%8:] dzl Z0:4(E, a, b).

LEMMA 6. For E€ 9, the pawr (fo, ¢o) satisfying (3)-(5) s unique.
Proof. Let (fo*, ¢o*) also satisfy (3)-(5). Since

AE, a, D= f o0~ forl@)=g |, fordudz—=|_ Igul Iz,

[

we have %fo*g[:odzzlgboi Idz|=-21—fo¢odz a.e. on 0FE, and hence fox=f, a.e. on

O0FE, which shows that fex=f,. Let

[b—al

(8) d4x(E, a, b).—:inf{ -

[, 191l dz1; g HHEY),

¢(a)=e¢(b):1} (e==+).

Then, by Fatou’s lemma and the Pappos median line theorem, there uniquely
exists ¢.=H*E°) which attains 0.x+(E, a, b) (¢==). Since

o(E, a, b)=0x+(E, a, b)=min{d,*+(E, a, b), d_*«(E, a, b)},
the following four cases are possible for the pair (¢, ¢o*):

(¢3-go*, 5g0%), (¢3go*, ¢3go*), (¢-2+go*; ¢2—go*); (¢3go*, ¢3g0*)>

b—a
(z—a)z—b)"
that (¢o, ¢ox) equals either the third pair or the last pair. Since

UE, e, b= 2711'2 SaEfo{ ¢0-;¢0* }dz,

where gox(z)= In the first two cases, we have ¢y=¢*. Suppose




270 TAKAFUMI MURAI

a pair (fo, (¢o+¢u¥)/2) also satisfies (3)-(5). Thus v/(de+o¥)/(2g0%) (=@, say)
is single-valued and “either ¢+=¢, or ¢+=¢_". Hence either (¢o+¢go*)/2=¢,
or (¢o+¢e*)/2=¢ox. Consequently, ¢o=¢*. This completes the proof.

LEMMA 7. Let E,a,b be the same as in Lemma 4. Then O(E, a, b)=
0.%x(E, a, b), where 0.%x(E, a, b) is the quantity defined by (8).

Proof. Fixing acC—E, we put W.={b=C —E\U{a} ; 6(E, a, b)=0.++(E, a, b)}
(e==). Then Lemma 6 shows that W, UW_.=C—EU{a} and W.N\W_=@.
We show that W, (e==) are closed in C—FE\U{a}. Let (b,)3_, be a convergent
sequence in W, such that lim,..b, (=b., say) belongs to C—E\U{a}. Note that
O(E, a, b.)=lim,..0(E, a, b,). There exists a sequence (¢,)5-, in H*E®) such
that ¢.(b,)=1 and ¢, attains d(E, a, b,) (n=1). By an argument of a normal
family and Fatou’s lemma, there exists ¢g.=H*E°®), ¢u(b)=1 such that

lim inf &(, a, bn)zl—bwz—nﬂgwlqﬁwlzgoldz[ .
This shows that ¢.. attains d(E, a, b.). Thus b.=W,. In the same manner,
we see that W_ is closed. This shows that either W,=C—E\JU{a} or W.=@.
If gocH¥E®) attains d(E, a, b), we have, by Schwarz’s inequality and d(E, a, b)
<2,

$u0)—gu@)l =2 gl dz

<4(E, a, b)llz{%SaEgﬂdZ'}”Z

—~—( |b—a] 1/2
<L g
This shows that @.(a)=¢.(b) if b is sufficiently near to a, which implies W,# @.
Thus W,=C—E\U/{a}, i.e., 6(E, a, b)=0.*+(E, a, b) for all beC—EU{a}. This
completes the proof.
For he L*E), we write
1 h
th<z)_;SE g4l (z=C—E).
For a pair (¢, h), ceC, heLXE) and a, beC—E, a#b, we write

lb—al
T

2 1/2
I, Mla.o=( [ te+Heh 1+ 1%l d2l)™
E
Using Lemma 7, we show
LemMmA 8. For E€ A and a, beC—E, a+),

B(E) a, b)zlnf ”(c: h)”g‘by
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where the infimum is taken over all pairs (¢, h), c€C, he LXE) such that
c+Ceh(a)=c+Czh(b)=1. Moreover, the pair (co, ho) which attains o(E, a, b) is
unique.

