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1. Introduction

Let (Ω, 3y 3t, Θt, PX, Xt) be a standard Markov process taking values in a
locally compact separable metric space (5, p), that is, for each x<^S, Xt is an 5-
valued, right continuous and quasi-left continuous strong Markov process starting
at x defined on a probability space with filtrations (Ω, 3, 3t, Px) (c.f. [1]). Let
.0(5) be the topological Borel field of 5. For an Ee.Φ(5), we denote by σE the
hitting time of E, i.e.,

inf{ί>0: XtϊΞE}. if

if {?>(): Xtς=E}=φ.

The Markov process (fl, ff, 3t, Θt, Px, Xt) (henceforth we will write (Xt, Px}} is
called irreducible if

(1.1) Pχ(<fu<°°)>Q for every x<=S and every open subset Uφφ of 5,

For the Markov process ( X t ) Px\ an αeS is called a recurrent point if

(1.2) Pa()mp(Xt, α)=0)=l.

If every a^S is a recurrent point for (Xt, Px), we say that the Markov process
(Xt, PX} is recurrent. On the other hand, an αeS is a transient point for

(Xt, ft) if

(1.3) Pa(timρ(Xt, α)>0)=l.

Furthermore, if every αe5 is a transient point for (Xtt Px\ we say that the
Markov process (Xt, Px) is transient.

For the Markov process (Xt, Px\ one of most important problems is to de-
termine whether it is recurrent or transient, and this problem has been exten-
sively studied by many probabilists under various settings. ([1], [2], [3], [5], [8],
[9], •••). Nevertheless there are a few classes of Markov processes for which
complete criteria of recurrence are known.
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The purpose of the present paper is firstly to discuss recurrence criteria in
terms of mean sojourn times for general Markov processes, secondly to give an
explicit necessary and sufficient condition for irreducibllity of Gaussian diffusion
processes, and thirdly to determine recurrence and transience completely for ir-
reducible Gaussian diffusion processes.

Let Rd (d>l) be the d-dimensional Euclidean space. For x^Rd and y<^Rd,
let <*, yy be the inner product and ||%||—<#, x>1/2 the norm. We denote by
M(Rd) the totality of real dxd matrices and by M+(Rd) the totality of real,
symmetric and non-negative definite dxd matrices.

For each B^M+(Rd) there corresponds a d-dimensional Brownian motion Wt

with the diffusion matrix B, which is defined on a complete probability space
with filtrations (β, £F, £Ft, P), namely, Wt is a continuous Gaussian process on
Rd with the mean vector 0 and the covariance matrix

(1.4) E(W\Wi)=bij mm {ί, s} (!<*, j<d) for B=(bij).

For arbitrarily given A^M(Rd) and B^M+(Rd\ let us consider the follow-
ing equation

(1.5)

where x^Rd and Wt is a ^-dimensional Brownian motion with the diffusion
matrix B defined on a complete probability space with filtrations (Ω, 3, 3t, P\

As easily seen, for every x^Rd, the equation (1.5) has a unique solution,
which defines a diffusion process (a continuous process having the strong Markov
property) (fl, £F, iF t, Θt, Px, Xt) (shortly we write (Xt, Px)) taking values in Rd.
Such Markov processes are called Gaussian diffusion processes, following [6],
since the transition probabilities are Gaussian distributions as seen in Lemma 3.1.
From now on, we say the diffusion process (Xt, Px} governed by the equation
(1.5) the Gaussian diffusion process associated with A^M(Rd) and B^M+(Rd).

This paper is organized as follows. In section 2, we give sufficient condi-
tions for a point to be recurrent or transient in terms of mean sojourn time at
neighbourhoods of the point for general Markov processes. The conditions turn
to be necessary and sufficient if the process satisfies the strong Feller property.
In section 3, we obtain a necessary and sufficient condition for a Gaussian diffu-
sion process to be irreducible. It will also be shown that non-irreducible Gaus-
sian diffusion processes can be reduced to irreducible ones. In section 4, we
completely determine recurrence and transience of all irreducible Gaussian diffu-
sion processes.

