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DUP1N HYPERSURFACES WITH SIX

PRINCIPAL CURVATURES

BY REIKO MIYAOKA

In this paper, we give a necessary and sufficient condition for a compact
embedded Dupin hypersurface with six principal curvatures to be Lie equivalent
to an isoparametric hypersurface. The argument goes almost parallel with the
case of four principal curvatures [1], and we assume all the results contained
there, as well as its notations.

Now we state our result.

THEOREM. Let M be a compact embedded Dupin hypersurface in a space
form M{c). If M has six principal curvatures λx>λ2> ••• >λ6 at each point of
M, then M is the Lie-geometric image of an isoparametric hypersurface in a
sphere if and only if the following are satisfied

(i) All functions

are constant on M, where i,j, k, /e{l, 2, •••, 6} are mutually distinct numbers.
(ii) For each λ^leaf L1, there are λs-leaf L\ and λδ4eaf L\ such that L\Γ\L\Φ0
and L\Γ\L\Φ0 for all q^L1, where L\ and L\ denote λ2-leaf and λA-leaf at q,
respectively.

By an elementary calculation, we obtain

LEMMA. Let θ 6 be the symmetric group of degree 6. Then all Ψtjkifs are
constant if and only if

(0 * <;Cl)<rC2)σ(3)σ(4)ί aP <7(l)<r(2)(r(3)σ(5)> ^ σ(l)σC2)σ(3)<τ(6)

are constant on M for some (JG@6.

Therefore, we can replace (i) by (i) ' in the statement of the theorem. This
lemma is implied without calculation if we note that the curvature spheres
correspond to projective points on the projective line obtained by the Legendre
map, and that for fixed three points on the line, the fourth point is determined
by the cross ratio (Remark 4.8 [1]).
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DUPIN HYPERSURFACES 309

For the proof of the theorem, necessity (i) is already shown in Corollary of
[1], and (ii) will be proved in Proposition 5. To prove sufficiency, we briefly
follow §5-9 of [1], adding some remarks.

This time, we denote six principal curvatures by λ>μ>v>p>σ>τ, and the
corresponding orthonormal frame by (ea, efy ely er, eu, βx), where the indices
range so that {^α}=the principal distribution with respect to λ, and so forth.

Actually, each distribution is of dimension m——~—, by the same argument as
D

in [2] . Under the assumption ( i ) or ( i ) ' , every point of M is a critical point

of all Ψ's. So we get

L E M M A 1 (cf. Lemma 5.3 in [1]). At every point of M, we have

-Λjj = Λff-Λ?r = Ajf-Alu = Λ}f-Λ*x

μ—v ίJt~P μ — o μ—τ

v—p v—ϋ v—τ
Aa Aa Aa Aa Aa _ A a

Jίrr Jίuu j±rr -'ίxx J±uu J1xx

p—σ p—τ σ—τ

We define Rf, Rx, Rr, RUy Rx similarly by the corresponding ratios.

Proof, For instance, βα(log[Λ, p μ, i/])=0 implies

(:=/?.).

μ-p v-p

and ej\og[λ, o μ, P ] ) = 0 implies

-Ann Λfj Λuu

μ—σ v—σ
. # p , .

Expressing the numerators by R (Rf) and denominators, R—R' is easily shown.
q. e. d.

LEMMA 2 (cf. Lemma 5.4 of [1]). At a fixed point p of M, we obtain
AGθ(n+l , 2) such that

Λa

ββ(p)=Λ?r(P) for all a, β, ϊ such that α<£[/3]W[r], β£\_γ'].

Proof. If we put 6=0 in (4.7) of [1], (xa, ya)=(0, dRa) is a solution of the
simultaneous equation

Then Ax is obtained in the same way as the proof of Lemma 5.4. q. e. d.

Now, by Remark 5.5 of [1], we can find A2^O(n+l, 2) so that at the
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image point of p by A2

oAu the normal geodesic becomes "common".
Denoting the image of M under A2°Aί by the same letter, we get

LEMMA 3 (cf. Proposition 6.1 of [1]). The normal geodesic γ at p cuts M
at twelve points pi=p, p2, •••, Pi2- Moreover, f is the common normal geodesic at
every point pif and all leaves at pi's are connected as in Figure 1.

Proof. Let pί=pf LpΓ\γ={pu p2), LξΓ\r={pi, PA), LpΓ\γ={plf

Pu]h}, Lσ

pΓ\γ=tPu p1Q} and L£Γ\r={Pu Pi*} TheiUhere exist ί,

pΊ<=p6p8Γ\M, p9(=p8pί0Γ\M and pu^piopizΓλM, since M devides
Sn into two disk bundles over two focal submanifolds consisting of the first
focal points of M in both directions (see the proof of Proposition 6.1 in [1]).

