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1. Introduction.

In [8] Tsuzki proved the following

THEOREM A. Let f(z) be an entire function of order less than one and let
{wn} be an unbounded sequence. Assume that there exists a real number β such
that 0<β<7r/2 and all the roots of equations

(1) f(z)=wn (72 = 1, 2, -..)

to the sector {z \arg z—π\<β}. Then f(z) is a linear function.

In [4], [5], [1] Kimura, Kobayashi, Baker and Liverpool improved the above
result respectively. In this paper we generalize Theorem A to the following

THEOREM 1. Let f{z) be an entire function and let {wn} be an unbounded
sequence. Suppose that for some positive integer m.

(2) fe2^"-
Assume that there exists some ε>0 such that all the roots of equations (1) belong
to the following set

2km - i f yb

(3) U \z; —
k=o { m m

Then f(z) is a polynomial.

The direction argz=0 is said to be a limiting direction of the complex set
E, if Θ is a cluster point of the set {argz; z^E). As the corollary of Theorem
1 we have

COROLLARY 1. Let f(z) be an entire function of finite order and let \wn}
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be an unbounded sequence. Assume that 0 {z f(z)—wn) has only &(<oo) dis-

tinct limiting directions, then f(z) is a polynomial of degree at most k.

In [7] Ozawa proposed the following conjecture:
Let f(z) be an entire function, {wn} be an unbounded sequence and Lίf L2,

•••, Lp be p distinct straightlines any two of which are not parallel with each
other. Assume that all the roots of equations (1) lie on Lu L2, •••, Lv. Then
f(z) is a polynomial of degree at most 2p.

By Corollary 1 we deduce the following

COROLLARY 2. Ozawa's conjecture is true.

A meromorphic function F(z) is said to have a factorization with left factor
/ and right factor g, if it is expressible in the form f(g(z)), where / is mero-
morphic and g is entire (g may be meromorphic when / is rational). F(z) is
said to be pseudoprime if every factorization of the above form implies that
either / is rational or g is a polynomial. If F(z) is pseudoprime when only
entire factors are considered in the factorization of the above form, it is called
E-pseudoprime. In this paper we prove the following

THEOREM 2. Let F(z) be a meromorphic function of order less than m (a
positive integer). Assume that there exist two complex number Au A2 (finite or
infinite) such that all the roots of equation F(z)—Aj (j=l, 2) belong to the fol-
lowing set

(4) T3=\

for some ε>0 and two real numbers a3 (j=l, 2). Then F(z) is pseudoprime.

In [2] Baker proved the following

THEOREM B. Let F(z) be an entire function of finite order and let there
exist a complex number A such that the set of the roots of F(z)=A has only one
limiting direction. Then F(z) is E-pseudoprime.

A a corollary of Theorem 2 we improve Theorem B to the following

COROLLARY 3. Let F(z) be a meromorphic function of finite order and let
there exist two distinct complex numbers Au A2 (finite or infinite) such that the
set of the roots of F(z)—Aj (j=l, 2) has only finitely many limiting directions.
Then F(z) is pseudoprime.

Let f(z) be an entire function and f,(z)=f(z), f2(z)=f(f(z))f - , fn(z)f -
be its sequence of interates. Regarding the Fatou set F(f) of those points of
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the complex plane where {fn(z)} does not form a normal family, Baker proved
in [2] the following

THEOREM C. Let f{z) be a transcendental entire function and let the set

F(f)-{z; |args|<ί}

beZbounded for every δ>0, then f(z) is of infinite order.

In this paper we improve Theorem C to the following

THEOREM 3. Let f{z) be a transcendental entire function and let θ3 (/=1,
2, •••, m) be m real numbers. Assume that the set

m

F(f)-V{z; largz-θ,\<δ)
. 7 = 1

is bounded for every δ>0, then f{z) is of infinite order.

By Theorem 3 we easily obtain the following

COROLLARY 4. Let f(z) be a transcendental entire function of finite ordery

then F(f) cannot be contained in any finitely many strip regions.