ACKNOWLEDGEMENTS. The author would like to express his hearty gratitude
to Professors T. Shiga and D. Fujiwara who guided him to this study and en-
couraged him warmly. He also thanks Professors T. Fukuda, K. Uchiyama and
T. Morita for their helpful suggestions. In particular Uchiyama kindly allowed
the author to include his unpublished counter example Remark 3 in Section 2 in
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the present paper.

2. Criteria of recurrence and transience via mean sojourn times.

Let (Xt, PX) be a standard Markov process taking values in a locally compact
separable metric space (S, p). Let us denote by Pt(x, dy) and Rχ(x, dy) the
transition probability and the resolvent kernel of (Xt, Px) respectively, so that

Rλ(x9 B)=Γe~λtPt(x, B)dt
Jo

where λ>0, *eS, B^Ή(S), £* denotes the expectation with respect to Px, and

1, if x^B,

. 0, otherwise.

In particular, RQ(x, B) is called the mean sojourn time in B.
Let B(S) be the totality of bounded measurable functions defined on S, and

let Cύ(S) be the totality of bounded continuous functions defined on S. For an
), set

Ptf(x)=[ Pt(x,dy)f(y).
J s

If Pt(Cb(S))ClCb(S) holds for every f >0, we say that the Markov process (Xt, Px)
satisfies the Feller property. Furthermore, if Pt(5(S))cC6(5) holds for every
ί>0, we say that the Markov process (Xt, Px) satisfies the strong Feller property,

We here give criteria of recurrence and transience of the Markov process
( X t , PX) in terms of mean sojourn times.

THEOREM 2.1. Suppose that the Markov process (Xt, PX) satisfies the Feller
property. Let αeS be fixed. If for some open set U containing a, R0(a, ί/)<oo,
then a is a transient point for ( X t , Px\

Proof. Clearly R0(a, U)>0. We first claim that there exists an open set V
containing a such that

(2.1) inf/? 0(fe, ί/)>0,
δeF

To see this, choose an /<0 from Cδ(S) satisfying /(α)>0 and /=0 outside of U.
Then R0(a, t/)>0 implies that for some
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Using the Feller property we have an open subset V containing a such that
VdU and

inf
xξV

which implies (2.1). For each r>0, let

By the strong Markov property we have

t Pt(a, U}>Ea

6, U)Pa(σr

v<oo).
b(=V

Hence letting r->oo and using (2.1) and the assumption we get

ΐιmPa(σrv<<χ>)=Pa(σrv<<χ> for every r>0)=0,
r->oo

which yields (1.3). Therefore, a is a transient point. Q. E. D.

THEOREM 2.2. Let a^S be fixed. Suppose that the Markov process ( X t , Px)
satisfies the following property - for every open subset U containing a,

(2.2) lim sup Px(σr

B ,&<<*>)< Pa(σru<<χ>) for every r>0,
ε-»θ xeβε(α)

where Bε(a) denotes the closed ball centered at a with the radius ε>0. If RQ(a,U)
= 00 for every open subset U containing a, then a is a recurrent point for (Xt, Px).

Proof. For any fixed r>0 and ε>0, set B=Bε(a) and define a sequence of
stopping times τn by

τβ=0,

if rn.i<oo

If rn_!=:oo.

By using the strong Markov property repeatedly, we have

(2.3) supP,(rn<^)<(supP:c(r1<oo))- (n = l, 2,
XGB XE.B

so that
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flo(fl, B)= Σ Ea([Tn+1IB(Xt)dt: rn<
n=0 \ J r f l

= Σ Ea(EXτ §ΊB(Xt)dt) : τ.<oo)
π = 0 \ rc\Jθ / /

^rΣ(supP,(τ1<oo))«. (by (2.3))
rc=o res

Since 7?0(α, £)— °° by the assumption, we have

(2.4)

Noting that (2.4) holds for B=Bε(a) with an arbitrary small ε>0, by the as-
sumption (2.2) we obtain that

holds for every r>0 and every open subset U containing a, which yields (1.1).
Therefore a is a recurrent point. Q. E. D.