We denote homology cycles of M at f e M obtained by Thorbergsson [3] by

(M; Z2).

Moreover, we denote by B}* the ball such that dBl±=Sl=the hypersphere
centered at the focal point fi with radius cot^λipi), where n{pι) (=the unit
normal vector to M at pt) is the inner (outer, resp.) normal to Bl+ (Bl~, resp.).
Bξ±, Bt, Bf, Bϊ* and B? are similarly defined.

Supposing LlΓ\Ll=0, we may transform M conformally so that fl and fi

are antipodal (see Figure 2). Let x^Y\flp2 be the point sufficiently near to fl
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Fig. 2.

such that dx is a Morse function. We will lead a contradiction by showing
that dx should have thirteen critical points. The minimum point of dx is in
B\~ y and p2 and px are critical points of dx with index m, which correspond to
cycles c\ and c\, respectively. Next, we have Bβ£C\B\-φ0, since the inter-
section number Sfcίf^, cl)Φθ, where tftf^cBlt and cldBΓ. This means
that the critical point with index 2m corresponding to c% should lie in
\P^M\dx(p)^dx(p12)}. In the same way, we can show that Bξ-Γ\B{iΦ0 and
that the critical point with index 2m corresponding to c%λ should lie in
{p<ΞM\dx(p)^dx(pn)+2o,ot-ιλ(pl2)}. Next, we have B^ΓΛB^ΦΦ, because
S W , c&)Φθ, where c§μλdB{t and c^CZB^. Therefore, with Bΐ}nBΓΦ0,
we know that the critical point with index 3m corresponding to c%τ should lie
in {p^M\dx(p)^dx(p10)\. In the same way, B\'Γ\B^Φ0 and BζfΓ\B}tΦ0
show that, the critical point with index 3m corresponding to c\μλ should lie in
{p^M\dx(p)^dx(p10)+2cot-1λ(p10)}. Note that dx(pio)+2cot'1λ(p10)^dx(p9),
since (BU)°Γ\M=0. So all seven critical points above lie in {peAΓ| dx(p)<dx(p8)}.

On the other hand, d-x should have the minimum point pAt critical points
with index m corresponding to c\ and c\ in {p^M\ d-x(p)^d-x(pίί)

Jr2cot~\—τ(p4))},
critical points of index 2m corresponding to cμλ and cf in {p^M\d-x(p)<>d-x(pG)
+2cot-\-τ(p6))}. Thus these five critical points lie in {p^M\dx(p)>dx(p8)}.
Now, since p8 is another critical point of dx, dx should have thirteen critical
points on y, a contradiction.

Thus we get L\Γ\L\—p^ and similarly L\Γ\L\—ph, LlΓ\Ll—ply Ll(ΛL{Q=p9

and Lτ

10Γ\Ll2=Pn. Further argument using tautness shows that these twelve
points are connected each other by certain leaves as in Figure 1. q. e. d.

LEMMA 4. By a Lie transformation i43e0(w + l, 2), we can transform M so
that pi, p2, "• , pi2 (ire the vertices of a regular dodecagon.
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Proof. The conformal transformation which takes L{ and Lλ

Ί to the anti-
podal position is easily found. Now, preserving this relation, we can find a
Lie transformation such that τ(pι)=τ(p2) (see § 7 of [1]). Then the constantness
of cross ratios shows that all principal curvatures at px and p2 coincide.
Moreover, preserving this relation, we can find another Lie transformation such
that τ(ps)=τ(p6) (see Prop. 8.1 of [1], especially the footnote given in its proof).
Thus each of μ> v, τ takes the same value at pz and p6, and so do λ, p
and a by the assumption. Therefore we get Figure 3 where Θ1=cot~ίλ(p1)>

ft^ λ^JPi

θ=—cot~1τ(p2) and Θs=cot~1λ(ps). Let zt be the complex number corresponding
{λ-v)(λ-τ)

to pi where we may assume z1=l. Put Ψ—

Lemma 6.8 of [1],
(λ-τ)(μ-v) '

Then we have by

Since z7=—z1 = — l, z9=—zB and zn=—z6, Ψ(p2)=Ψ(pio) implies

i.e.

Thus we obtain

Therefore, we get through a parallel transformation that

π
"Ϊ2"'

q. e. d.
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PROPOSITION 5. A Lie image of an isoparametric hypersurface satisfies (ii).

