PICARD SET OF A KIND OF DIFFERENTIAL POLYNOIMIALS

By Zhan Xiao Ping

Abstract

In the present paper we answer a problem about Picard sets of differential polynomial $F=f^{n} Q(f)$, which was raised by Anderson, Baker and clunie (cf. [1]).

1. Introduction and result

Let f be a transcendental meromorphic function. We denote by $S(r, f)$, as usual, any function satisfying

$$
S(r, f)=O(\log r) \quad \text { as } \quad r \rightarrow \infty
$$

when f has finite order, and

$$
S(r, f)=O(\log r T(r, f)) \quad \text { as } \quad r \rightarrow \infty, r \equiv E \text {, meas } E<\infty
$$

when f has infinite order. We call a meromorphic function $a(z)$ "small" function if $a(z)$ satisfies $T(r, a)=S(r, f)$. We call $M(f)=f^{n}\left(f^{\prime}\right)^{n_{1}} \cdots\left(f^{(k)}\right)^{n_{k}}$ a monomial in $f, \nu_{M}=n_{0}+n_{1}+\cdots+n_{k}$ its degree and $\Gamma_{M}=n_{0}+2 n_{1}+\cdots+(1+k) n_{k}$ its weight. Further, let $M_{1}(f), \cdots, M_{l}(f)$ denote monomials in f and a_{1}, \cdots, a_{l} denote small functions, then $P(f)=a_{1} M_{1}(f)+\cdots+a_{l} M_{l}(f)$ is called a differential polynomial in f of degree $\nu_{P}=\max _{j=1}^{l} \nu_{M_{j}}$, and weight $\Gamma_{P}=\max _{j=1}^{l} \Gamma_{M_{j}}$. In paticular $a_{\imath}\left(1 \leqq_{i} \leqq_{l}\right)$ are entire functions when f is an entire function.

J, M. Anderson, I. N. Baker and J. G. Clunie proved the following :
Theorem A. [1] Suppose that f is a transcendental entire function and $F=f^{n} n \geqq 3, n \in \boldsymbol{N} . \quad$ Let $\mathcal{T}=\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ be an infinite point set in \boldsymbol{C} with $\left|\frac{\lambda_{n+1}}{\lambda_{n}}\right|>$ $q>1(n=1.2, \cdots)$. Then $F^{\prime}(z)$ assumes all values $w \in \boldsymbol{C}$, except possibly zero, infinitely often in $\boldsymbol{C} \backslash \mathfrak{I}$.

The above authors asked the following two questions:
(a) Can the sets be made larger for entire functions at least? In particular,
can they consist of small disks?
(b) Are there similar results for differential polynomials of the form $F(z)=$ $f^{n} Q(f)$, where $Q(f)$ is a differential polynomial in f ?

Question (a) was solved by Langley [2] for entire functions, but we have not seen any results about (b) so far.

We proved the following theorem:
THEOREM. Let f be a transcendental entire function, $\mathscr{F}=\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ an infinite point set in \boldsymbol{C} with $\left|\frac{\lambda_{n+1}}{\lambda_{n}}\right|>q>1(n=1,2, \cdots)$, set $F=f^{n} Q(f), n \in \boldsymbol{N}$, where $Q(f)$ is a differential polynomial in f and $Q(f) \not \equiv 0$, Then $F^{\prime}(z)$ assumes all values $w \in \boldsymbol{C}$, except possibly $w=0$, infinitely often in $\boldsymbol{C} \backslash \subseteq$, provided $n \geqq 3$.

