X. P. ZHAN KODAI MATH. J. 13 (1990), 176–180

PICARD SET OF A KIND OF DIFFERENTIAL POLYNOIMIALS

By Zhan Xiao Ping

Abstract

In the present paper we answer a problem about Picard sets of differential polynomial $F=f^nQ(f)$, which was raised by Anderson, Baker and clunie (cf. [1]).

1. Introduction and result

Let f be a transcendental meromorphic function. We denote by S(r, f), as usual, any function satisfying

$$S(r, f) = O(\log r)$$
 as $r \to \infty$

when f has finite order, and

$$S(r, f) = O(\log rT(r, f))$$
 as $r \to \infty, r \in E$, meas $E < \infty$

when f has infinite order. We call a meromorphic function a(z) "small" function if a(z) satisfies T(r, a)=S(r, f). We call $M(f)=f^n(f')^{n_1}\cdots(f^{(k)})^{n_k}$ a monomial in $f, \nu_M=n_0+n_1+\cdots+n_k$ its degree and $\Gamma_M=n_0+2n_1+\cdots+(1+k)n_k$ its weight. Further, let $M_1(f), \cdots, M_l(f)$ denote monomials in f and a_1, \cdots, a_l denote small functions, then $P(f)=a_1M_1(f)+\cdots+a_lM_l(f)$ is called a differential polynomial in f of degree $\nu_P=\max_{j=1}^l \nu_{M_j}$ and weight $\Gamma_P=\max_{j=1}^l \Gamma_{M_j}$. In paticular a_i $(1 \le i \le l)$ are entire functions when f is an entire function.

J, M. Anderson, I. N. Baker and J. G. Clunie proved the following:

THEOREM A. [1] Suppose that f is a transcendental entire function and $F = f^n \ n \ge 3$, $n \in \mathbb{N}$. Let $\mathcal{F} = \{\lambda_n\}_{n=1}^{\infty}$ be an infinite point set in \mathbb{C} with $\left|\frac{\lambda_{n+1}}{\lambda_n}\right| > q > 1$ $(n=1,2,\cdots)$. Then F'(z) assumes all values $w \in \mathbb{C}$, except possibly zero, infinitely often in $\mathbb{C} \setminus \mathcal{F}$.

The above authors asked the following two questions:

(a) Can the sets be made larger for entire functions at least? In particular,

Received November 9, 1988; Revised October 24, 1989.

can they consist of small disks?

(b) Are there similar results for differential polynomials of the form F(z) = $f^nQ(f)$, where Q(f) is a differential polynomial in f?

Question (a) was solved by Langley [2] for entire functions, but we have not seen any results about (b) so far.

We proved the following theorem:

THEOREM. Let f be a transcendental entire function, $\mathcal{F} = \{\lambda_n\}_{n=1}^{\infty}$ an infinite point set in C with $\left|\frac{\lambda_{n+1}}{\lambda_n}\right| > q > 1$ (n=1, 2, ...), set $F = f^n Q(f)$, $n \in \mathbb{N}$, where Q(f)is a differential polynomial in f and $Q(f) \equiv 0$, Then F'(z) assumes all values $w \in C$, except possibly w=0, infinitely often in $C \setminus \mathcal{F}$, provided $n \geq 3$.

2. Lemmas.

LEMMA 1. Suppose that f is a transcendental entire function and $F = f^n Q(f)$. $n \in \mathbb{N}$, $n \ge 3$, where Q(f) is a differential polynomial in f and $Q(f) \not\equiv 0$. Then

$$T(r, f) < \overline{N}\left(r, \frac{1}{F'-1}\right) + S(r, f)$$
(1)

LEMMA 2. Suppore that f is a nonconstant meromorphic function and P(f)is a differential polynomial in f and $P(f) \equiv 0$, if z_0 is a pole of f of degree p $(p \ge 1)$, and z_0 is not the pole of any small function a_j . Then z_0 is a pole of P(f)of degree $p \cdot \nu_P + (\Gamma_P - \nu_P)$ at most.