Proof. Since the relation (ii) is preserved by Lie transformations, we show
that an isoparametric hypersurface N satisfies (ii). Note that at any point
pi^N, the intersection of the normal geodesic T at pi and N makes a regular
dodecagon as in Figure 4 after a suitable parallel transformation. We will show

that for any L%Γ\L\Φφ. In fact, it is an easy
S(cζλ, cv

4

pστ)Φθ and μ(ς)=μ(pi). Other cases follow similarly.
consequence of

q. e.d.

Now, consider sufficiency. Under the condition (i), we could transform the
original hypersurface M to a hypersurface M satisfying the relation in Figure 4
at the image point of some fixed point of M. Now, when M satisfies (ii), for
a Λ-leaf Lλ, denote by L\ the y-leaf satisfying L%Γ\Lv

λΦ0, q^Lλ. L\ is defined

similarly. Then by the same argument as in the proof of Lemma 9.2 of [1],
we can show Lv

λ=Lv

4 and Lσ

λ=Lσ

6. Thus it is easy to see that TL\~TLV

4=TLσ

6,
where " = " means "be parallel to" with respect to the connection of Sn (see the
proof of Proposition 9.3 of [1]). Note that these facts hold also for Li, L\y L\y

L\ and L\x. Now, we show:

LEMMA 6. The parallel families of tangent spaces of leaves are {TL\, TL%,
TLl, TLl TL%, TLλ

Ί), {TLj, TLf, TL«, TL^ TL*, TL\}, {TLl, TL%9 TL\,
TLV

Ί, TLl TLl}, {TLl TLζ, TL$9 TLξ, TL$, TLU], {TLj, TLσ

Ί, TLl TLl
TL%, TLλ

u) and {TLr

Ί, TL$, TLζ, TL%, TLζu TLh}.
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and T2M=TΊM. Noting that UX\_Z at p12 and U1A.Z2 at pt,

Proof. Put TLi=U, TL?=V, TL\=W, TL{=X, TLϊ=Y, TL\=Z,
TLλ

Ί=Uu TLξ=Vu TL\=Wl9 TL$=XU TL^Ylf TLr

Ί=Zu TLξ=V2, TLl=Z2,
TLξ=V3 and TLl=Zs. From above fact, it follows that TLl=TL%=U,
T L i = T L σ

8 = W , T L i = T L ϊ = Y , T L i = T L ϊ = : U ί f T L \ = T L \ = W X a n d T L \ \

=YL Thus, we have

since T
we get

but since L?ΓΛLξ=0, we have FπF 2={0}, i.e. Uι—U. By the same argument
at />8 and />6, we get TF!=PF and Y1=Y.

Now, consider the hexagon with vertices pu p4, p5, p8, p9, p12. At each
vertex, just note μ, p, r-leaves. Then the total tangent space of these three
leaves is equal to F φ Z φ Z at each vertex. So by an easy argument as above,
using that /O-leaves never intersect each other, we get TLp

b~TLl—Vy TL\—
TLξ=X and TL%=TL%=Z.

Claim. On L\, μ and p are constant and their leaves are totally geodesic.

Since TL^—TLζ=Z, the normal geodesic at q^L\ cuts M as in Figure 5 in
which the definition of gί and q2 is given. Then, S(c%?pστ, c$)Φθ implies

M<7i)^~, and S(cξ}, cγσr)Φθ implies μ{qι)<^. Thus we have μ(qi)=ηg,

Fig. 5.
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from which follows cλ

qr\cζ^aτcB{+r\B^=q so that ^ G I J and L£ = L£i is
totally geodesic by Remark 6.2 of [1]. In the same way, S(cζv

2

μλ, cσ

q

τ)Φθ and

S(c%£, cv

q

μλ)Φθ imply p(tfs)=cot-j|-, and Lg=Lga is totally geodesic.

Now, we get from the assumption (i) that all principal curvatures are
constant on L\. Or, more strongly:

Claim. All leaves through a point of L\ is totally geodesic.

This is because, we have ΛJ^ΞΞO for α<£[/3], where β=f, r, x on L\, then
Lemma 1 implies all Λfβ=O on L\ for any α<£[/3].

Thus we must have TLξ=TLξ=TLl=Z, and similarly, TLl=TLξ=TL?
= V, TL$=TLξ=TLlQ=X (see Remark 6.2 of [1]). This proves Lemma 6.

q. e. d.
Proof of sufficiency. Similar to the proof of Theorem Π in [1],
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