ON JORIS' THEOREM ON DIFFERENTIABILITY OF FUNCTIONS

By Ichiro Amemiya and Kazuo Masuda

1. Introduction.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function. If f^2 , $f^3 \in \mathbb{C}^{\infty}$, does it follow that $f \in \mathbb{C}^{\infty}$? The Inverse Function Theorem does not immediately give the answer. In 1982 H. Joris answered this problem affirmatively by showing the following theorem.

THEOREM 1 (H. Joris [J]). Let n_1, n_2, \dots, n_m be positive integers with g.c.d. $\{n_1, n_2, \dots, n_m\} = 1$. If $f: \mathbf{R}^n \to \mathbf{R}$ is a function such that $f^{n_1} \in C^{\infty}$ for $i = 1, 2, \dots, m$, then $f \in C^{\infty}$.

In the same paper H. Joris proposed the next problem.

PROBLEM. Find the other families of smooth functions $\{\phi_i: \mathbf{R} \rightarrow \mathbf{R} | i=1, 2, \dots, m\}$ having the following property: For any function $f: \mathbf{R}^n \rightarrow \mathbf{R}$, f is smooth if and only if $\phi_i \circ f$ is smooth for $i=1, 2, \dots, m$.

If we assume the continuity of f, then we need only consider the germs at x=0 since the study of differentiability is a local problem. In 1985 J. Duncan, S.G. Krantz and H.R. Parks gave a certain family $\{\phi_i\}$ for continuous f.

THEOREM 2 (J. Duncan, S.G. Krantz and H.R. Parks, [D] Theorem 2). Let $\phi_i: \mathbf{R} \rightarrow \mathbf{R}$ be smooth functions such that $\phi_i(x) = x^{n_i} +$ "higher order terms" near x=0 for $i=1, 2, \cdots, m$ with $g.c.d.\{n_1, n_2, \cdots, n_m\}=1$. Then $\{\phi_i\}$ has the following property: For any continuous function $f: \mathbf{R}^n \rightarrow \mathbf{R}$ with f(0)=0, f is smooth near x=0 if and only if $\phi_i \circ f$ is smooth near x=0 for $i=1, 2, \cdots, m$.

In the present paper, we give a simple proof of Joris' Theorem (§ 2) and the necessary and sufficient condition for $\{\phi_i\}$ to have the property mentioned in Theorem 2 (§ 3 Theorem 3). In Appendix (§ 4), we discuss this condition further, especially for polynomials ϕ_i .

2. Simple proof of Joris' Theorem.

The essential part of our proof is the following algebraic lemma.

Received August 4, 1988

LEMMA 1. Let \mathcal{R} be a ring and \mathcal{S} a subring of \mathcal{R} with the property: (P) if $a \in \mathcal{R}$ and $a^r \in \mathcal{S}$ for every sufficiently large positive integer r, then $a \in \mathcal{S}$. Then the ring $\mathcal{S}[x]$ of formal power series of x with coefficients in \mathcal{S} has the property (P) as a subring of $\mathcal{R}[x]$.