We here discuss about the condition (2.2).

Remark 1. Suppose that the Markov process (Xt, Px) satisfies the strong
Feller property. Then the condition (2.2) is fullfilled.

Proof. If 5c£7,

(2.5)

By the strong Feller property,

is continuous in x^S, where φ(x)—Px(σ^<oo). Hence (2.2) follows immediately.

Remark 2. Suppose that (Xt, Px) is a Levy process (a process with inde-
pendent increments) on Rd. Then the condition (2.2) is fullfilled.

Proof. By the translation invariance of the Levy process

SUP Px(σr

Bε^<oo)= SUP

) , if β2ε(α)c[7.

Thus we obtain (2.2).
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Remark 3. It might be expected that even though the condition (2.2) fails,
Theorem 2.2 holds under the assumption of the Feller property of (Xt, Px\
However, it is not true. We indeed have the following counter example, which
is due to K. Uchiyama. Let

SQ= {(m, n) : m^Z+, n^Z+ and m>n] , Si — {(oo,

and set

S=S0WS l f

where Z+ stands for the totality of nonnegative integers. We equip S0 with the
discrete topology, and each element (oo, n) of Si is regarded as a limit point of
the sequence {(m, n): m^Z+} as ra— »oo, so that if U is an open set containing
(oo, n), U contains {(m,n):m>mQ or m=°o} for some mQ>n. Clearly S is a
locally compact separable metrizable space with the topology.

Now we choose a !/2</><l, and a decreasing sequence 0<qm<l—p vanish-
ing as m—»oo. Let us define a generator A of a Markov process ( X t , Px] on S
as follows. For each

Af(m, n)=p(f(m, n+ϊ)-f(m,

if l<n<m or m— oo,

Af(m, m)—f(m—l, m—l)—f(m, m) if m>l,

Af(m, 0)=(p-?wX/(m, l)-/(m, 0))+?m(/(ro+l, 0)-/(m, 0))

+(1-/0(/(0, 0)-/(m, 0)) if m>l,

, 0)=#/(oo, l)-/(co, 0)) + (l-ί)(/(0, 0)-/(oo, 0)),

Then it is easy to see that A is a bounded operator from C6(5) into itself.
It is obvious that Λ generates a Markov process (^, Px) on the state space

S that satisfies the Feller property. Moreover, the Markov process is irreducible
in the sense of (1.1).

On the other hand, if we equip the state space S with the discrete topology,
then the Markov process (Xt, Px} is a continuous time Markov chain that is not
irreducible. In fact, S0 is an irreducible class and Sl is a transient class in the
sense of Markov chain theory, because for every (oo, n) &SltXt starting at (°o,ri)
goes far away along the line {(oo, n'): n'=Q, 1, 2, •••} with positive probability.

We next claim that the Markov chain ( X t , Px) restricted on the irreducible
class So is recurrent.

Let us define a function h : So~*R by h((m, n))=m for each (m, n)eS0. Ob-
viously, h is nonnegative, /ι(*)->oo as x-*oof and satisfies Ah(x)<Q for every
;ceS0\{(0, 0)}. This is a well-known criterion of recurrence for Markov chains
(c.f. [7]), so that the restricted process (Xty PX)X^SQ is recurrent. Therefore, by
the general theory of Markov chains, we have
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for every x^S and every (w, n)^SQ. From this it follows that for every (oo,n)
eSi and every open set £7 containing (oo,ri) with respect to the topology specified
in the beginning,

(2.6) Λo((°o,n), [/)=«>.