Proof. Let $\tau(z_0, P(f))$ be the degree of pole of P(f) at z_0 , then there are nonnegative integers n_0, \dots, n_k which satisfy $\tau(z_0, P(f)) \leq pn_0 + (p+1)n_1 + \dots + pn_0$ $(p+k)n_{k} = (p-1)(n_{0}+n_{1}+\dots+n_{k}) + (n_{0}+2n_{1}+\dots+(k+1)n_{k}) \leq (p-1)\nu_{P} + \Gamma_{P} = p \cdot \nu_{P}$ $+(\Gamma_P-\nu_P).$

LEMMA 3. [3] Let f be a nonconstant meromorphic function. If Q(f) is a differential polynomial in f with arbitrary meromorphic coefficients $q_1, 1 \leq j \leq n$. then

$$m(r, Q(f)) \leq \nu_Q m(r, f) + \sum_{j=1}^n m(r, q_j) + S(r, f)$$

LEMMA 4. [3] Let f be a nonconstant meromorphic function. And let $Q^{*}(f)$ and Q(f) denote differential polynomials in f with arbitrary meromorphic coefficients q_1^*, \dots, q_k^* and q_1, \dots, q_l respectively. Further, let P[f] be a nonconstant polynomial in f of degree n. Then from $P[f] \cdot Q^*(f) = Q(f)$ we can infer the following:

- $\begin{array}{ll} 1) & if \ \nu_Q \leq n \ then \ m(r, \ Q^*(f)) \leq \sum_{j=1}^k m(r, \ q_j^*) + \sum_{j=1}^l m(r, \ q_j) + S(r, \ f) \\ 2) & if \ \Gamma_Q \leq n \ then \ N(r, \ Q^*(f)) \leq \sum_{j=1}^k N(r, \ q_j^*) + \sum_{j=1}^l N(r, \ q_j) + O(1) \end{array}$

LEMMA 5. Let f be a nonconstant meromorphic function. And let Q(f) and

P(f) be differential polynomials in f satisfying $P(f) \not\equiv 0$, $Q(f) \not\equiv 0$. Then $g_0 = -f^n Q(f)$ and $g_1 = f^n Q(f) + P(f)$ are independent over C, provided $n \geq \Gamma_P + 1$.

Proof. Assume that $c_0g_0+c_1g_1=0$, c_0 , $c_1\in C$, that is $f^nQ(f)(c_1-c_0)=-c_1P(f)$. Obviously, we have $c_1\neq 0$ and $c_0\neq c_1$, we get T(r, Q(f))=S(r, f), N(r, fQ(f))=S(r, f) from lemma 4, so $N(r, f)\leq N\left(r, \frac{1}{Q(f)}\right)+N(r, fQ(f))=S(r, f)$, hence we have

$$nm(r, f) = m(r, -c_1P(f)/Q((f)(c_1-c_0)) \le m(r, P(f)) + m\left(r, \frac{1}{Q(f)}\right) + S(r, f)$$

$$\le \nu_F m(r, f) + N(r, Q(f)) - N\left(r, \frac{1}{Q(f)}\right) + m(r, Q(f)) + S(r, f)$$

$$\le \nu_F m(r, f) + S(r, f)$$

So we get

$$T(r, f) \leq S(r, f)$$

which is impossible.

LEMMA 6. [1] Let G(z) be an entire function, assume that all the zeros of G(z)lie in the set $\mathcal{F} = \{\lambda_n\}_{n=1}^{\infty}$ and $\left|\frac{\lambda_{n+1}}{\lambda_n}\right| > q > 1$. Then $\bar{n}\left(r, \frac{1}{G}\right) = 0(\log r)$, $\bar{N}\left(r, \frac{1}{G}\right) = 0((\log r)^2)$ as $r \to \infty$.