Proof. Suppose $f=\sum_{i=0}^{\infty}a_ix^{k+i}$ for some $k\geq 0$, $a_i\in \mathcal{R}$, and $f^r\in \mathcal{S}[\![x]\!]$ for every large r, then since a_0^r is the coefficient of the lowest term of f^r , $a_0^r\in \mathcal{S}$ and hence by (P) $a_0\in \mathcal{S}$. The set \mathcal{S}' of all the elements a of \mathcal{R} for which $a_0a^m\in \mathcal{S}$ for every positive integer m is a subring of \mathcal{R} including \mathcal{S} , because a_0a^{rm} , $a_0b^{rm}\in \mathcal{S}$ implies $a_0^ra^{rm}b^{rm}\in \mathcal{S}$ for $r\geq 2$ and hence $a_0(ab)^m\in \mathcal{S}$. Now we prove, by induction, $a_n\in \mathcal{S}'$ for every n. Suppose $a_0,a_1,\cdots,a_n\in \mathcal{S}'$, then for $f_n=\sum_{i=0}^na_ix^{k+i}$, $a_0f_n^m\in \mathcal{S}[\![x]\!]$ for every m. So $a_0f^r(f-f_n)^{(r+1)m}=\sum_s const.$ $f^{r+s}a_0f_n^{(r+1)m-s}\in \mathcal{S}[\![x]\!]$ and hence the coefficient $a_0^{r+1}a_{n+1}^{(r+1)m}$ of $x^{kr+(k+n+1)(r+1)m}$ in $a_0f^r(f-f_n)^{(r+1)m}$ is in \mathcal{S} . Therefore, by (P), $a_0a_{n+1}^m\in \mathcal{S}$, that is, $a_{n+1}\in \mathcal{S}'$. Since $a_n\in \mathcal{S}'$ for every n, $a_0f^m\in \mathcal{S}[\![x]\!]$ for every m. Then for $f-a_0x^k=a_1x^{k+1}+\cdots$, $(f-a_0x^k)^r=f^r+\sum_{s=1}^r const.$ $a_s^sf^{r-s}x^ks\in \mathcal{S}[\![x]\!]$. This shows $a_1\in \mathcal{S}$ and repeating the same argument, we have $a_n\in \mathcal{S}$ for every n, that is, $f\in \mathcal{S}[\![x]\!]$, which completes the proof of Lemma 1.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function such that $f^{n_i} \in \mathbb{C}^{\infty}$ for $i=1, 2, \dots, m$ with g. c. d. $\{n_1, n_2, \dots, n_m\} = 1$. We must show that $f \in C^{\infty}$. In [B] J. Boman showed that $f: \mathbb{R}^n \to \mathbb{R}$ is smooth if and only if $f \circ g$ is smooth for every smooth map $g: \mathbb{R}$ $\rightarrow \mathbf{R}^n$. Hence we may assume that n=1, namely $f: \mathbf{R} \rightarrow \mathbf{R}$. Since $g.c.d.\{n_i\}=1$, there exists a positive integer p such that any integer $r \ge p$ is written as r = $\sum \alpha_i n_i$ for suitable non-negative integers α_i and hence $f^r = \prod (f^{n_i})^{\alpha_i}$ is smooth. For any smooth function g(x), the ∞ -jet $j_a g$ of g at x=a, i.e. $\sum_{n=0}^{\infty} (1/n!)g^{(n)}(a)x^n$, gives an element of the formal power series ring R[x]. We say g is flat at a if $j_a g = 0$. It is easy to show that f is smooth near the non-flat point of f^p . In fact, assume that $j_0 f^p \neq 0$. Choose an odd prime number r > p. Then we have $f^p = ax^n + \cdots$ and $f^r = bx^m + \cdots = x^m g$ where g is a smooth function with $g(0) \neq 0$. Since $(f^p)^r = (f^r)^p$ and m = rl for some positive integer l, $f = x^l g^{1/r}$ is smooth near x=0. Let D be the set of all non-flat points of f^p , then D is an open subset of R and f^r is flat at every point in R-D for any $r \ge p$. Now apply Lemma 1 to the ring \mathcal{R} of all continuous functions on D and its subring \mathcal{S} consisting of the restrictions of all continuous functions on R which vanish in R-D. Obviously S has the property (P) in \mathcal{R} . For any smooth function g on D, $\{j_ag | a \in D\}$ can be considered as an element J(g) of $\mathfrak{R}[x]$. Now for our f considered as a smooth function on D, $J(f)^r = J(f^r) \in \mathcal{S}[x]$ for any $r \ge p$. So, by Lemma 1, $J(f) \in \mathcal{S}[x]$, in other words, for every n, the n-th derivative $f^{(n)}$ of f is the restriction of a continuous function on R vanishing in R-D. The rest of the proof is covered by repeated applications of the following simple lemma.

LEMMA 2. Let D be an open set of \mathbf{R} . If f and g are both continuous functions vanishing in $\mathbf{R}-D$, f is differentiable in D, and f'(x)=g(x) for every $x \in D$, then f is differentiable in the whole \mathbf{R} and f'=g.

Proof. For $a \in \mathbf{R} - D$ and $\varepsilon > 0$, there exists δ such that $|a-x| < \delta$ implies $|g(x)| < \varepsilon$. For any b with $|a-b| < \delta$, let c be the point closest to b among points of $\mathbf{R} - D$ between a and b. Then since any point x between b and c belongs to D and $|f'(x)| = |g(x)| < \varepsilon$, we have $|f(a) - f(b)| = |f(c) - f(b)| \le \varepsilon |c - b| \le \varepsilon |a - b|$. So f is differentiable at a and f'(a) = 0. This completes the proof.