Accordingly, we have shown that the condition (2.6) does not imply that (°°, n)
is a recurrent point.

THEOREM 2.3. Suppose that the Markov process (Xt, Px) is irreducible and
satisfies the strong Feller property. If there is at least one recurrent point for
(Xty Px\ then the process (Xt, Px) is recurrent.

Proof. Suppose that a be a recurrent point. Let U be an arbitrarily fixed
open set containing a with compact closure U. Then obviously

(2.7) pα(0 £<oo)=l for every r>0.

We first claim that

(2.8) Pχ(<tb< °°)=1 for every x^S .

By the strong Feller property φ(x)=Px(σu<°°) is a continuous function of
Using (2.7) and the strong Markov property, we see that for every λ>0

(2.9) α .

Since the irreducibility of (Xt, Px) implies that R^(at •) is everywhere dense, it
follows from (2.9) and the continuity of φ that φ(x)=l for every *eS, thus we
get (2.8). We next show that

(2.10) /?„(*, £/)^co for every

Let us define a sequence of stopping times {τn} by

By (2.8), τw<oo Px-a.s. for every n>l. Noting that EX([T2 Iu(Xs)ds^>0 and it

is continuous in x^S, by the strong Feller property, we get for every n>ί

(2.11) E ^MXJds^E^E^^^^
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which yields (2.10).
Finally it follows from the resolvent equation that for every λ>0

(2.12) RQ=

Hence for every b<=S and every open set V containing b we have

(2.13) R,(b, V)>λ{ R0(b, dx)Rλ(x, V)
js

>λRQ(b, U ) m f R λ ( x , V).
xέU

Since \τάx&Rλ(x, V)>Q follows from the irreducibility and the Feller property,
by (2.10), we obtain R0(b, V)=oo. Therefore by virtue of Theorem 2.2 b is a
recurrent point. Q.E.D.

3. On irreducibility of Gaussian diffusion processes

Let A<=M(Rd) and B<=M+(Rd), and let (Xt, Px) be a Gaussian diffusion pro-
cess associated with A and B, governed by the equation (1.5).

We first find the transition probability Pt(x, dy} explicitly.

LEMMA 3.1. Pt(x, dy) is a Gaussian distribution on Rd with the mean vector
etAx and the covariance matrix

(3.1)

where A* is the transposed matrix of A. In particular, the characteristic function
Pt(x, z) of Pt(x, dy) is

(3.2) Pt(x, z)=

The proof is quite routine, so we omit it.
We first present a necessary and sufficient condition for the process (Xt, Px}

to be irreducible. However, we notice that this result was alreadly discussed
in the introduction of [4] in a different setting. We set

= Ker BA*n , κ=dim (Ker B} ,
n=0

where

THEOREM 3.2. The Gaussian diffusion process ( X t , Px) associated with A<=
M(Rd) and B^M+(Rd) is irreducible on Rd if and only if



218 JIAN-JY LIOU

(3.3) Γ}KerBA*n={Q\,
n=0

where K— dim (Ker B). In this case, for every t>0, V(t) is a regular matrix and
the transition probability Pt(x, dy) has a Gussian density with respect to the Lebesgue
measure on Rd

(3.4) Pt(x, y)=(2πΓ

In order to make the paper self-contained we will here give the proof, which
is based on the following

LEMMA 3.3. For every t>0, N—Ker V(t).

Proof. Suppose that V(t)x=Q. Then we see by (3.1) that

so that

(3.5) VBe'A*x=Q,

Noting that etA*x is analytic in f>0, we see that (3.5) is equivalent to

VBA*nx=Q, Vrc>0.