2. Lemmas.

Lemma 1. Suppose that f is a transcendental entire function and $F=f^{n} Q(f)$, $n \in \boldsymbol{N}, n \geqq 3$, where $Q(f)$ is a differential polynomial in f and $Q(f) \not \equiv 0$. Then

$$
\begin{equation*}
T(r, f)<\bar{N}\left(r, \frac{1}{F^{\prime}-1}\right)+S(r, f) \tag{1}
\end{equation*}
$$

Lemma 2. Suppore that f is a nonconstant meromorphic function and $P(f)$ is a differential polynomial in f and $P(f) \not \equiv 0$, if z_{0} is a pole of f of degree p ($p \geqq 1$), and z_{0} is not the pole of any small function a_{j}. Then z_{0} is a pole of $P(f)$ of degree $p \cdot \nu_{P}+\left(\Gamma_{P}-\nu_{P}\right)$ at most.

Proof. Let $\tau\left(z_{0}, P(f)\right)$ be the degree of pole of $P(f)$ at z_{0}, then there are nonnegative integers n_{0}, \cdots, n_{k} which satisfy $\tau\left(z_{0}, P(f)\right) \leqq p n_{0}+(p+1) n_{1}+\cdots+$ $(p+k) n_{k}=(p-1)\left(n_{0}+n_{1}+\cdots+n_{k}\right)+\left(n_{0}+2 n_{1}+\cdots+(k+1) n_{k}\right) \leqq(p-1) \nu_{P}+\Gamma_{P}=p \cdot \nu_{P}$ $+\left(\Gamma_{P}-\nu_{P}\right)$.

Lemma 3. [3] Let f be a nonconstant meromorphic function. If $Q(f)$ is a differential polynomial in f with arbitrary meromorphic coefficients $q_{\jmath}, 1 \leqq \jmath \leqq n$, then

$$
m(r, Q(f)) \leqq \nu_{Q} m(r, f)+\sum_{\jmath=1}^{n} m\left(r, q_{\jmath}\right)+S(r, f)
$$

Lemma 4. [3] Let f be a nonconstant meromorphic function. And let $Q^{*}(f)$ and $Q(f)$ denote differential polynomials in f with arbitrary meromorphic coeffcients $q_{1}^{*}, \cdots, q_{k}^{*}$ and $q_{1}, \cdots q_{l}$ respectively. Further, let $P[f]$ be a nonconstant polynomial in f of degree n. Then from $P[f] \cdot Q^{*}(f)=Q(f)$ we can infer the following:

1) if $\nu_{Q} \leqq n$ then $m\left(r, Q^{*}(f)\right) \leqq \sum_{j=1}^{k} m\left(r, q_{j}^{*}\right)+\sum_{j=1}^{l} m\left(r, q_{j}\right)+S(r, f)$
2) if $\Gamma_{Q} \leqq n$ then $N\left(r, Q^{*}(f)\right) \leqq \sum_{j=1}^{k} N\left(r, q_{j}^{*}\right)+\sum_{j=1}^{l} N\left(r, q_{j}\right)+O(1)$

Lemma 5. Let f be a nonconstant meromorphic function. And let $Q(f)$ and
$P(f)$ be differential polynomials in f satisfying $P(f) \not \equiv 0, Q(f) \not \equiv 0$. Then $g_{0}=$ $-f^{n} Q(f)$ and $g_{1}=f^{n} Q(f)+P(f)$ are independent over C, provided $n \geqq \Gamma_{P}+1$.

Proof. Assume that $c_{0} g_{0}+c_{1} g_{1}=0, c_{0}, c_{1} \in \boldsymbol{C}$, that is $f^{n} Q(f)\left(c_{1}-c_{0}\right)=-c_{1} P(f)$. Obviously, we have $c_{1} \neq 0$ and $c_{0} \neq c_{1}$, we get $T(r, Q(f))=S(r, f), N(r, f Q(f))=$ $S(r, f)$ from lemma 4, so $N(r, f) \leqq N\left(r, \frac{1}{Q(f)}\right)+N(r, f Q(f))=S(r, f)$, hence we have

$$
\begin{aligned}
n m(r, f) & =m\left(r,-c_{1} P(f) / Q\left((f)\left(c_{1}-c_{0}\right)\right) \leqq m(r, P(f))+m\left(r, \frac{1}{Q(f)}\right)+S(r, f)\right. \\
& \leqq \nu_{P} m(r, f)+N(r, Q(f))-N\left(r, \frac{1}{Q(f)}\right)+m(r, Q(f))+S(r, f) \\
& \leqq \nu_{P} m(r, f)+S(r, f)
\end{aligned}
$$