Proof. For any pair (¢ h), c€C, hel¥E), we have c+CgheH*E®).
Conversely, for any ¢= H?E*°), there uniquely exists a pair (¢, k), ceC, he LA(E)
such that ¢=c+Czh. We see that

ldz|
dz

c+Ceh(2)=c+Hgh(z)+1h(z) a.e. on OFE

and dz=—dz’ if z, z’€0E, z#z' and the projections of z and 2z’ to E are
identical. Hence a simple calculation shows that

|b2—n'a| SaE'¢'2goldzi=n<c, WI2.s.

Thus Lemma 7 yields the required equality. The unicity of the pair (c,, &)
is also an immediate consequence of Lemma 7. This completes the proof.

We now give the proof of our theorem. Let (¢, h) be the pair in Lemma
8. A variational method shows that

1 o
@ | (o Hoho e Hah+hofi} goldz] =0
for all pairs (¢, h), ceC, he L¥E) satisfying
(10) c+Cphla)=c+Cgh(b)=0.

Condition (10) is rewritten as

1¢ h 1 h
““ESEz—a'd”’ ;SE@~ﬂX2—m,dd:ﬂ.

Let
(n)p—lS@+Hh>[a|
0_77.' 2 0 EN0)Z0 .
Then (9) shows that

2 1 o -
0=pot+= | (= al(er+ Heholgo)+hagob i lde|

1 — —
='ESE{hogo—HE((Co+HEho)go)“’z*_’io—a}h ldz]

1

=—{ {ro—g5 HetCert Hyhogo)

_.po

ldz] .

gax}mgo%

zZ—a
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h
. _re . . _ .
Since he L*E) is arbitrary as long as SE“(Z-—G)(Z—b) |dz]| =0, we obtain
1

(12) {h—gi* HoCert- Hsho)go)— po——— g5} (— aXe—b)g=gs

for some constant g,. Since
—SE(MllgoﬁEMgoHEh)EgddZ|ZSEIHEhlzgolel20 (heL¥E)),

([dE—Ml,goﬁEMgoHE) is invertible, i.e., U, exists. Hence (12) shows that

(1) hi=coU g5 Hagn)+ a0 —=5-07") + U gy &) -

1

Emho]dzl =0 by

Substituing the conditions ¢,+Cgho(a)=1, (11) and %S
(13), we obtain
Co Qy1y Q125 Qg3 | Co 1

(14) Ay po|=| @1y Qosy Gos | Po|=| 0 |,

(=]

qo QAs1y Qgzy Qg3 N Go

where A, is the matrix in the assertion of our theorem. The matrix A4, is
invertible. In fact, if “(co*, po*, qo*) satisfies (14), we define ho* by (13) with
respect to (co*, Po*, gox). Then (cox, hox) satisfies (9) for all pairs (c, h), ceC,
he L¥(E) satisfying (10), which yields that

Ieoxt-c, hox+mG.s=Il(co*, ho)ll%, 5+ (e, M. »

for all pairs (¢, h) satisfying (10). This shows that (cy*, ho*) attains 6(E, a, b).
Thus the unicity gives that (co*, hox)=(co, h,). We have

0=Wdg— Ml/goﬁEMgoHE)(hO_ho*)

1
g0+ (go—qo*)

=(co—Co¥)80 Hrgo+(po—Po*) e m

1

z—

=(po—po*)

1
—1 N
7 50 +(go Qo*)(z_a)(z_b)go ,

and hence (po—po*)(z—b)+(go—go*¥)=0 on E, which shows that p,=pe* and
go=qo*. Thus “(co*, po*, gox)="(Co, Po, ¢o). Since the solution of (14) is unique.
A, is invertible.