3. Condition for $\{\phi_i\}$.

Here we give an answer to Joris' Problem. In the sequel, d(g) denotes, for $g = \sum_{n=0}^{\infty} a_n x^n \in \mathbf{R}[\![x]\!]$, the smallest n such that $a_n \neq 0$, $d(A) = g.c.d.\{d(g) \mid g \in A\}$ for any subset $A \subset \mathbf{R}[\![x]\!]$, and $[j_0 \phi_1, j_0 \phi_2, \cdots, j_0 \phi_m]$ the subalgebra of $\mathbf{R}[\![x]\!]$ generated by $j_0 \phi_i$, $i = 1, 2, \cdots, m$.

THEOREM 3. Let $\phi_i: \mathbf{R} \to \mathbf{R}$ be smooth functions with $\phi_i(0) = 0$ for $i = 1, 2, \dots, m$. Then the following (1) and (2) are equivalent.

- (1) For any continuous function $f: \mathbb{R}^n \to \mathbb{R}$ with f(0)=0, f is smooth near x=0 if and only if $\phi_i \circ f$ is smooth near x=0 for $i=1, 2, \dots, m$.
 - (2) $d([j_0\phi_1, j_0\phi_2, \cdots, j_0\phi_m])=1.$

Proof. As in section 2 we may assume that n=1. We consider two more conditions for $\{\phi_i\}$.

- (3) There exist smooth functions F_j , $j=1,2,\cdots,l$ such that $F_j(\phi_1(x),\phi_2(x),\cdots,\phi_m(x))=x^{n_j}+$ "higher order terms" near x=0 with $g.c.d.\{n_1,n_2,\cdots,n_l\}=1$.
- (4) There exist smooth functions F_1 and F_2 such that $F_j(\phi_1(x), \phi_2(x), \dots, \phi_m(x)) = x^{n_j}$ near x=0 with $g.c.d.\{n_1, n_2\}=1$.

Proof of (2) \Leftrightarrow (3). This follows from E. Borel's theorem which states that for any element $\tilde{g} \in \mathbb{R}[x]$ there exists a smooth function g(x) with $j_0g = \tilde{g}$.

Proof of (3)=(4). This is given in Theorem 2 [D]. Here we give another proof. As in section 2 there exists a positive integer p such that any integer $r \ge p$ is written as $r = \sum \alpha_j n_j$, for some non-negative integers α_j , and hence $\prod F_j(\phi_1(x), \cdots)^{\alpha_j} = x^r + \cdots$. Then, for any odd integer $n \ge p$, there exists $\widetilde{F}(x_1, \cdots, x_m) \in \mathbb{R}[x_1, \cdots, x_m]$ such that $\widetilde{F}(j_0\phi_1, \cdots) = x^n$ in $\mathbb{R}[x]$. By E. Borel's theorem there exist smooth functions F and g_1 such that $j_0g_1=0$ and $F(\phi_1(x), \cdots) = x^n + g_1(x)$ near x=0. We can easily find a smooth function G with $(G \circ F)(\phi_1(x), \cdots) = x^n$. In fact, since $y(x) = (F(\phi_1(x), \cdots))^{1/n}$ is smooth and $j_0y = x$, we have $x = k(y) = y(1 + g_2(y))$ for suitable smooth functions k(y) and $g_2(y)$ with $j_0g_2=0$. Put $G(Y) = k(Y^{1/n})^n$, then $G(Y) = (Y^{1/n}(1 + g_2(Y^{1/n})))^n = Y(1 + g_2(Y^{1/n}))^n$ is smooth since $j_0g_2=0$ and $(G \circ F)(\phi_1(x), \cdots) = G(y(x)^n) = k(y(x))^n = x^n$ which completes the proof.

Proof of (4) \Rightarrow (1). This follows from Joris' Theorem. To prove (1) \Rightarrow (2), we need the following algebraic lemma. $g=\sum a_n x^n \in R[x]$

is said to be *normal* if $a_{d(g)}=1$ and $a_{kd(g)}=0$ for every k>1, and for $g \in \mathbb{R}[x]$ with d(g)>0, [g] denotes the closed subalgebra generated by g, namely $\{\sum_{i=1}^{\infty} c_i g^i | c_i \in \mathbb{R}\}.$

LEMMA 3. For any subalgebra $A \subset \mathbf{R}[x]$ with d(A) > 0 and any positive integer d with $d \mid d(A)$, there exists a unique normal elemen $h \in \mathbf{R}[x]$ such that d(h) = d and $[h] \supset A$.

Proof. First we prove the following statement.

