J. QIAO KODAI MATH. J. 12 (1989), 429–436

THE VALUE DISTRIBUTION OF ENTIRE FUNCTIONS OF FINITE ORDER

By Jian-Yong Qiao

1. Introduction.

In [8] Tsuzki proved the following

THEOREM A. Let f(z) be an entire function of order less than one and let $\{w_n\}$ be an unbounded sequence. Assume that there exists a real number β such that $0 < \beta < \pi/2$ and all the roots of equations

(1) $f(z) = w_n \quad (n = 1, 2, \cdots)$

belong to the sector $\{z; |\arg z - \pi| \leq \beta\}$. Then f(z) is a linear function.

In [4], [5], [1] Kimura, Kobayashi, Baker and Liverpool improved the above result respectively. In this paper we generalize Theorem A to the following

THEOREM 1. Let f(z) be an entire function and let $\{w_n\}$ be an unbounded sequence. Suppose that for some positive integer m.

(2)
$$\lim_{r\to\infty} \frac{T(r, f)}{r^m} = 0.$$

Assume that there exists some $\varepsilon > 0$ such that all the roots of equations (1) belong to the following set

(3)
$$\bigcup_{k=0}^{m-1} \left\{ z \; ; \; \frac{2k}{m} \pi + \varepsilon < \arg z < \frac{2k+1}{m} \pi - \varepsilon \right\} \, .$$

Then f(z) is a polynomial.

The direction $\arg z = \theta$ is said to be a limiting direction of the complex set E, if θ is a cluster point of the set $\{\arg z; z \in E\}$. As the corollary of Theorem 1 we have

COROLLARY 1. Let f(z) be an entire function of finite order and let $\{w_n\}$

Received September 7, 1988; Revised March 22, 1989.

be an unbounded sequence. Assume that $\bigcup_{n=1}^{\infty} \{z; f(z)=w_n\}$ has only $k(<\infty)$ distinct limiting directions, then f(z) is a polynomial of degree at most k.

In [7] Ozawa proposed the following conjecture:

Let f(z) be an entire function, $\{w_n\}$ be an unbounded sequence and L_1, L_2, \dots, L_p be p distinct straightlines any two of which are not parallel with each other. Assume that all the roots of equations (1) lie on L_1, L_2, \dots, L_p . Then f(z) is a polynomial of degree at most 2p.

By Corollary 1 we deduce the following

COROLLARY 2. Ozawa's conjecture is true.

A meromorphic function F(z) is said to have a factorization with left factor f and right factor g, if it is expressible in the form f(g(z)), where f is meromorphic and g is entire (g may be meromorphic when f is rational). F(z) is said to be pseudoprime if every factorization of the above form implies that either f is rational or g is a polynomial. If F(z) is pseudoprime when only entire factors are considered in the factorization of the above form, it is called E-pseudoprime. In this paper we prove the following

THEOREM 2. Let F(z) be a meromorphic function of order less than m (a positive integer). Assume that there exist two complex number A_1 , A_2 (finite or infinite) such that all the roots of equation $F(z)=A_j$ (j=1, 2) belong to the following set

(4)
$$T_{j} = \bigcup_{k=0}^{m-1} \left\{ z ; \frac{2k}{m} \pi + \varepsilon < \arg z - \alpha_{j} < \frac{2k+1}{m} \pi - \varepsilon \right\}$$

for some $\varepsilon > 0$ and two real numbers α_j (j=1, 2). Then F(z) is pseudoprime.

In [2] Baker proved the following

THEOREM B. Let F(z) be an entire function of finite order and let there exist a complex number A such that the set of the roots of F(z)=A has only one limiting direction. Then F(z) is E-pseudoprime.

A a corollary of Theorem 2 we improve Theorem B to the following

COROLLARY 3. Let F(z) be a meromorphic function of finite order and let there exist two distinct complex numbers A_1 , A_2 (finite or infinite) such that the set of the roots of $F(z)=A_j$ (j=1, 2) has only finitely many limiting directions. Then F(z) is pseudoprime.