Since a pair (¢,—1, h,) satisfies (10), we have

lb—a]
T

(15) &(E, a, By=I(co, hl3s= [ cot Hohorgol dz1=1b—al po.
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Hence Cramer’s formula yields that

@i, 1, ays
b—a b—a
KE, a, )=Ib=al po=-p G 0, 0, | =G H(anau—anan),
Gs1, 0, @

Thus the required equality holds. This completes the proof.
Last, we note

PROPOSITION 9. For a compact set E in C and a, beC—E, a#b, there exists
a sequence (En)n_i in A such that

o(E, a, b)=limd(E,, a, b).
n-0

Proof. There exists a decreasing sequence (F,,)m-: of compact sets bounded
by mutually disjoint analytic Jordan curves such that E=N\5-,Fn. Then an
argument on a normal family shows that o(E, a, b)=lim,,_.0(Fu, a, b). Hence,
from the beginning, we may assume that E is bounded by mutually disjoint
analytic Jordan curves. We express 0FE as a union of Jordan curves: 0E=
Uy l,. Choosing a point z, on each [, (1<k<m), we define

m

E.= U {z€l,; 1z—z,| 21/n} (nzl).

=1

£

Since (E,)3-: is increasing and E,CE, we see that lim,..0(E,, a, b) (=0,, say)
exists and 0,<0(E, a, b). There exists g, H ES), ¢.(a)=¢d.(b)=1 such that

_ |b—a]

8(En a, =" 19 l%g0ldz

Let 2,=0E~0E, (n=1). Since

Pr(D= a1t | g hadl

2ni Jor, (—2z

R (S NI SUNLEN G 3

2ni Joe, {—a 2ni Jor, {—z

=1- 2mi Saz«:n {—a PndlA 271 SaEn —z 6.4l (z€2,),

we have

b—
L2al{ g tmldai<c,

for some constant C, independent of n, and hence

lb—al

| | $al"gildzl S8+C (n2D),
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i.e., (@a)n-: is bounded in the L® space of functions on GF with respect to
goldz|. Let ¢, be a weak star cluster point of (¢,)5-;. Then ¢.=H*E®) and
d(a)=0¢(b)=1. For any compact set K in dE—\U{z,;1<k<m}, we have

fb;ral SK]¢nIZgoldz|§50 as long as KCOE,. Letting n tend to infinity, we

obtain Ibz—;r el SK|¢°°|2g°|d2[§5°' Since K is arbitrary, this inequality holds

with K replaced by 0E. Thus d(E, a, b)<d,. This completes the proof.

3. A proposition for H; (ECR).

Throughout this section, we assume that =, ECR. In this case, Hy is
called the Hilbert transform on L*FE). Let XL%FE) denote the constant
function taking only 1. We inductively define a sequence (H%):-, of operators
from L*E) to itself by Hj=Idg, Hi=HzH% ' (n=1). Note that the norm of
H? is less than or equal to 1 (n=0). For teR, |t|<1 and h=L* E), we define

a function h,L* E) by

We write
1 . .
x].:ﬁexp(;g—HEx) (j==+1).

The following proposition plays an important role in the computation of
capacities induced from the Hilbert transform.

PROPOSITION 10. Let Ty be the inverse operator of Idg—H%. Then, for any
he L¥E),

1
(16) Tsh=-gh+3 (LHsM )X Hs(hL)

1
(A7) HgTgh=-5 {XHg(h-)+X- He(hX1)} -

Here are two lemmas necessary for the proof.

Lemma 11 ([9]). X,::/l—lTTiexp{(S:T%)HEX} (t1<1).

LEmMA 12. ht=ﬁh+thHE(hX-z) (heLX(E), |t|<1).

Proof. Note a formula

(18) Hg(uHgv+Hgu-v)=Hgu-Hgo—uv (u, v LY E)).
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In fact, Hg(uHgv+ Hgu-v)+iuHgv+ Hgu-v) and (Hgu-+iu)(Hgv+:iv) have analytic
extensions to the upper half plane, and hence g= Hgz(uHgv+ Hgu-v)—(Hgu- Hzv—uv)
has an analytic extension to the upper half plane. Analogously, g has an
analytic extension to the lower half plane. Thus g=0.

Let h,x denote the function in the right-hand side of the required equality.
We have (Idg—tHg)h,=h and

(19)  (dg—tHp)hyx=———(h—tHgh)

1+t2

+ X Hg(hX_)— 2 Hg {X. He(RX_.)} .