- (i) If d(h)=d and $\llbracket h \rrbracket \cap A \neq \{0\}$ then $\llbracket h \rrbracket \supset A$. Since the coordinate transformation $y=h(x)^{1/d}$ induces the isomorphism $R\llbracket x \rrbracket \cong R\llbracket y \rrbracket$ and h corresponds to y^d , we may assume that $h=x^d$. If there exist elements $g=x^{rd}+\cdots+cx^{rd+a}+\cdots \in A$ with $c\neq 0$ and $a \nmid d$, we can choose g having the smallest a in the above representation. Take any $k=x^{sd}+\cdots \in \llbracket x^d \rrbracket \cap A \neq \{0\}$, then $g^s-k^r=bx^{td}+\cdots+scx^{srd+a}+\cdots \in A$ and srd+a-td < a contradicting the choice of g. This completes the proof of (i). As a corollary we have
- (ii) If $d(h)=d(h_1)>0$ and $\llbracket h \rrbracket \cap \llbracket h_1 \rrbracket \neq \{0\}$ then $\llbracket h \rrbracket = \llbracket h_1 \rrbracket$. Now to show the existence of h in the lemma, choose any $g=x^{rd}+\cdots \in A$ and put $h_1=g^{1/r}=x^d+\cdots$, then $\llbracket h_1 \rrbracket \cap A\ni g$ and hence $\llbracket h_1 \rrbracket \cap A$ by (i). We can easily find real numbers c_i with $c_1=1$ such that $h=\sum_{i=1}^\infty c_ih_i^i$ is normal. We have also $\llbracket h \rrbracket = \llbracket h_1 \rrbracket \cap A$ by (ii). To prove the uniqueness of h, let h_2 be any element satisfying the conditions of the lemma, then $\llbracket h \rrbracket = \llbracket h_2 \rrbracket$ by (ii). If $h-h_2 \neq 0$ then $d \nmid d(h-h_2)$ contradicting the fact $h-h_2\in \llbracket h \rrbracket$. This completes the proof of Lemma 3.

Proof of (1)=(2). Suppose $d=d(\lceil j_0\phi_1,\cdots\rceil)>1$. By Lemma 3 there exist $\tilde{h}=x^d+\cdots$ and $\tilde{F}_i\in \pmb{R}[\![x]\!]$ such that $j_0\phi_i=\tilde{F}_i(\tilde{h})$ for $i=1,2,\cdots,m$. By E. Borel's theorem we have $\phi_i(x)=F_i(h(x))+g_i(x)$ for suitable smooth functions F_i , h,g_i with $j_0g_i=0$. So it is sufficient to show that there exists a non-smooth function f for which $h\circ f$ and $g_i\circ f$ are smooth. Since $h(x)=x^d(1+\cdots)=(x+\cdots)^d$, we can find a smooth function f with f is even. Then f is not smooth and f if f is smooth since f is f is smooth since f is even. This contradicts (1). So the proof of Theorem 3 is completed.

4. Appendix.

In this section we discuss about the algorithm of computing $d(\llbracket j_0\phi_1,\cdots \rrbracket)$ by use of jets $j_0\phi_i$. Let g be an element of $R\llbracket x\rrbracket$ with d(g)>0 and d a positive integer with $d\mid d(g)$. Then, applying Lemma 3 to the subalgebra generated by g, we can find a unique normal element $h=h(g,d)\in R\llbracket x\rrbracket$ such that d(h)=d and g=F(h) for some $F\in R\llbracket x\rrbracket$. Note that each coefficient of h(g,d) is given

by some polynomial of $a_n/a_{d(g)}$ where $g=\sum a_nx^n$. Now, put $A=[j_0\phi_1,\cdots]$, $d_A=d(A)$ and $j_0\phi_i=\sum_{j=1}^{l_1}a_{i,j}x^{n_{i,j}}$ where $a_{i,j}\neq 0$, $l_i\leq \infty$ and $n_{i,1}< n_{i,2}<\cdots$ for $i=1,2,\cdots,m$. It is clear that $g.c.d.\{n_{i,j}|i,j\}|d_A$ and $d_A|g.c.d.\{n_{i,1}|i\}$. In the finite number of integers d such that $d|g.c.d.\{n_{i,1}|i\}$, d_A is characterized by the following proposition.

PROPOSITION 1. For any positive integer d with $d \mid g.c.d.\{n_{i1} \mid i\}$, we have $d \mid d_A$ if and only if $h(j_0\phi_1, d) = \cdots = h(j_0\phi_m, d)$.