Let f(z) be an entire function and $f_1(z)=f(z)$, $f_2(z)=f(f(z))$, \cdots , $f_n(z)$, \cdots be its sequence of interates. Regarding the Fatou set F(f) of those points of

430

the complex plane where $\{f_n(z)\}$ does not form a normal family, Baker proved in [2] the following

THEOREM C. Let f(z) be a transcendental entire function and let the set

 $F(f) - \{z; |\arg z| < \delta\}$

be bounded for every $\delta > 0$, then f(z) is of infinite order.

In this paper we improve Theorem C to the following

THEOREM 3. Let f(z) be a transcendental entire function and let θ , $(j=1, 2, \dots, m)$ be m real numbers. Assume that the set

$$F(f) - \bigcup_{j=1}^{m} \{z; |\arg z - \theta_j| < \delta\}$$

is bounded for every $\delta > 0$, then f(z) is of infinite order.

By Theorem 3 we easily obtain the following

COROLLARY 4. Let f(z) be a transcendental entire function of finite order, then F(f) cannot be contained in any finitely many strip regions.

2. Some lemmas.

To prove our theorems, we need the following lemmas.

LEMMA 1. Let f(z) be an entire function with the zeros $\{z_j\}$ and $0 < |z_1| \le |z_2| \le \cdots \le |z_j| \le \cdots$. Then for any positive integer n we have

(5)
$$\left(\frac{f'(z)}{f(z)}\right)^{(n-1)} = (n-1)! \left[-\sum_{|z_j| \leq r} \frac{1}{(z_j-z)^n} + O\left(\frac{T(er, f)}{r^n}\right)\right] \quad (r \to \infty).$$

Proof. Let |z| < r, by Poisson-Jensen formula we have

$$\frac{f'(z)}{f(z)} = \frac{1}{2\pi} \int_0^{2\pi} \log |f(re^{i\theta})| \frac{2re^{i\theta}}{(re^{i\theta} - z)^2} d\theta + \sum_{|z_j| \le r} \left\{ \frac{1}{|z_j| \le r} + \frac{\bar{z}_j}{r^2 - \bar{z}_j z} \right\}.$$

Differentiating this n-1 times we obtain

(6)
$$\left(\frac{f'(z)}{f(z)}\right)^{(n-1)} = \frac{n!}{2\pi} \int_0^{2\pi} \log|f(re^{i\theta})| \frac{2re^{i\theta}}{(re^{i\theta}-z)^{n+1}} d\theta + (n-1)! \sum_{|z_j| \leq r} \left\{ \frac{(-1)^{n+1}}{(z-z_j)^n} + \frac{\bar{z}_j^n}{(r^2 - \bar{z}_j z)^n} \right\}.$$

We also have

(7)
$$\left|\frac{1}{2\pi}\int_{0}^{2\pi}\log|f(re^{i\theta})|\frac{2re^{i\theta}}{(re^{i\theta}-z)^{n+1}}d\theta\right| \leq O\left(\frac{T(er, f)}{r^{n}}\right) \quad (r \to \infty),$$

(8)
$$\left|\sum_{|z_j|\leq r} \frac{\bar{z}_j^n}{(r^2 - \bar{z}_j z)^n}\right| \leq O\left(\frac{n(r, f=0)}{r^n}\right) \leq O\left(\frac{T(er, f)}{r^n}\right) \quad (r \to \infty).$$

By (6), (7) and (8) we deduce (5), Lemma 1 is thus proved.

LEMMA 2. Let $\theta_j \in [0, 2\pi)$ $(j=1, 2, \dots, p)$ be p distinct real numbers. then for any constant M>0 there exists some integer m>M such that $\cos m\theta_j > \sqrt{3}/2$ $(j=1, 2, \dots, p)$.

This lemma is Lemma 1.1 of paper [6].

LEMMA 3. If the conditions of Ozawa's conjecture are satisfied, then the order of f(z) is finite.

This lemma is a special case of Theorem 2 of paper [3].