Lemma 11 shows that X;X_,=1/(1+t?). By (18) and X,—tHzX,=X, we have
(20)  —t*Hp{X.Hg(hX_ )} =t*Hg(Hgky hX_;)—t*HgXe He(hX_ )+t hX

2

=tHp{(t—ORL o} —t Q=D H(R )+ h

l+t2 5 Hgh— X Hg(hX )+ —— 1+t2

Substituting —12Hg{X;Hg(hX_,)} by the last quantity in (20), we have, from (19),
(Idg—tHg)h*=h. Thus (Idg—tHg)(h,—h*)=0. Since the norm of tHg is less
than 1, Idg—tHjg is invertible, and hence h,=h,*. This completes the proof.

We now give the proof of Proposition 10. Since the adjoint operator of
Hy equals —Hg, Tz exists. Let Tg. be the inverse operator of Idz—i*H%
(0<t<1). Then

1
TE,th—:?(ht"‘h—t)-
Lemma 12 shows that
1 1

Tg,ch=—"75h+

1+ ?{thHE(hx-t)_tx-tHE(hxt)} 0<t<]).

Letting ¢ tend to 1, we obtain (16). Lemma 12 shows that
HETE,th:%(ht—h_t)z%{tX,HE(hX_,)+tX_cHE(hXt)} .
Letting ¢ tend to 1, we obtain (17). This completes the proof.
In this position, we show two lemmas used in the proof of our corollaries.

LEMMA 13.
(21) Hglj=jX,—X) (==1),
(22) Cl(2)=j{Pg(z)~1} (==zx1,z&C—E),
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where ¢E(z)=exp{ig dx }

4)E x—z

Proof. Since X,—tHgli=X (|t|<1), we have (21). Since cos%:sin%=
1/4/2, we have
liP;{@E(xiis%—l}:X,(x)—li—i%l(x)

:HExl(x)iin(X)ZIifrolchl(xiie) a.e. on E.
Since both @g(z)—1 and CgX,(z) vanish at infinity, we have @g(z)—1=CgX(2).
In the same manner, we see that (22) holds for j=—1. This completes the

proof.
LEMMA 14. We write
X=ta—ry,  xe=tasr
-= 2 1 -1)» +—-2 1 ~1)
For deR, d+0, we put

A= Ouldi b DAy}, Bu=n(Ox(di)—0x(di)™),
_ig dx
O'd——n_ E*—xz-}-dz .
Then
(23) CpX (di)=Aq—1,
(24) CoX.(d=B.,

(25) 1§ R P S

F P d 24
26) S by ax=t(B,—By)
s +d2 wdx=or @)
@7 ig HoX.dx=—t(By—Bo)—a
T JE 2+d2 EA- 2di d d d>
1 1 _
@) = o g e Xidx = (A= Ao).

Proof. By (22), we have (23) and (24). Since

1 11 1 N —
X d _ﬁ{x—dfwdi}’ Ox(—dD)=0sldi),

(23) and (24) yield (25) and (26), respectively. By (21), we have HyX =X,—X
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and HzX,=X_. Thus (25) and (26) yield (28) and (27), respectively. This
completes the proof.

4. Proof of corollaries.

We now give the proof of Corollary 1. Our method shows a method of
the construction of (fo, ¢). Let E be a compact set on R and let acC—E,
Ima+#0. Translating and rotating the coordinate axes if necessary, we may
assume that a is purely imaginary and Ima>0. Put a=di. Then the required
equality is rewritten as

(29) O(E, di, —di)=2tan@,, 6’,1:%&?—;2_(’1_—(12—(1&

There exists a decreasing sequence (E,)5-, of compact sets on R such that
E.€4 (n=1), E=N%-1E,. Then we have 0(E, di, —di)=lim,_..0(E,, di, —di).
Hence it is sufficient to prove (29) for E,. From the beginning, we assume
that E€J. For the proof of (29), it is better to start from (12) than to use
the formula in Theorem directly. Since Hp=Hp, (12) is rewritten as