Since for every C^M(Rd]

KerVBC=KerBC,
we get

KerV(t)CίΓ\KerBA*n.
n=0

The inverse inclusion is clear, hence we have shown

(3.6) Ker V(t)= Γ\ Ker BA*n .
n=o

It remains to show that

(3.7) Π Ker BA*n= Λ Ker BA*n .
n=0 n=0

Noticing that

N= Π {x:A*nx^KerB},
n=0

we find it sufficient for (3.7) to show

(3.8) A*Nc:N
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(this is another expression for NdΓ\n+=\ Ker BA*n). But if z^N, the κ+1 vectors
z, A*z, ••• , A*κzmust be linearly dependent, or what amount to the same, there
must be a real sequence CQ, clf ••• , cn with 72</r and £π=£θ such that

Operating Λ*Clf+1"n) to the left-hand side and thereby finding that ,4*C/C+1)2(Ξ
Ker B, we see Λ*ze7V and hence (3.8). The proof of Lemma 3.3 is completed.

Q. E. D.

Proof of Theorem 3.2.
Suppose that (3.3) holds. Then by Lemma 3.3, V(t) is a regular matrix for

every f>0. Hence for every x^Rd, Pt(x, dy) is a non-degenerate Gaussian
distribution on Rd

} so it follows immediately that ( X t , Px} is irreducible. Con-
versely, suppose that (3.3) fails. Then by Lemma 3.3 N=Ker V(t}Φ {0} for every
f>0. Let E=(Γ\κ

n^KerBA*n)L be the orthogonal compliment of Γ\n=^Ker BA*n,
which is a proper subspace of Rd. Then it is easy to see

SuρpPt(0, )=(Ker V(t))±=E for every ί>0,

which implies

(3.9) P0(Xt^E for all

because £ is a closed subset of Rd and Xt is continuous in t>0 PQ—a.s..
Therefore (Xt, Px} is not irreducible. Q. E. D.

Remark. The generator of the Gaussian diffusion process associated with
A^M(Rd) and B(ΞM+(Rd) is given by

1 d d A2 d d d
(3.10) L= -Σ Σbl}—+ ΣΣat)x}~.

Note that L can be rewritten as follows :

(3.11) Z,

where

V \ = Σ * t , g - with C = ( ^ ) = -

and
d d

^ O — «ώJ
«ώJ j i l - j ' ^ N

=1 j=ι J J OXt

Then it is easy to show that the Lie algebra J7[F0, Vlf ••• , Fd] generated by
vector fields 70, V l f ••• , 7d is a linear space that is spanned by

, n>0) and F0.



220 JIAN-jY LIOU

Hence by (3.7), the condition (3.3) is equivalent to

(3.12) rank of J7[70, Vl9 •••, VΛ~\(x)=d for every

which is the Hδrmander condition of the hypoellipticity of L (c.f. [4]).

Example 1. Suppose that B^M+(Rd) is a regular matrix. Then (3.3) clearly
holds since p&^KerBA*n=Ker B={0}. Hence for every A<=M(Rd} the Gaus-
sian diffusion process (Xt, Px) associated with A and B is irreducible.

Example 2. Let us consider the following A^M(Rd) and

In this case, B is extremely degenerate. Nevertheless, (3.3) is verified and the
associated Gaussian diffusion process is irreducible. In fact we have

κ=dim(KerB)=d-l,

but for 0<n<ύ?-l

/ O 0 - 0

BA*n=\ 0

\ 0

KerBA*»={x=(xlf •

hence (3.3).
We will next show how to reduce a non-irreducible Gaussian diffusion process

to an irreducible one. Suppose that we are given A^M(Rd) and B<^M+(Rd)
such that

(3.10) N= A Ker BA*nΦ {0} with κ=dim (Ker B}.
n=0

Let (Xtj PX) be a Gaussian diffusion process on Rd associated with A and B,
governed by the equation

(1.5) Xt^x

where x^Rd and Wt is a d-dimensional Brownian motion with the diffusion
matrix B. Then by (3.10) and Theorem 3.2 the diffusion process (Xt, Px) is not
irreducible. Let E—N^ be the same one as in the proof of Theorem 3.2. Note
by (3.10) that E is a proper subspace of Rd. Furthermore, we can restrict the
diffusion process (Xty Px) into the state space E so that it may be an £-valued
irreducible Gaussian diffusion process as seen in the following
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THEOREM 3.4. ( i ) AEdE, ( ii ) Wt is an E-valued Brownian motion with the
diffusion matrix B\E (the restriction on E of the linear transformation B), (iii)
(Xt, Pχ)x^E is an irreducible Gaussian diffusion process on E.