3. Proof of the theorems.

Proof of Theorem 1. Let ω be an *m*-th root of unity. Set

$$B_{m-j}(z) = (-1)^{j} \sum_{1 \leq k_1 < \cdots < k_j \leq m} f(\boldsymbol{\omega}^{k_1} z) f(\boldsymbol{\omega}^{k_2} z) \cdots f(\boldsymbol{\omega}^{k_j} z),$$

 $A_{m-j}(z) = B_{m-j}(z^{1/m})$ is obviously an entire function and it is easily seen that

$$f^{m}(z) + B_{m-1}(z)f^{m-1}(z) + \cdots + B_{1}(z)f(z) + B_{0}(z) = 0$$

Thus the entire algebroid function $g(z)=f(z^{1/m})$ satisfies the following equation

$$g^{m} + A_{m-1}(z)g^{m-1} + \cdots + A_{1}(z)g + A_{0}(z) = 0$$
.

Set

(9)
$$\varphi_n(z) = w_n^m + w_n^{m-1} A_{m-1}(z) + \cdots + w_n A_1(z) + A_0(z) .$$

By (3) it is obvious that the zeros $\{a_{nj}\}$ of $\varphi_n(z)$ (which are the zeros of $g(z) - w_n$) all lie in the half plane Im z > 0.

Because $\{w_n\}$ is unbounded, without loss of generality we may assume that $w_n \rightarrow \infty$ as $n \rightarrow \infty$ (otherwise consider its some suitable subsequence). Let n be sufficiently large. It follows from (9) that

$$\log \varphi_n(z) = m \log w_n + \log \left(1 + \frac{A_{m-1}(z)}{w_n} + \dots + \frac{A_0(z)}{w_n^m} \right)$$
$$= m \log w_n + \sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{j} \left(\frac{A_{m-1}(z)}{w_n} + \dots + \frac{A_0(z)}{w_n^m} \right)^j$$

432

$$= m \log w_n + \frac{A_{m-1}(z)}{w_n} + O\left(\frac{1}{w_n^2}\right) \qquad (n \to \infty).$$

By this we obtain that

(10)
$$\lim_{n\to\infty} w_n [\log \varphi_n(z)]^{(q)} = A_{m-1}^{(q)}(z) \qquad (q=1, 2, \cdots).$$

From (2) and (9) it follows that

(11)
$$\lim_{r\to\infty}\frac{T(r,\varphi_n)}{r}=0.$$

By Lemma 1 and (11) we obtain that there exists a sequence $r_k \rightarrow \infty$ such that

(12)
$$(\log \varphi_n(z))' = -\lim_{k \to \infty} \sum_{|a_{nj}| \le r_k} \frac{1}{a_{nj}-z}.$$

Taking $z_0 \in \{z; \text{Im } z < 0\}$ such that $\varphi_n(z_0) \neq 0$, by (12) we deduce that

$$\lim_{k\to\infty}\sum_{|a_{nj}|\leq r}\frac{\operatorname{Im}(a_{nj}-z_0)}{|a_{nj}-z_0|^2}$$

is a finite number. Since $a_{nj} \in \{z; \text{Im}(z) > 0\}$, we have $\text{Im}(a_{nj}-z_0) > |\text{Im}(z_0)| > 0$. From this we know that the following series is convergent

$$\sum_{j=1}^{\infty} \frac{1}{|a_{nj}-z_0|^2} \, .$$

It tells us that the order of $N(r, g(z+z_0)=w_n)$ is not larger than 2 for every w_n . By the second fundamental theorem of algebroid functions we obtain that the order of g(z) is not larger than 2. This implies that the order of $\varphi_n(z)$ is not larger than 2. By Lemma 1 we have

(13)
$$(\log \varphi_n(z))^{(q)} = -(q-1)! \sum_{j=1}^{\infty} \frac{1}{(a_{nj}-z)^q} \quad (q \ge 3).$$

By (10), (12) and (13) we have

(14)
$$A'_{m-1}(z_0) = -\lim_{n \to \infty} w_n \left(\lim_{k \to \infty} \sum_{|a_{nj}| \leq r_k} \frac{1}{a_{nj} - z_0} \right),$$

(15)
$$A_{m-1}^{(q)}(z_0) = -(q-1)! \lim_{n \to \infty} w_n \sum_{j=1}^{\infty} \frac{1}{(a_{nj}-z_0)^q} \quad (q \ge 3).$$