(30) ho— (et He( - i) 1g,.
Since
Hy( C+fj” Y= Cofr_HEho Yo HE(_CHL_HE@)( )}
~ i i ”-L{T_IT = }<c°+HEho>df
=iy Hleot Hoho)x)—Coeu HehoXdi)
iy Heot HahoXa)—Colert Haho(—di)
=i Hoeot Hohola)— g Cent Haho(di)
iy Gt HahiX—di),
we have

ot Heho)diXxt-di)

ho—H%ho-—:CoHEX"‘ 2di

{po 1 CE(CO+HEh0)( dl)}(x di)+qe,
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and hence
BL)  ho=co TgHgX—r,Tg(+ -+di)+(po+50) Te(* —di)+ ¢ TeX,

where

ro=—5Cg(Co+Hgho)(d?), So=—57Cglco+Hgho)(—di).

2d 2d

Since HF*' is an anti-symmetric operator, we have SEH X dx=0 (n=0). Hence

1 1
(32) ;SExldx:—-;SEX_ldx (=to, say).

By (16), (21) and (32), we have

di 1 . .
Tl 4 di)= D Qi) X Hel( i)
_ x+di 1 t—x+x+di
= +——“{ 1D S 77(-1(#
t—x+x+di, ..
—X-,p.v.g Txldz}
x—l—dz
2 {Xl(to F(x+dO)HeX_1)—X_y(to+(x+di) HgX,)}
x+di 1 . .
=" +—2—(X1{l‘o+(x+d2)(—x-1+l)}—X-l{to-l-(x—l—dz)(xl—l)})
XXy i
=1, P i B ’+ =t,X_+(x+di) X, .
Analogously,
TE( . _dl)—:toX_ +(x—dz)X+ .
Note that
1 1 1 1
p —7o+So= S 2+d2 (Co+HEho>dx—mSEm(Co+HEho)dx

1
T odin 2dir SEx+dz

Thus (31) yields that

(¢o+Hgho)dx=0.

(33) ho=coX-—7o{to X_+(x+di) Xs} +(PoFsa){te Xo+(x—di) Xy} +go X
= {Co+to<po“‘7’o+so)}X— + {(]o_di(ﬁo+ro+30)}X++(po"7’o+30)x/X+
=cX_+1{qo—di(po+rits)} Xi (=cX_+c Xy, say).
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We determine ¢, and ¢;. By (23) and (24), the condition c¢,+Cgho(di)=1 yields
that

(34 co+(Ae—1Deot+Bacy=1.

Condition ¢,+Cgzho(—di)=1 implies gEho/(xz—}—dz)dx:O, and hence, by (25) and (26),
(35) ——1~(A —Ay) +—1—(B —Ba)cj=0
2d; e AT g BT Ba)a=0
Solving (34) and (35), we obtain

__ Bu—B, e Aa— A
AdBd—ZdBd ’ o Adgd—ZdBd )

Recall (11) and (15). By (27), (28) and (36), we obtain

dx
xZ_l_dZ

(36) co=

. . 2d
5E, di, —dl)=2dﬁo:TgE(Co+HEho)
B.— B,
2dz

1 —(Ba—Bo (A~ Ay
] Ae¢Be—AaBq )

Ag—A,
2di c")

=2d(coad+{ -ad}cﬁ—

Since
(Ag—Asl—(Ba—Ba)=(A%— B3)+(A5— B%)—2(| As|*—| B4|?)
=2{1—Re @ x(di)Px(—di)"'} =2(1—cos 20 ;)=4sin%*@,,
AyBi—A¢By=—ilm @ p(di)P5(—di)'=—isin20,=—2isinf,cos b4,
we have (29). This completes the proof.

From now we determine (fo, ¢o). A simple calculation yields that

37) ¢o<z>=7§f2—z—¢o<z>2: fosz {co+Crhol2)}?

