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PICARD SET OF A KIND OF DIFFERENTIAL

POLYNOIMIALS

BY ZHAN XIAO PING

Abstract

In the present paper we answer a problem about Picard sets of differential
polynomial F=fnQ(f), which was raised by Anderson, Baker and clunie (cf.

[1]).

1. Introduction and result

Let / be a transcendental meromorphic function. We denote by S(r, f), as
usual, any function satisfying

S(r, /)=0(logr) as r^oo

when / has finite order, and

S(r, /)=0(logrT(r, /)) as r->oo, re~E, meas£<oo

when / has infinite order. We call a meromorphic function a(z) "small" func-
tion if a(z) satisfies T(r, α)=S(r, /). We call M(/)=/*(/')nι - (/<*>)"* a mono-
mial in /, 1^=710+711 + ••• + n* its degree and 7~V=n0+2rcι + -•• +(l + fe)τzΛ its
weight. Further, let Mt(/), ••• , M/(/) denote monomials in / and alf •••, α z

denote small functions, then P(f)=aίMί(f)-\— +aιMl(f) is called a differential
polynomial in / of degree vP=maxl

J=1i'Mj and weight ΓP=τnaxlj=1ΓMj. In paticular
βt (1^/^z) are entire functions when / is an entire function.

J, M. Anderson, I. N. Baker and J. G. Clunie proved the following :

THEOREM A. [1] Suppose that f is a transcendental entire function and

F—fn n^3, n^N. Let ff — {λn}n=ι be an infinite point set in C with

(n=l.2, •••)• Then F'(z) assumes all values w^C, except possibly zero, in-
finitely often in C\£F.

The above authors asked the following two questions :
(a) Can the sets be made larger for entire functions at least? In particular,
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can they consist of small disks?
(b) Are there similar results for differential polynomials of the form F(z)—

fnQ(f\ where (?(/) is a differential polynomial in /?
Question (a) was solved by Langley [2] for entire functions, but we have

not seen any results about (6) so far.
We proved the following theorem:

THEOREM. Let f be a transcendental entire function, £F = {Λn}^=1 an infinite

point set in C with -~^- >q>l (n=l, 2, •••), set F=fnQ(f), ntΞN, where Q(f)

is a differential polynomial in f and Q(/)^=0, Then F'(z) assumes all values
except possibly w=Q, infinitely often in C\EF, provided n^3.

2. Lemmas.

LEMMA 1. Suppose that f is a transcendental entire function and F — f n Q ( f ) ,
^3, where Q(f) is a differential polynomial in f and φ(/)Ξ£θ. Then

0 ( i )

LEMMA 2. Suppore that f is a nonconstant meromorphic function and P(f)
is a differential polynomial in f and P(/)^0, // ZQ is a pole of f of degree p
(ί^l), and z0 is not the pole of any small function a}. Then z0 is a pole of P(f)
of degree p'VP-\-(Γp—vP) at most.

Proof. Let τ(zQ, P(/)) be the degree of pole of P(f) at z0, then there are
nonnegative integers n0, — , nk which satisfy τ(zQ, P(f)^pn0+(p+l)n1-\ ---- +

LEMMA 3. [3] Let f be a nonconstant meromorphic function. If Q(f) is a
differential polynomial in f with arbitrary meromorphic coefficients qJ9 l^j^n,
then

m(r, Q(f}}<vQm(r, /)+Σ?-ιWi(r, qJ+S(r, /)

LEMMA 4. [3] Let f be a nonconstant meromorphic function. And let (?*(/)
and Q(f) denote differential polynomials in f with arbitrary meromorphic coeffi-
cients q^, ~ , qΐ and ql9 ~ qt respectively. Further, let P[/] be a nonconstant
polynomial in f of degree n. Then from -P[/] Q*(/)=(?(/) we can infer the
following :

1) if vQ^n then m(r, 0*(/))^Σj-ι»ι(r, ^*)+Σj=ιm(r, q,)+S(r, /)
2) if ΓQ^n then N(r,

LEMMA 5. Let f be a nonconstant meromorphic function. And let Q(f) and



178 ZHAN XIAO PING

P(f) be differential polynomials in f satisfying P(/)^0, Q(/)^0. Then gQ=
-fnQ(f) and gι=fnQ(f)+P(f) are independent over C, provided n^

Proof. Assume that c0g0

J

Γcίg1= 0, c0, c^C, that is fnQ(f)(cl—cQ)——clP(f).
Obviously, we have c^O and £0^ι, we get T(r, Q(/))=S(r, /), JV(r, /£(/))=

S(r, /) from lemma 4, so Mr, f)£N(r, ~^f)}+N(r» /<?(/))=S(r, /), hence we

have

r, /)=m(r, -C

So we get
T(r, /)^

which is impossible.