2. Some lemmas.

To prove our theorems, we need the following lemmas.

L E M M A 1. Let f{z) be an entire function with the zeros {zj} and 0 < | ^ i | ^
1*21 ŝ ••• ̂ 1 ^ 1 ^ •••. Then for any positive integer n we have

Proof. Let \z\<r, by Poisson-Jensen formula we have

z, r2—zμ\

Differentiating this n — 1 times we obtain

We also have
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(7) -̂ —\ log I f(reiθ)\—JΞ rΓΊ.d@ — ^ ( n ) (?"~> o o)>

(8)

By (6), (7) and (8) we deduce (5), Lemma 1 is thus proved.

LEMMA 2. Let 0, e[O, 2π) (/=1, 2, •••, p) be p distinct real numbers, then

for any constant M>0 there exists some integer m>M such that cosmθj>VΊ$/2

0 = 1 , 2 , »>,p).

This lemma is Lemma 1.1 of paper [6].

LEMMA 3. // the conditions of Ozawa's conjecture are satisfied, then the order
of f(z) is finite.

This lemma is a special case of Theorem 2 of paper [3].

3. Proof of the theorems.

Proof of Theorem 1. Let ω be an ra-th root of unity. Set

J 3 m - / * ) = ( - l ) ' Σ /(ω*i*)/(ω*«s) - /(ω*>z),

Am-j(z)=Bm-j(z1/m) is obviously an entire function and it is easily seen that

Thus the entire algebroid function g(z)=f(z1/m) satisfies the following equation

£ m + Λ7l_1(2')£m-1+ -. +Aι(z)g+Ao(z)=O.

Set

(9) φn(z)=u>S+wS-1Am-1(z)+ - +wnA1(z)+A0(z).

By (3) it is obvious that the zeros {anj} of φn(z) (which are the zeros of g(z)
— Wn) all lie in the half plane Im^XX

Because {wn\ is unbounded, without loss of generality we may assume that
wn-*oo as n->oo (otherwise consider its some suitable subsequence). Let n be
sufficiently large. It follows from (9) that

log φn{z)=m log ^ + +
wn wn

. 7 = 1
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= m lOg Wn+^^ + θ(-\) (72->oo).
wn \wl'

By this we obtain that

(10) lim wnl\ogφn(z)γ^=Λm^Kz) (q=l, 2, •••).
n-*oo

From (2) and (9) it follows that

(11) l i m Z>^) = o.

By Lemma 1 and (11) we obtain that there exists a sequence r^->oo such that

(12) ^

Taking z^{z',\mz<$} such that <pn(zo)Φθ, by (12) we deduce that

is a finite number. Since a n ; ^ {z Im (z)>0}, we have Im (anj—zo)> \ Im (z0) \ >0.
From this we know that the following series is convergent

It tells us that the order of N(r, g(z+zo)=wn) is not larger than 2 for every
wn. By the second fundamental theorem of algebroid functions we obtain that

the order of g(z) is not larger than 2. This implies that the order of φn(z) is
not larger than 2. By Lemma 1 we have

(13) (log?>n(s))w) = - t o - l ) ! Σ

By (10), (12) and (13) we have

(14) i4i.1(zo)=-lim
n

(15) A£Uzo)=-(q-l)l Urn u;w Σ 7

By (14) we obtain that

(16) l i m | u / n | Σ τ - ϋ^—77

Without loss of generality we may assume that

By (14), (15) and (16) we deduce that for q>2
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(17) \A&

, Σ

= |Im(zβ)l n^\anJ-z0\«->'

Since / ( α ί / Γ ) ^ ^ and wn->oo as n—>oo, we have anl->oo as n-^oo. By (17) we

deduce that

This proves that τ4m_i(z) is a polynomial of degree at most two. Thus Bm-i(z)
is a polynomial of degree at most 2m. Since

-Bm.1(z)=f(ωz)+f(ω2z)+ - +/(ωΛz).