By (14) we obtain that

(16)
$$\lim_{n \to \infty} |w_n| \sum_{j=1}^{\infty} \frac{1}{|a_{nj} - z_0|^2} \leq \frac{|A'_{m-1}(z_0)|}{|\operatorname{Im} z_0|}.$$

Without loss of generality we may assume that

$$0 < |a_{n1}-z_0| \leq |a_{n2}-z_0| \leq \cdots \leq |a_{nj}-z_0| \leq \cdots$$

By (14), (15) and (16) we deduce that for q>2

(17)
$$|A_{m-1}^{(q)}(z_{0})| \leq (q-1)! \lim_{n \to \infty} |w_{n}| \sum_{j=1}^{\infty} \frac{1}{|a_{nj}-z_{0}|^{q}} \leq (q-1)! \lim_{n \to \infty} \frac{|w_{n}|}{|a_{n1}-z_{0}|^{q-2}} \sum_{j=1}^{\infty} \frac{1}{|a_{nj}-z_{0}|^{2}} \leq \frac{(q-1)! |A'_{m-1}(z_{0})|}{|\operatorname{Im}(z_{0})|} \lim_{n \to \infty} \frac{1}{|a_{nj}-z_{0}|^{q-2}}.$$

Since $f(a_{n_1}^{1/m}) = w_n$ and $w_n \to \infty$ as $n \to \infty$, we have $a_{n_1} \to \infty$ as $n \to \infty$. By (17) we deduce that

$$A_{m-1}^{(q)}(z_0) = 0$$
 $(q \ge 3)$.

This proves that $A_{m-1}(z)$ is a polynomial of degree at most two. Thus $B_{m-1}(z)$ is a polynomial of degree at most 2m. Since

$$-B_{m-1}(z)=f(\omega z)+f(\omega^2 z)+\cdots+f(\omega^m z).$$

We easily obtain that $f^{(3m)}(0)=0$.

For any complex number c, set $f_1(z)=f(z+c)$. Since all the roots of equations $f(z)=w_n$ $(n=1, 2, \cdots)$ belong to the set (3), we can easily see that there exists a positive integer N such that all the roots of equations $f_1(z)=w_n$ $(n=1, 2, \cdots)$ belong to the following set

$$\bigcup_{k=0}^{m-1} \left\{ z \, ; \frac{2k}{m} \pi + \frac{\varepsilon}{2} < \arg z < \frac{2k+1}{m} \pi - \frac{\varepsilon}{2} \right\}$$

for any n > N. Since $f_1(z)$ satisfies all the conditions of f(z), by the above discussion we have $f_1^{(3m)}(0)=0$. Hence $f^{(3m)}(c)=0$ for any complex number c. This proves that f(z) is a polynomial. The proof of Theorem 1 is now complete.

Proof of Corollary 1. Set $\arg z=\theta$, $(j=1, 2, \dots, k)$ are the limiting directions of $\bigcup_{n=1}^{\infty} \{z; f(z)=w_n\}$. By Lemma 2 there exists a positive integer $m > \rho_f$ (the order of f(z)) such that $\cos m\theta_j > \sqrt{3}/2$ $(j=1, 2, \dots, k)$. Hence all $e^{i(\theta_j + \pi/2m)}$ $(j=1, 2, \dots, k)$ belong to

(18)
$$\bigcup_{k=0}^{m-1} \left\{ z \, ; \, \frac{2k}{m} \pi + \frac{\pi}{2m} < \arg z < \frac{2k+1}{m} \pi - \frac{\pi}{2m} \right\} \, .$$

It is easily seen that $\arg z = \theta_j - \pi/2m$ $(j=1, 2, \dots, k)$ are the limiting directions of $\bigcup_{n=1}^{\infty} \{z; f(e^{-i(\pi/2m)}z) = w_n\}$. From this we know that there exists a positive integer N such that all the roots of equations $f(e^{-i(\pi/2m)}z) = w_n$ belong to the set (18) for any n > N. By Theorem 1 we deduce that f(z) is a polynomial. Let $f(z) = a_q z^q + \cdots + a_0$. Then the roots of $f(z) = w_n$ should be distributed asymptotically as q roots of $a_q z^q = w_n$ for sufficiently large n. Hence $q \leq k$.

434

The proof of Corollary 1 is now complete.