. di {ra' @ p(2)+ 7P p(2)'}*
T 2cos%f, 22+d? ’

where 7r,=|9@x(di)] and 0d=711—gEd/(x2+d2)dx. Condition (5) shows that
—l,—f0¢0dz=q§o|dz| a.e. on 0E. Hence we have
7

O O L e 2
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1
“on SaE {—z Goldll,

which shows that

1 B
fo(z)= ¢0(g)127;S — z,¢'o|d§| uo}

for some constant u,. We can compute ZﬂlnhS“ETi?&"IdC" Using (4), we
determine u,. Then ‘

ra' Oe(z)—raDp(z)!

73 Qp(2)+7reDp(z)™ ~

Once (fo, ¢o) is found, the proof of Corollary 1 is simplified. In fact, we
have

(38) foz)=

[ fo(b)—fo(@)| SO(E, b, a)< suplf(b) fla)l

=502 Ll o~ 0ol =g ufete] v @
<o Il el = 1ol 2] (by (4)
—oi{ fupdz=—g | fude=f0)— @) by (5)

which gives (6). Computing fo(di)—f«—dz), we obtain the required equality.
Next we prove Corollary 2. Without loss of generality, we may assume that
Ec and b>a. We put

7' Qp(z)—7, D p(z)™

Jl&=e0 i oy rrge)t T SERITTE LD,
hu(z)= b—a {r2'@p(z)+7,@p(z)"1}?
7 4 cosh?, , (z—b)z—a) ’

where

ose=exp{ | ~T), =100 (c=a,b),

X—z
E

0 _lg (b—a)dx
VT4 e (x—b)(x—a)
Note that r,#7,. We easily see that (f,, ¢.) satisfies (3)-(5). Thus (6) shows
that
raliry—1 . l—rbr;‘}
rairy+1 147t

JE, a, by=Fb)—fa)=ex]
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_ | ?’11,/27‘51/2—7‘51/27’}1/2
7’[1,/2?’;1/2-*-?‘;1/27’},,/2

<o 0 | 1 50 .

This completes the proof of Corollary 2.

Remark 15. In the case where Ima#*—Imb, the computation of d(E, a, b)
is complicated. An estimate from below is given by

2P (D)D) — O ()" Ds(a)}
E} ] = y &y - .
AE, @, O =maX | Gy + 0pb) T 1Ot Dsla) ) | L @ PECE)

To see this, we take

r@p(2)— D g(2)™!
rQp(2)+ P x(z)™

Then f,eH*(E®) and ||f,||z~=1. Hence
AE, a, byzmax|f(b)—f(@)l,

fr(Z): (r=0).

which yields the required inequality.

We now deduce Corollary 3 from Corollary 1. Let ECT. We neglect
the case where E=T. (Evidently, 6(T, 0, oc)=2=2tan (| T|/4).) Hence, rotat-
ing the coordinate axes if necessary, we may assume that E2—1. Let g(z)=
(z—1)

211)’ then g(0)=—i/2 and g(«)=i/2. We have, with F={g(z); z€ E},

o(~i/2 F)=a0, E)= 5 |El,

where o(—i/2, F) is the harmonic measure at —i/2 of F with respect to the
lower half plane and @w*(0, E) is the harmonic measure at 0 of £ with respect
to the unit disk. Thus Corollary 1 and the conformal invariance show that

3(E, 0, 00)=3(F, —i/2, i/2)=2tan {%SJ%M) s}

=2 tan{%a)(—z‘/z, F)}:Z tan (| E|/8).
This completes the proof of Corollary 3.

5. Application.

In this section, we show some applications of our method. The Ahlfors-
Garabedian method yields that, for ECR and z&C—E,



282 TAKAFUMI MURAI
r(E)—mf{ = (11 Hghl*+ a1 9dx; he LB},
. 1 1
CE(Z)_mf{—ESE( xX—z

For a=C, a compact set £ on R and a measure v supported in C—FE, we de-
fine a capacity by

2+[h|2)dx; heLZ(E)}.

1(E, a, v)—lnf{ S(Ia—l—C’u—l—thl +1h|%dx; he_LZ(E)}

where Cu(x)=—{—2—du() Notice that ((E)Y=1(E, 1, 0) and c(@)=1(E,0, 70.),
where 0, is the Dirac measure supported at z. We show

PROPOSITION 16.