So we get

$$
T(r, f) \leqq S(r, f)
$$

which is impossible.
Lemma 6. [1] Let $G(z)$ be an entire function, assume that all the zeros of $G(z)$ lie in the set $\mathscr{T}=\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ and $\left|\frac{\lambda_{n+1}}{\lambda_{n}}\right|>q>1$. Then $\bar{n}\left(r, \frac{1}{G}\right)=0(\log r), \bar{N}\left(r, \frac{1}{G}\right)$ $=0\left((\log r)^{2}\right)$ as $r \rightarrow \infty$.

Proof of Lemma 1. Suppose that $P(f)$ is a differential polynomial in f and $\Gamma_{P} \leqq n-1$, let $g_{0}=-f^{n} Q(f), g_{1}=f^{n} Q(f)+P(f)$, we know $\frac{g_{1}^{\prime}}{g_{1}}-\frac{g_{0}^{\prime}}{g_{0}} \not \equiv 0$ from lemma 5. So, from $g_{0}+g_{1}=P(f)$ and $g_{0}^{\prime}+g_{1}^{\prime}=P^{\prime}(f)$, we have

$$
\begin{equation*}
-f^{n}=\frac{P(f)\left(g_{1}^{\prime} / g_{1}-P^{\prime}(f) / P(f)\right)}{\left(g_{1}^{\prime} / g_{1}-g_{0}^{\prime} / g_{0}\right) Q(f)} \tag{2}
\end{equation*}
$$

we get

$$
\begin{aligned}
m\left(r, f^{n}\right) \leqq & m(r, P(f))+m\left(r, g_{1}^{\prime} / g_{1}-P^{\prime}(f) / P(f)\right)+m\left(r, 1 /\left(g_{1}^{\prime} / g_{1}-g_{0}^{\prime} / g_{0}\right) Q(f)\right) \\
\leqq & \nu_{P} m(r, f)+N\left(r,\left(g_{1}^{\prime} / g_{1}-g_{0}^{\prime} / g_{0}\right) Q(f)\right)-N\left(r, 1 /\left(g_{1}^{\prime} / g_{1}-g_{0}^{\prime} / g_{0}\right) Q(f)\right) \\
& +m\left(r, g_{1}^{\prime} / g_{1}\right)+m\left(r, P^{\prime}(f) / P(f)\right)+m\left(r,\left(g_{1}^{\prime} / g_{1}-g_{0}^{\prime} / g_{0}\right) Q(f)\right)+S(r, f)
\end{aligned}
$$

from lemma 3. From $T\left(r, g_{\imath}\right)=O(T(r, f))(i=0,1)$ and $T(r, P(f))=O(T(r, f))$, we have $S\left(r, g_{\imath}\right) \leqq S(r, f)(i=0,1)$ and $S(r, P(f)) \leqq S(r, f)$. Thus

$$
\begin{aligned}
\left(n-\nu_{P}\right) m(r, f) \leqq & N\left(r,\left(g_{1}^{\prime} / g_{1}-g_{0}^{\prime} / g_{0}\right) Q(f)\right)-N\left(r, 1 /\left(g_{1}^{\prime} / g_{1}-g_{0}^{\prime} / g_{0}\right) Q(f)\right) \\
& +m\left(r,\left(g_{1}^{\prime} / g_{1}-g_{0}^{\prime} / g_{0}\right) Q(f)\right)+S(r, f)
\end{aligned}
$$