Proof of Corollary 2. By Lemma 3 we see that f(z) is of finite order. We easily know that the limiting directions of $\bigcup_{n=1}^{\infty} \{z; f(z)=w_n\}$ only may be arg $z = \theta_1, \theta_2, \dots, \theta_{2p}$ which are parallel with L_1, L_2, \dots, L_p respectively. By Corollary 1 we thus complete the proof of Corollary 2.

Proof of Theorem 2. Suppose that F(z)=f(g(z)), where f is a transcendental meromorphic function and g is a transcendental entire function. If $f(w)-A_1$ has infinitely many zeros $\{w_n\}$, then all the roots of $g(z)=w_n$ $(n=1, 2, \cdots)$ belong to the set T_1 . Because the order of F(z) is less than m, we obviously have

$$\lim_{r\to\infty}\frac{T(r,g)}{r^m}=0.$$

By Theorem 1, g(z) is a polynomial. This is a contradiction. Hence $f(w)-A_1$ has only finitely many zeros and so does $f(w)-A_2$. Thus

$$\frac{f(w) - A_1}{f(w) - A_2} = R(w)e^{h(w)},$$

where R(w) is rational, h(w) is entire and nonconstant. It gives us the following equality

(19) $\frac{F(z) - A_1}{F(z) - A_2} = R(g(z))e^{h(g(z))}$

By Pólya's theorem we deduce from (19) that F(z) is of infinite order. This is a contradiction. Hence F(z) is pseudoprime. The proof of Theorem 2 is complete.

Proof of Corollary 3. By the same discussion as in the proof of Corollary 1, we can obtain that F(z) satisfies all the conditions of Theorem 2 for some positive integer *m*. By Theorem 2 we complete the proof of Corollary 3.

Proof of Theorem 3. Suppose that f(z) is of finite order. We choose a sequence $\{w_n\} \in F(f)$ such that $w_n \to \infty$ as $n \to \infty$. Since $F(f) - \bigcup_{j=1}^m \{z; |\arg z - \theta_j| < \delta\}$ is bounded for any $\delta > 0$, and $\bigcup_{n=1}^{\infty} \{z; f(z) = w_n\} \subset F(f)$, we know that the number of elements of $\bigcup_{n=1}^{\infty} \{z; f(z) = w_n\}$ which are outside $\bigcup_{j=1}^m \{z; |\arg z - \theta_j| < \delta\}$ is at most finite. This implies that the limiting directions of the set $\bigcup_{n=1}^{\infty} \{z; f(z) = w_n\}$ only may be $\arg z = \theta_1, \theta_2, \cdots, \theta_m$. By Corollary 1 we deduce that f(z) is a polynomial. This is a contradiction, Theorem 3 is now proved.

Corollary 4 is obtained by Theorem 3.

REFERENCES

- [1] I.N. BAKER AND L.S.O. LIVERPOOL, The value distribution of entire functions of order at most one, Acta Sci. Math. 41 (1979), 3-14.
- [2] I.N. BAKER, The value distribution of composite entire function, Acta. Sci. Math. (Szeged) 32 (1971), 87-90.
- [3] A. EDREI AND W.H.J. FUCHS, On meromorphic functions with regions free of poles and zeros, Acta Math. 108 (1962), 113-145.
- [4] S. KIMURA, On the value distribution of entire functions of order less than one, Kodai Math. Sem. Rep. 28 (1976), 28-32.
- [5] T. KOBAYASHI, Distribution of values of entire functions of lower order less than one, Kodai Math. Sem. Rep. 28 (1976), 33-37.
- [6] J. MILES, On entire function of infinite order with radially distributed zeros. Pacific J. Math. 81 (1979), 131-156.
- [7] M. OZAWA, On the solution of the functional equation $f \circ g = F(z)$, V, Kodai Math. Sem. Rep. 20 (1968), 305-313.
- [8] M. TSUZKI, On the value distribution of entire functions of order less than one, J. College of Liberal Arts. Saitama Univ., 9 (1974), 1-3.

DEPARTMENT OF MATHEMATICS HUAIBEI TEACHERS COLLEGE (supported by coal industry) HUAIBEI, ANHUI PROVINCE P. R. CHINA