Proof of Lemma 1. Suppose that P(f) is a differential polynomial in f and $\Gamma_P \leq n-1$, let $g_0 = -f^n Q(f)$, $g_1 = f^n Q(f) + P(f)$, we know $\frac{g'_1}{g_1} - \frac{g'_0}{g_0} \not\equiv 0$ from lemma 5. So, from $g_0 + g_1 = P(f)$ and $g'_0 + g'_1 = P'(f)$, we have

$$-f^{n} = \frac{P(f)(g_{1}'/g_{1} - P'(f)/P(f))}{(g_{1}'/g_{1} - g_{0}'/g_{0})Q(f)}$$
(2)

we get

$$\begin{split} m(r, f^{n}) &\leq m(r, P(f)) + m(r, g_{1}'/g_{1} - P'(f)/P(f)) + m(r, 1/(g_{1}'/g_{1} - g_{0}'/g_{0})Q(f)) \\ &\leq \nu_{P}m(r, f) + N(r, (g_{1}'/g_{1} - g_{0}'/g_{0})Q(f)) - N(r, 1/(g_{1}'/g_{1} - g_{0}'/g_{0})Q(f)) \\ &+ m(r, g_{1}'/g_{1}) + m(r, P'(f)/P(f)) + m(r, (g_{1}'/g_{1} - g_{0}'/g_{0})Q(f)) + S(r, f) \end{split}$$

from lemma 3. From $T(r, g_i) = O(T(r, f))$ (i=0, 1) and T(r, P(f)) = O(T(r, f)), we have $S(r, g_i) \leq S(r, f)$ (i=0, 1) and $S(r, P(f)) \leq S(r, f)$. Thus

$$(n-\nu_P)m(r, f) \leq N(r, (g_1'/g_1 - g_0'/g_0)Q(f)) - N(r, 1/(g_1'/g_1 - g_0'/g_0)Q(f)) + m(r, (g_1'/g_1 - g_0'/g_0)Q(f)) + S(r, f)$$

We rewrite (2) as follows

$$-f^{n}(g'_{1}/g_{1}-g'_{0}/g_{0})Q(f) = (g'_{1}/g_{1}-P'(f)/P(f))P(f)$$

PICARD SET

It is easy to know that $m(r, (g'_1/g_1-g'_0/g_0)Q(f))=S(r, f)$ from lemma 4. Thus

$$(n - \nu_{P})m(r, f) \leq N(r, (g_{1}'/g_{1} - g_{1}'/g_{0})Q(f)) - N(r, 1/(g_{1}'/g_{1} - g_{0}'/g_{0})Q(f)) + S(r, f)$$
(3)

Assume that z_0 is a pole of f of order p, and z_0 is not a zero or pole of coefficients of P(f). Suppose that

$$Q(f)(g'_1/g_1-g'_0/g_0)=c(z-z_0)^{\mu}$$
 (c=c(z) $\equiv 0$; μ is an integer)

we know that $np \leq p\nu_P + \Gamma_P - \nu_P + 1 + \mu$ from (2) and lemma 2, thus

$$\mu \geq p(n - \nu_P) - (\Gamma_P - \nu_P + 1) \tag{4}$$

So, we have

$$N(r, 1/(g_1'/g_1 - g_0'/g_0)Q(f)) \ge (n - \nu_P)N(r, f) - (\Gamma_P - \nu_P + 1)\overline{N}(r, f) + S(r, f) \quad (4)'$$

from (4). Obviously, the poles of $Q(f)(g'_1/g_1-g'_0/g_0)$ occur only at poles of f, zeros of g_0 (except the zeros of Q(f)), zeros of g_1 , zeros or poles of coefficients of Q(f) and P(f). If $n \ge \Gamma_P + 1$ and $p \ge 1$, it is easy to see that $\mu \ge 0$. Thus z_0 is not a pole of $Q(f)(g'_1/g_1-g'_0/g_0)$ provided z_0 is a pole of f. From the above anlyses, we have

$$N(r, Q(f)(g_1'/g_1 - g_0'/g_0)) \leq \overline{N}(r, 1/g_1) + \overline{N}(r, 1/f) + S(r, f)$$
(5)

Thus

$$(n - \nu_P)T(r, f) \leq \overline{N}(r, 1/g_1) + \overline{N}(r, 1/f) + (\Gamma_P - \nu_P + 1)\overline{N}(r, f) + S(r, f) \quad (6)$$

combining (3), (4)' and (5).