1(E, a, v)=7i— |a|*| E|+Re —%-?Ssinh {ls dfz baz)

4)ex

where the integrand in the last term means —S (x—z)dx if z=C

Proof. There exists k,=L*E) which attains 7(E, a, v). A variational
method shows that, for any A< L*E),

lg {(@-+Co+ Hyko) Heh ko) dx =0,
T JE
and hence ([dg—H3)ko=Hgz(a+Cv), i.e., kbo=TgHgla+Cy). Thus

1(E, a, u)=ig (a+Cv-+ HekoaT Co)dx
TJE
+= oot Hako Hoko ik} dx
= %—S (Idg+HgTgHg)a+Cv)-(@+Cv)dx
E
=ig Trla+Cv)-(a+Cv)dx
TJE

=*ﬂ' S Tydx +Re{2 g To(Co)dx)+ 1SETE(0y)-E;dx

=Ji+)+]s, say.
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(Here Re{ is the real part of {.) Since ;S TzXdx=|E|/4, we have J;=
la|®|E|/4 (cf. [9]). Equality (16) and Lemma 13 show that, for z=C—E,

@ T2 )=y g B H( L))
](x)

=2(x—z) 7 ;2_

I R 705 o
*2(x—2)+21211 r— ( X "J(‘x) D y(2)77}

{HEX-](x) CEX ](Z>}

= Ps(e)! N(x) | Pulz) Xoalx)

2 x—z 2 x—z

Using (22) and (39), we have, with K=(the support of v),
(40) jg—Re{za SK(S TE( )x)dx) )}

=Re{ 5} %SK 0 n(2) ¢ (do(2)}
=Re{-| (@50)—Ds() ()}

RefZ2{ ann 3], 22 o).

Equalities (16), (22) and (39) show that, for z, {=C—E, z+#C,

@ 3 n Lyt

x,(x)
2_71'_;1'1@‘9() SE(x —z)(x— Qd

l -
:2(2 -8 JSIQE(Z) HCeX(2)—CeXy (O}

1
=5 2, PR Py — Ox(CY)
=% Y =% o7 A PP Q) = P u(2) P x(D)}
_ b gopld( _=Odx
= _Csmh{ SE(x e C)}

Since the first quantity in (41) is continuous in C—F as a function of z, we
have
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(L
Thus

0 oo
= n_lg sz_lis h{ 1 SE(X(—ZZ%}B}@(ZMT(().

Consequently, by Ji=|a|?| E|/4, (40) and (42), we obtain the required equality.
This completes the proof.

ZLSE(x_d_{Z?

For E€%, Ku(z, £) denotes the Szegd kernel function with respect to
H¥E®), i.e.,

@ ={ Rz OridLl  (FEHAE).

The Szeg6 kernel function is closely related to 7(E) and cgz(z). We here note
the following proposition (cf. [2]).

ProPOSITION 17. Let ECR. Then
R = o (3] 25 oo 4,22

smh{ ; SE (x(z z)C(icdxC)}

+

1
2m(z—E)
Proof. We begin by showing that

43) Ki(z, 2)= | fu(2)] +5— CE(Z) (zeC-E),

2z T(E)
where ¢z is the Garabedian function with respect to 7(E), i.e., the function in
HY(E°) satisfying ¢g(c)=1 and r<E)=_21;S8E|¢EI ldz] [5, p. 19].

It is known the +/¢r (=@, say) is single-valued and

44)  ¢p(2)=217(E)K(z, ©), Kg(o0, 20)= (5, p. 22].

1
2ry(E)
For any z&C—E, there exists a pair (f,, ¢,) of functions such that
f:€HE®, (-—2)¢p,.€H E"),
(45) { .
$0)=0, lclgl €—2¢.0=1,

(46) 1f.1=1, %’fz¢zdczﬁgz|dC| a.e. on 0 ([3, Chap. VII]).
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Then we have
CORNF T HOR
For any feH*E®), we have, by (45) and (46),

SaEKE(Z, O e =f@)=f==)+ Z%Saa‘j(_cc):%oo_) dg

= f(eo) g GAAO—Fe)}
=1y, pudt) e+ o Fgriac
=, feRsteo, D5 T2} 1,

where ¢,=1— 215 ¢.d¢. Hence

48) Rulz, D=cRstoo, D 5 TA0PAD.
Letting { tend to infinity in (48), we have, by (44),

KE(Z’ a)—:CZKE(OO; 3‘5>=F;EET) .