We easily obtain that /<3m>(0)=0.
For any complex number c, set fi(z)—f(z+c). Since all the roots of equa-

tions f{z)—wn ( n = l , 2, •••) belong to the set (3), we can easily see that there
exists a positive integer N such that all the roots of equations fi(z)=wn (w=l,
2, •••) belong to the following set

\z\—π+-7r-<arg^< ^——f
o I m 2 m 2J

for any w>7V. Since /i(^) satisfies all the conditions of f(z), by the above dis-
cussion we have /i ( 3 m )(0)=0. Hence fCZm\c)=0 for any complex number c.
This proves that f(z) is a polynomial. The proof of Theorem 1 is now com-
plete.

Proof of Corollary 1. Set a r g ^ = 0 , (7 = 1, 2, •••, k) are the limiting direc-

tions of 0 {z; f{z)—wn). By Lemma 2 there exists a positive integer m>pf

(the order of /(*)) such that cos mθj>VJ/2 (/=1,2, - , fe). Hence all et<θJ+π'*m>
(7=1, 2, •••, ife) belong to

(18) U \z\— π + ^ r < a r g ^ < π 7 \ .
m 2m m 2m)

It is easily seen that aτgz=θj—π/2m ( / = 1 , 2, •••, k) are the limiting directions
oo

of U {z; f(e~Hπ/2m:>z)=wn}. From this we know that there exists a positive
71 = 1

integer N such that all the roots of equations f(e~Hπ/2m:>z)=wn belong to the
set (18) for any n>N. By Theorem 1 we deduce that f(z) is a polynomial.
Let f(z)=aqz

q-\ + α 0 . Then the roots of f(z)=wn should be distributed
asymptotically as q roots of aqz

q—wn for sufficiently large n. Hence q^k.
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The proof of Corollary 1 is now complete.

Proof of Corollary 2. By Lemma 3 we see that f(z) is of finite order. We

easily know that the limiting directions of U {z; f(z)=wn} only may be argz
71 = 1

= 0i, 02, •••, Θ2V which are parallel with Lu L2f •••, Lp respectively. By Corol-
lary 1 we thus complete the proof of Corollary 2.

Proof of Theorem 2. Suppose that F(z)=f(g(z)), where / is a transcendental
meromorphic function and g is a transcendental entire function. If f(w)—Λ1

has infinitely many zeros {wn}, then all the roots of g{z)—wn (w=l, 2, •••) be-
long to the set TV Because the order of F(z) is less than m, we obviously
have

By Theorem 1, g(z) is a polynomial. This is a contradiction. Hence f(w)—Λ1

has only finitely many zeros and so does f(w)—A2. Thus

f(w)~Λ2

where R{w) is rational, h(w) is entire and noncσnstant. It gives us the follow-
ing equality

(19)

By Pόlya's theorem we deduce from (19) that F{z) is of infinite order. This is
a contradiction. Hence F(z) is pseudoprime. The proof of Theorem 2 is com-
plete.

Proof of Corollary 3. By the same discussion as in the proof of Corollary
1, we can obtain that F(z) satisfies all the conditions of Theorem 2 for some
positive integer m. By Theorem 2 we complete the proof of Corollary 3.

Proof of Theorem 3. Suppose that f{z) is of finite order. We choose a

sequence {wn}^F(f) such that wn->oo as n->oo. Since F(f)— U {z; |argz— θj\

<δ} is bounded for any <5>0, and 0 {z f(z)=wn}aF(f), we know that the
71 = 1

oo 771

number of elements of U {z f{z)—wn) which are outside U {z |argz— θj\<δ}
71 = 1 3 = 1 ^

is at most finite. This implies that the limiting directions of the set 0 {z f{z)

= wn} only may be a r g ^ = ^ i , θ2, •••, 0m. By Corollary 1 we deduce that f{z)
is a polynomial. This is a contradiction, Theorem 3 is now proved.

Corollary 4 is obtained by Theorem 3.
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