Let $F=f^nQ(f)$, so $F'=f^{n-1}(nf'Q(f)+fQ'(f))=f^{n-1}Q_1(f)$, where $Q_1(f)$ is still a differential polynomial in f. Assume that $P(f)\equiv -1$, $g_0=-f^{n-1}Q_1(f)$ (=-F'), $g_1=f^{n-1}Q_1(f)-1=f^{n-1}Q_1(f)+P(f)$ (=F'-1) such that g_0 and g_1 satisfy the conditions of lemma 5. Finally, we get $(n-2)T(r, f)\leq \overline{N}\left(r, \frac{1}{F'-1}\right)+S(r, f)$ by applying equation (6) to g_0 and g_1 and noting $\Gamma_P=\nu_P=0$. Hence lemma 1 is proved.

3. Proof of theorem.

Without loss of geneaality we suppose that w=1. Obviously, F'-1 has infinitely many zeros from (1). If F'-1 has only finitely many zeros in $C \setminus \mathcal{T}$, then F'-1 has infinitely many zeros in \mathcal{T} . We suppose that F'=1 at every point of \mathcal{F} by deleting some of the points λ_n of \mathcal{F} and adjusting notation if necessary. From lemma 6 and (1), we know that $T(r, f)=O((\log r)^2)$ as $r \to \infty$, $r \in E$, meas $E < \infty$. So f has order zero (see [3, lemma 3]). Hence f has infinitely many zeros since f is transcendental. And we have $S(r, f)=O(\log r)$ as $r \to \infty$ since f has finite order, so we get

$$T(r, f) = O((\log r)^2) \quad \text{as} \quad r \to \infty \tag{7}$$

For the convenience of presentation we set $f(z) = \prod_{k=1}^{\infty} (1 - \frac{z}{\mu_k})$. It is easy to know that each μ_k is a zero of F'(z) of order at least 2. And we have $T(r, F'-1) = O((\log r)^2)$ as $r \to \infty$ from (7). Given $\varepsilon > 0$, for some $\varepsilon_k (0 < \varepsilon_k < \varepsilon)$ and large k we know |F'-1|>2 (see [1, lemma 4]) and hence |F'|>1 on the boundary of or outside these discs $\Delta_k = \{z : |z - \lambda_k| < \varepsilon_k |\lambda_k|\}$, so μ_k lie in one of these discs, say Δ_k . If ε is chosen sufficiently small then the disc Δ_k contains no other $\lambda_m (m \neq k)$ from the condition $|\lambda_{n+1}/\lambda_n|>q>1$, and so no other z with F'(z)=1. Now, suppose that the equation F'(z)=1 has an m-fold root at λ_k and consider the level curves |F'(z)|=1 passing through λ_k , These lie in Δ_k and consist of m distinct loops with only the point λ_k in common. By the maximum and minimum modulus priciples, each loop contains at least one zero of F'(z). So, F' has the same number of 1-points as zeros inside the Δ_k by Rouché theorem. Hence F' has only m simple zeros in the Δ_k . But that contradicts the presence of μ_k in the Δ_k which implies that F' has a zero of multiplicity at least 2 in the Δ_k . Hence the theorem is proved.

References

- [1] J.M. ANDERSON, I.N. BAKER AND J.G. CLUNIE, The distribution of values of certain entire and meromorphic functions, Math Z, 178 (1981), 509-525.
- [2] J.K. LANGLEY, Analogues of Picard sets for entire functions and their derivatives, Contemporary mathematics, Vol. 25 (1983), 75-86.
- [3] W. DOERINGER, Exceptional values of differential polynomials, Pacific J. Math. 98 (1982), 55-62.

DEPARTMENT OF MATHEMATICS HUNAN NORMAL UNIVERSITY P.R.CHINA

180