Letting { tend to z in (48), we have, by (47),

Rule, D=cRe(oo, D+ 5T

=277(E)| Re(z, )|* to- CE(Z) |ga(2)l 4

277 r(E)
Thus (43) holds. It is known that

(49) ¢E(z):cosh{ﬂE xdf} ([oD).

zZ
Let
Flz, &=Ruz, i)—ﬁw—)mzm@
1 1 1
() @tec-b.
Since

W prAE R

cE(z) .

285
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(43) shows that F(z, 2)=0 (z&C—E), which yields F(z, {)=0 (z, {&C—E), by
the theorem of identity. Thus (41), (49) and 7(E)=|E|/4 yield the required
equality. This completes the proof.

The following extremum problem is the special case of the Pick-Nevanlinna
interpolation problem :

n(E, D=sup{|f(2)| ; FEHE®), lIfla==<1, f(e0)=0} (2€C—E).

Evidently, |fz(2)|<%(E, z) and the equality does not hold in general, where fg

is the Ahlfors function with respect to 7(E), i.e., fe€H(E®), |fellz==1, 1(E)=

fi(e0) [5, p. 18]. If ECR, then the Ahlfors-Garabedian method shows that
dx

[ x—

W(E, 2)=inf | 1 SE(]1+HEh12+|h|2) s he LB}

T

z|

Thus our method enable us to compute n(E, z) in the case of ECR. lA calcula-
tion shows that

1
G0 (B, 2)=-| kudx
with the solution k.= L*E) of

(51)  (ds—MoHsM5 Hoko=t, (x)=7——, My=M,).

L
|x—z]
In fact, by a variational method, we obtain

7](E’ Z): lS <1+HEko*)Tod.x
T JE

with the solution kgx of (My—HgM,Hg)kyt=Hzgr,. Let ky=(1+Hgkox)r,. Then
k, satisfies (51), which gives (50). If z&R satisfies z<min{x; xE}, then (50)
and (51) yield that

_ D p(z)—Dg(z)™
D p(2)+Pg(2)?

The extremum pair with respect to n(E, z) is given by
(@e—P5")/(Pp+DE"), (Dp+PE' )V /{4C—2)}).

Our method works for more general extremum problems. As an example,
we study

2E, z) =fg(2).

&E, A, W)=sup{| Swuf@n)]; FEHYE), Iflu==1},

where ECC, A={a;}}-.CE° (ar+#a,, k+j) and W={w,}}.,CC. In the special
case, we can compute o(E, 4, W). We show
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PROPOSITION 18. For ECR and d>0, let (fo, o) be the pair defined by (37)
and (38). Suppose that A={a;};2,CC—E and W={w.}¥, (n=2) satisfy a,=a,

=di, 3,-1=a,, 2</<n), D% w,=0 and w, equals the residue of ¢, at a
1<k<Z2n, where

du2)= =" u(a).
Then

NE, A, W)= | ;g”l wafoan)|.

Proof. Let
faz)=e"%4f(z), O, =arg ﬁa(al—ak).

Then the pair (f4, ¢4) satisfies

|fA|:1y %f4¢4d2:|¢4|ld2| a.e. on aE.

Since
Swi=0, limzg,()=0, lim(z—apu(=ws (1=k=2n),
= Z-»00 z-ap

we have

' :é wkfo(ak)‘ = ’ :él wefalar)

;o ow,
<5(E A W)_ IS}}EI 271'
1

|§1§1 27:.8 Sb“‘fd‘ Z_S ]¢A||d2|
1 1

:2 S [pafalldzl= 2——8 Pafadz

::‘i wiefalar)= ‘ :;"1 wefolar)|,

which gives the required equality. This completes the proof.
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