Proof. ( i ) follows from (3.8). For y^N, we get

E«Wt, yy2)=<By,yyt=Q,

which implies that

P(Wt*ΞE for all

Since B is symmetric and Nc:Ker B, BEd.E. Thus Wt is an E-valued Brownian
motion with the diffusion matrix B\E. Finally, by Lemma 3.1 and ( i ) just
verified, we see

(3.11) Supple*, )=E+etAx=E for every x^E and every f>0,

completing the proof of (iii). Q. E. D.

4. Determination of recurrence and transience of irreducible Gaussian
diffusion processes

Let (Xt, Px} be a Gaussian diffusion process on Rd associated with an
M(Rd) and a B^M+(Rd\ governed by the equation (1.5). In this section, as-
suming that (Xt, PX) is irreducible, we determine whether it is recurrent or
transient in terms of A and B.

Recall that by Theorem 3.2 the irreducibility assumption is equivalent to

(4.1) f\KerBA*n={0} with κ=dim(KerB).
n=o

Under the condition (4.1), we will give criteria for recurrence properties of
(Xt, PX) by means of the real Jordan canonical form A of A:

Λ

\ 0

where Jt (l<i<r) are mlXml Jordan blocks with real eigen-values Λ and the
size wt, i.e.

lO'Vx
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j (!</<s) are 2n,'X.2n1 Jordan blocks with complex eigen-values λ}—a,-\-

—ϊbj and the size n,, i. e.

ft* -ft,

b, a,

1 0

0 1

ι \

'fl,
ft,
Ί

0

-ft,
0,

0

1

V

α, -&,

ft, aj
and

Now we can state a main result of this section.

THEOREM 4.1. Let (Xt, Px) be the Gaussian diffusion process on Rd associated
with A^M(Rd) and B^M+(Rd). Let A be the real Jordan cononical form of A.
Suppose that the process (Xt, Px) is irreducible. Then

( I ) // every eigen-value λ of A has negative real part (i.e. Reλ<fy, then
(Xty PX) has a unique stationary distribution, hence it is positively recurrent.

(II) // the following (a) or (b) holds, then (Xt, Px) is null recurrent (i.e.
(Xt, PX} is recurrent but has no stationary distribution).

(a) A contains a unique Jordan block of the form K Q ) (^0) and all

other Jordan blocks have eigen-values with negative real parts.
(b) A contains one or two Jordan block with size 1 of the form (0) and all

other Jordan blocks have eigen-values with negative real parts.
(III) In all remaining cases, the process (Xt, Px) is transient.

In what follows (Xt, Px) denotes the irreducible Gaussian diffusion process on
Rd associated with A<=M(Rd) and B^M+(Rd). For the proof of Theorem 4.1
we prepare several lemmas.

LEMMA 4.2. Suppose that the irreducible Gaussian diffusion process (Xt, Px)
satisfies

(4.2) ^o(0, £/)—°° for every open set U containing 0.

Then the process (Xt, Px) is recurrent.

Proof. Clearly (Xt, Px) satisfies the strong Feller property, hence the proof
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is immediate from Remark 1 after Theorem 2.2 and Theorem 2.3. Q. E. D.

LEMMA 4.3. Let V(t) be the coυariance matrix of the transition probability,
whose explicit form is given in Lemma 3.1.