We rewrite (2) as follows

$$
-f^{n}\left(g_{1}^{\prime} / g_{1}-g_{0}^{\prime} / g_{0}\right) Q(f)=\left(g_{1}^{\prime} / g_{1}-P^{\prime}(f) / P(f)\right) P(f)
$$

It is easy to know that $m\left(r,\left(g_{1}^{\prime} / g_{1}-g_{0}^{\prime} / g_{0}\right) Q(f)\right)=S(r, f)$ from lemma 4. Thus

$$
\begin{align*}
& \left(n-\nu_{P}\right) m(r, f) \\
& \quad \leqq N\left(r,\left(g_{1}^{\prime} / g_{1}-g_{1}^{\prime} / g_{0}\right) Q(f)\right)-N\left(r, 1 /\left(g_{1}^{\prime} / g_{1}-g_{0}^{\prime} / g_{0}\right) Q(f)\right)+S(r, f) \tag{3}
\end{align*}
$$

Assume that z_{0} is a pole of f of order p, and z_{0} is not a zero or pole of coefficients of $P(f)$. Suppose that

$$
Q(f)\left(g_{1}^{\prime} / g_{1}-g_{0}^{\prime} / g_{0}\right)=c\left(z-z_{0}\right)^{\mu} \quad(c=c(z) \not \equiv 0 ; \mu \text { is an integer })
$$

we know that $n p \leqq p \nu_{P}+\Gamma_{P}-\nu_{P}+1+\mu$ from (2) and lemma 2 , thus

$$
\begin{equation*}
\mu \geqq p\left(n-\nu_{P}\right)-\left(\Gamma_{P}-\nu_{P}+1\right) \tag{4}
\end{equation*}
$$

So, we have

$$
N\left(r, 1 /\left(g_{1}^{\prime} / g_{1}-g_{0}^{\prime} / g_{0}\right) Q(f)\right) \geqq\left(n-\nu_{P}\right) N(r, f)-\left(\Gamma_{P}-\nu_{P}+1\right) \bar{N}(r, f)+S(r, f) \quad(4)^{\prime}
$$

from (4). Obviously, the poles of $Q(f)\left(g_{1}^{\prime} / g_{1}-g_{0}^{\prime} / g_{0}\right)$ occur only at poles of f, zeros of g_{0} (except the zeros of $Q(f)$), zeros of g_{1}, zeros or poles of coefficients of $Q(f)$ and $P(f)$. If $n \geqq \Gamma_{P}+1$ and $p \geqq 1$, it is easy to see that $\mu \geqq 0$. Thus z_{0} is not a pole of $Q(f)\left(g_{1}^{\prime} / g_{1}-g_{0}^{\prime} / g_{0}\right)$ provided z_{0} is a pole of f. From the above anlyses, we have

$$
\begin{equation*}
N\left(r, Q(f)\left(g_{1}^{\prime} / g_{1}-g_{0}^{\prime} / g_{0}\right)\right) \leqq \bar{N}\left(r, 1 / g_{1}\right)+\bar{N}(r, 1 / f)+S(r, f) \tag{5}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left(n-\nu_{P}\right) T(r, f) \leqq \bar{N}\left(r, 1 / g_{1}\right)+\bar{N}(r, 1 / f)+\left(\Gamma_{P}-\nu_{P}+1\right) \bar{N}(r, f)+S(r, f) \tag{6}
\end{equation*}
$$

combining (3), (4)' and (5).
Let $F=f^{n} Q(f)$, so $F^{\prime}=f^{n-1}\left(n f^{\prime} Q(f)+f Q^{\prime}(f)\right)=f^{n-1} Q_{1}(f)$, where $Q_{1}(f)$ is still a differential polynomial in f. Assume that $P(f) \equiv-1, g_{0}=-f^{n-1} Q_{1}(f)\left(=-F^{\prime}\right)$, $g_{1}=f^{n-1} Q_{1}(f)-1=f^{n-1} Q_{1}(f)+P(f)\left(=F^{\prime}-1\right)$ such that g_{0} and g_{1} satisfy the conditions of lemma 5. Finally, we get $(n-2) T(r, f) \leqq \bar{N}\left(r, \frac{1}{F^{\prime}-1}\right)+S(r, f)$ by applying equation (6) to g_{0} and g_{1} and noting $\Gamma_{P}=\nu_{P}=0$. Hence lemma 1 is proved.