LEMMA 6. [1] Lei G(2r) 60 an entire function, assume that all the zeros of G(z)

lie in the set 3 = {λn\n=ι and ~±

— 0((logr)2) as r->oo.

>q>L Then n(r, -^-)=0(logr), N(T, -̂

Proof of Lemma 1. Suppose that P(f) is a differential polynomial in / and

Γp^n-1, let go=-f*Q(f), gι=fnQ(f}+P(f\ we know -̂ - ̂ -^0 from lemma
gi go

5. So, from g,+gί=P(f) and ^+gί=P'(/), we have

f n =
J

we get

m(r, fn)<

r, f)+N(r, (g(/g,-g'Q

+m(r, g[/g

from lemma 3. From T(r, gt)=0(T(r, /)) (ί=0, 1) and T(r, P(/))=0(T(r, /)), we
have S(r, £t)^S(r, /) (ί=0, 1) and S(r, P(/))^S(r, /). Thus

+m(r, (gί/gι-gl/

We rewrite (2) as follows
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It is easy to know that m(r, (g(/gι—gfQ/g^Q(f))—S(r, /) from lemma 4. Thus

, /)

/) ( 3 )

Assume that z0 is a pole of / of order p, and ZQ is not a zero or pole of
coefficients of P(f). Suppose that

Q(f)(gΊ/gι—g'o/gQ)=c(z—z0y (c=c(z)Ξ£Q; μ is an integer)

we know that np^pvP-\-ΓP— vP+l-\-μ from (2) and lemma 2, thus

μ^p(n-vp)-(ΓP-vP+l) ( 4 )

So, we have

N(r, l/(g(/gι-gygύQ(fy)>(n-vp)N(r, /)-(ΓP-vP+l)JV(r, /)+S(r, /) ( 4 )'

from (4). Obviously, the poles of Q(fXgΊ/gι—gΌ/g<ύ occur only at poles of /,
zeros of g0 (except the zeros of φ(/)), zeros of gι, zeros or poles of coefficients
of Q(f) and P(f\ If n^ΓP+l and p^l, it is easy to see that μ^O. Thus z,
is not a pole of Q(f)(gΊ/gι—gΌ/go) provided ZQ is a pole of /. From the above
anlyses, we have

N(r,

Thus

combining (3), (4)' and (5).

Let F = f » Q ( f ) , so F/=/»-1(n//Q(/)+/Q /(/))=/n-1Oι(/X where Q^/) is still
a differential polynomial in /. Assume that P(/)= — 1, go=—fn~lQι(f) (=-F'\
gι=fn-lQι(n-l=fn-1Qί(f)+P(f) (=F'-V such that £0 and ̂  satisfy the con-

ditions of lemma 5. Finally, we get (n-2)T(r, f)^N(r, }_ ̂ )+S(r, /) by ap-

plying equation (6) to g0 and g^ and noting Γp=ι>P—Q. Hence lemma 1 is proved.

3. Proof of theorem.

Without loss of geneaality we suppose that w—l. Obviously, Ff — 1 has in-
finitely many zeros from (1). If Ff — 1 has only finitely many zeros in C\£Γ,
then F'— 1 has infinitely many zeros in 9". We suppose that Ff — \. at every
point of 3 by deleting some of the points λn of £F and adjusting notation if
necessary. From lemma 6 and (1), we know that T(r, /)=0((logr)2) as r-»oo,
re£, meas E<co. So / has order zero (see [3, lemma 3]). Hence / has in-
finitely many zeros since / is transcendental. And we have S(r, f)=O(logr) as
r-»oo since / has finite order, so we get
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T(r, /)=O((logr)2) as

00 J Z \

For the convenience of presentation we set f(z)— ΠU -- )• It is easy to
k=ι\ k'

know that each μk is a zero of F'(z) of order at least 2. And we have T(r, F'— 1)
= 0((logr)2) as r-»°o from (7). Given ε>0, for some εk(Q<εk<ε) and large k
we know |F' — 1|>2 (see [1, lemma 4]) and hence \F'\>1 on the boundary of
or outside these discs Δk — {z\ \z—λk\<εk\λk\}, so μk lie in one of these discs,
say Δk. If ε is chosen sufficiently small then the disc Δk contains no other
λm(mφk) from the condition \λn+ι/λn >#>!, and so no other z with F'(z)=l.
Now, suppose that the equation F'(z)=l has an m-fold root at λk and consider
the level curves \F'(z)\=l passing through λk, These lie in Δk and consist of m
distinct loops with only the point λk in common. By the maximum and mini-
mum modulus priciples, each loop contains at least one zero of F'(z). So, Ff

has the same number of 1-points as zeros inside the Δk by Rouche theorem.
Hence Ff has only m simple zeros in the Δk But that contradicts the presence
of μk in the Δk which implies that F' has a zero of multiplicity at least 2 in
the Δk. Hence the theorem is proved.
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