(i) //

(4.3)

then the process (Xt, Px) ist ransient. In this case, it holds that

Pz(lim|X ί | = oo)=l for every
t-»oo

(ϋ) //

(4.4) Γ(detV(t)Γ1/2dt=°°,

then the process (Xt, Px) is recurrent.

Proof. For B^$(Rd\ we denote by λ(B) the Lebesgue measure of B.
( i ) For every compact subset K of Rd and every x^Rd

Pt(x, K)<(2πΓd/2λ(K)(det V(t)Γ1/2 ,

hence by (4.3), RQ(x, K)<°°, so that Theorem 2.1 is applicable and the process
(Xt, PX) is transient. The latter statement can be easily shown by applying the
arguements in the proof of Theorem 2.1.

(ii) By Lemma 4.2, it suffices to show that for every open ball U containing 0,

(4.2) Λβ(0,£7)=oo.

The explicit form of V(t) in Lemma 3.1 implies that V(t) is increasing in f>0,
so its inverse V(t}~1 is decreasing in ί>0, hence for every t>l,

Using this we get for t>l,

/>(0, U)=(2πΓd/2(det

from which and the assumption of (ii), (4.2) follows, and the process (Xtt Px) is
recurrent. Q. E. D.

LEMMA 4.4. Let (Yt, Qx) be the Gaussian diffusion process on Rd associated
with the same A as of (Xt, Px) and Idxd (identity) in place of B. If (Yt, Qx) is
reccurrent, then (Xt, Px} is also recurrent.

Proof. By Example 1 of section 3, (Ytt Qx) is irreducible. Denote by V^t)



224 JIAN-JY LIOU

and V2(t) the covariance matrices of the transition probabilities Pt(x, ay) and
Qt(x, dy) of (Xt, Px) and (Yt, Qx) respectively. Since (Yt, Qx) is recurrent, by
Lemma 4.3

Note that by Lemma 3.1

and

o

which implies Fι(0<ll#ll Vz(t). In particular we get

detV,(t}<\\B\\ddetV2(t).

Accordingly we have

Therefore using Lemma 4.3 again we see that (Xt9 Px) is recurrent. Q. E.D.

LEMMA 4.5. Let V(t) be the covariance matrix of its transition probability
Pt(x, dy). For some l<m<d, let Vm(t) be the principal minor of V(t\ that is,

Vm(t)= V 2m

, ... vTfll r 77.

Then there is a constant C>0 such that for every ί>l,

(4.5) detV(t)>CdetVm(t).

Furthermore, if

(4.6)

the process (Xt, Px) is transiedt.

Proof. By virtue of Lemma 4.3, we have only to prove (4.5). Let λι(t)>
λz(t)> •" >λd(t) be eigen-values of V(t). We know for every t>t' and

This implies, by the mini-max theorem, that

, y=ι,2,
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if t>t'. In particular, if ί>l, then

λj(t}>λQ, ;=1, 2, -, d,

where Λ0 denotes λd(l). Therefore,

(4.7) d

if ί>l. Applying the mini-max theorem again we see

(4.8) λι(t)λz(t) ••• λm(t)>det Vm(t),

which proves (4.5). Q.E.D.

We are now in position to prove Theorem 4.1. Without loss of generality
we may assume that A is of the real Jordan canonical form, because by a suitable
regular transformation of the state space Rd, the process (Xt9 Px) is transformed
to another irreducible Gaussian diffusion process having a matrix of the real
Jordan canonical form in place of A and with its recurrence properties unchanged.

Proof of the part (/).
It is easy to see that for every x^Rd, its transition probability Pt(x9 •) con-

verges to a Gaussian distribution on Rd with the mean vector 0 and the covar-
iance matrix

(4.9) ΓesABesA*ds.

It is easy to see that the integral of (4.9) is convergent if and only if every
eigen-value of A has negative real part (see the computation for the case 2 below).
This implies that there is a unique stationary distribution if and only if every
eigen-value of A has negative real part.