3. Proof of theorem.

Without loss of geneaality we suppose that $w=1$. Obviously, $F^{\prime}-1$ has infinitely many zeros from (1). If $F^{\prime}-1$ has only finitely many zeros in $\boldsymbol{C} \backslash \mathscr{I}$, then $F^{\prime}-1$ has infinitely many zeros in \mathscr{F}. We suppose that $F^{\prime}=1$ at every point of \mathscr{I} by deleting some of the points λ_{n} of \mathscr{I} and adjusting notation if necessary. From lemma 6 and (1), we know that $T(r, f)=O\left((\log r)^{2}\right)$ as $r \rightarrow \infty$, $r \bar{\in} E$, meas $E<\infty$. So f has order zero (see [3, lemma 3]). Hence f has infinitely many zeros since f is transcendental. And we have $S(r, f)=O(\log r)$ as $r \rightarrow \infty$ since f has finite order, so we get

$$
\begin{equation*}
T(r, f)=O\left((\log r)^{2}\right) \quad \text { as } \quad r \rightarrow \infty \tag{7}
\end{equation*}
$$

For the convenience of presentation we set $f(z)=\prod_{k=1}^{\infty}\left(1-\frac{z}{\mu_{k}}\right)$. It is easy to know that each μ_{k} is a zero of $F^{\prime}(z)$ of order at least 2 . And we have $T\left(r, F^{\prime}-1\right)$ $=O\left((\log r)^{2}\right)$ as $r \rightarrow \infty$ from (7). Given $\varepsilon>0$, for some $\varepsilon_{k}\left(0<\varepsilon_{k}<\varepsilon\right)$ and large k we know $\left|F^{\prime}-1\right|>2$ (see [1, lemma 4]) and hence $\left|F^{\prime}\right|>1$ on the boundary of or outside these discs $\Delta_{k}=\left\{z:\left|z-\lambda_{k}\right|<\varepsilon_{k}\left|\lambda_{k}\right|\right\}$, so μ_{k} lie in one of these discs, say Δ_{k}. If ε is chosen sufficiently small then the disc Δ_{k} contains no other $\lambda_{m}(m \neq k)$ from the condition $\left|\lambda_{n+1} / \lambda_{n}\right|>q>1$, and so no other z with $F^{\prime}(z)=1$. Now, suppose that the equation $F^{\prime}(z)=1$ has an m-fold root at λ_{k} and consider the level curves $\left|F^{\prime}(z)\right|=1$ passing through λ_{k}, These lie in Δ_{k} and consist of m distinct loops with only the point λ_{k} in common. By the maximum and minimum modulus priciples, each loop contains at least one zero of $F^{\prime}(z)$. So, F^{\prime} has the same number of 1 -points as zeros inside the Δ_{k} by Rouché theorem. Hence F^{\prime} has only m simple zeros in the Δ_{k}. But that contradicts the presence of μ_{k} in the Δ_{k} which implies that F^{\prime} has a zero of multiplicity at least 2 in the Δ_{k}. Hence the theorem is proved.

References

[1] J. M. Anderson, I.N. Baker and J. G. Clunie, The distribution of values of certain entire and meromorphic functions, Math $Z, 178$ (1981), 509-525.
[2] J.K. Langley, Analogues of Picard sets for entire functions and their derivatives, Contemporary mathematics, Vol. 25 (1983), 75-86.
[3] W. Doeringer, Exceptional values of differential polynomials, Pacific J. Math. 98 (1982), 55-62.

Department of Mathematics
Hunan Normal University
P. R.China