Proof of the part (//)-(α).
By the assumption of (IΙ)-(a),

/ O -b

A=\ b 0

where A^M(Rd~2) and all the eigen-values of A have negative real parts. By
Lemma 4.4 we may assume B—I. By (3.1), we get

0 \ eSAeSA*ds)
Jo /

and see

det V(t) ~ Const, t2 as f-»oo.
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Accordingly, by Lemma 4.3 (ii), the process (Xt, Px) is recurrent.
Proof of the part (Π)-(b).
The proof is the same as part (Π)-(a).
Proof of the part (III).
Recall that we are assuming that A itself is of a real Jordan canonical form.

Under the assumption of irreducibility, all remaining cases in part (III) of Theorem
4.1 can be devided into the following six cases (1)~(6); The cases 1 and 2
correspond to the case when Reλ>Q for some eigen-value λ of A, and the cases
3~6 correspond to the cases when Reλ<0 for all eigen- values λ of A except
the cases in part (II).

Case 1.

A=

where α>0 and
Since V(t) is positive definite and by (3.1), we have for x=(l, 0,

0<Vn(t)

=<V(t)x,x>

ds

, 0),

= fV aftne'
Jo

We can apply Lemma 4.5 with m—1 and conclude that the process is transient.
Case 2.

fl -* 0\

b a

where α>0 and A<=M(Rd~2).
Since

e —

using (3.1) and the fact that

we have

esacosbs -esasmbs Q\

esa cos Z?s

0, e
sa>s2,
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S t
esa[bn cos2 bs+bzz sin 2bs— (bί2+bzι) cos bs sin bs"]ds

0

i t
s2[£n cos2 bs+b22 sin 2 6s — (^12+^21) cos bs sin 6s]ds ,Jo

where we have also employed

- i i
Ό

Thus we get

V

It therefore suffices to see

(4.10) 6n+622>0.

But if (4.10) fails, then by (*) bl2—b2l—0, so that 7n(f)=0, the contradiction.
Case 3.

/ « o 0\
A=\ 1 0

\ * At

Using (3.1) again we can calculate

Applying Lemma 4.5 with m=l to V22(t\ we conclude that thj process is transient.
Case 4.

Ό 0

A=\ D

\0 A

where A^M(Rd~z) and ^=(ϊ "~Q) For convenience we here include the case

We have by (3.1)
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= 0(1).

Since Fn(ί)>0 for every ί>0, bn>0. And &22+ί>33>0 follows from the fact that

Applying Lemma 4.5 with m— 3, we conclude that the process is transient.
Case 5.

where Λe=M(Λ<-«), D=Q ~{j) and J=(J }).

We have by (3.1)

Fu«= F22(ί)

=0(0

Since Fn(0>0, we can prove that bu+btί>Q by the same discussion as in the
proof of (4.10) for the case 2. We apply Lemma 4.5 with m=l to V8J(0 and
conclude that the process is transient.

Case 6.
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where A^M(R"-i) and D=

We have by (3.1)

= 0(1)

Λ*w=v«(f)
__ 1

1
714(ί)——-(/?14-

We want to apply Lemma 4.5 with m=4. Let

oo_ 1

Then

det V^(t)—t\det 1

By virtue of Lemma (4.5), we have only to prove

(4.11) detV ;>0.

We have by (3.1)

Γί 4

v ιj~~~ \ .Σ &ikbkiQ>ji (1^2,
Jo k,1=1

where

/cos 6s —sin 6s Q

sin 6s cos 6s

cos 6s —sin 6s

.0 sin 6s cos 6s

Since V τ j ( t ) is an integral of a periodic function of s with the period 2π/\b\,
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we get

Vΐ=~V4(

hence (4.11).
Accordingly, Theorem 4.1 has completely been Proved.

(Q.E.D.
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