Proof. Assume that $d_A=rd$ for some r. By Lemma 3, $\llbracket h_A \rrbracket \supset A$ for some h_A with $d(h_A)=rd$ and hence $j_0\phi_i=F_i(h_A)$ for some F_i . Let $h=h(h_A,d)$, then $h_A=F(h)$ for some F and hence $j_0\phi_i=(F_i\circ F)(h)$. So by the uniqueness of $h(j_0\phi_i,d)$, we have $h(j_0\phi_i,d)=h$ as desired. Conversely assume that $h(j_0\phi_i,d)=\cdots=h$. Then $\llbracket h \rrbracket \ni j_0\phi_i$ and hence $\llbracket h \rrbracket \supset A$ which implies $d \mid d_A$.

The following corollary corresponds to Theorem 3[D].

COROLLARY. If $j_0\phi_1=x^{n_{11}}$ then $d_A=g.c.d.\{n_{ij}|i,j\}$.

Proof. We have $h(j_0\phi_1, d_A) = \cdots = h$ and $j_0\phi_i = F_i(h)$ for suitable $F_i \in \mathbf{R}[x]$. It follows from $j_0\phi_1 = x^{n_{11}} = F_1(h)$ that $h = x^{d_A}$ and from $j_0\phi_i = F_i(x^{d_A})$, $d_A|n_{i,j}$ which implies $d_A = g.c.d.\{n_{i,j}|i,j\}$.

Proposition 1 gives an algorithm of computing d_A by use of jets $j_0\phi_i$, but it needs an infinite number of procedures to check whether $h(j_0\phi_i, d) = \cdots = h(j_0\phi_m, d)$ or not even though each ϕ_i is a polynomial. The following Proposition 2 gives a finite algorithm of computing d_A for polynomials ϕ_i .

- LEMMA 4. (i) Let \mathcal{M} be the maximal ideal of $\mathbb{C}[x]$ generated by x and $\Phi: \mathcal{M} \rightarrow \mathbb{C}[x]^m$ a map given by $\Phi(g) = (j_0 \phi_1 \circ g, \cdots)$, then Φ is d_A to 1 map, namely for any $g \neq 0$ there exist exactly d_A elements k such that $\Phi(k) = \Phi(g)$.
- (ii) Suppose that every $\phi_i(x)$ is analytic near x=0. Let $\Phi: U \to \mathbb{C}^m$ be a map given by $\Phi(x)=(\phi_1(x), \cdots)$ for some neighbourhood U of 0 in \mathbb{C} , then Φ is d_A to 1 map near x=0.
- *Proof.* (i) By Lemma 3, $\llbracket h \rrbracket \supset A$ for some h with $d(h)=d_A=d$. By the coordinate transformation we may assume that $h=x^d$ and hence $j_0\phi_i=\sum_j a_{i,j}x^{jd}$ for suitable $a_{i,j}$. By the definition of d_A there exists a positive integer p such that for any integer $r \ge p$ we can find $f \in A$ with d(f)=rd and hence $F \in \mathbb{R}[x_1, \cdots, x_m]$ with $F(j_0\phi_1, \cdots, j_0\phi_m)=x^{rd}$. Therefore $\Phi(k)=\Phi(g)$ if and only if $k^d=g^d$, that is, $k=\varepsilon_d^n g$ for $\varepsilon_d=\exp(2\pi i/d)$ and $n=1, 2, \cdots, d$.
- (ii) Suppose $\Phi(x) = \Phi(y)$. Then $\phi_i(x) = a_i x^{r_i d} (1 + \cdots) = a_i y^{r_i d} (1 + \cdots)$ and $y(1 + \cdots) = \varepsilon_{r_i d}^n x (1 + \cdots)$ and hence $y = \varepsilon_{r_i d}^n x + \cdots = y_{in}(x)$. Since $y_{in}(x)$ is holomorphic near x = 0, it follows from (i) that the number of small solutions y of $\Phi(y) = \Phi(x)$ is d_A for small $x \neq 0$.

COROLLARY. The following condition for $\{\phi_i\}$ is equivalent to (1) in Theorem 1.

(5) The map $\Phi(g)=(j_0\phi_1\circ g, \cdots): \mathcal{M}\to \mathbb{C}[x]^m$ is injective.

PROPOSITION 2. Suppose that each ϕ_i is a polynomial. Let $\phi(x, y)$ be the greatest common divisor of $\{\phi_i(x)-\phi_i(y)|i=1, 2, \dots, m\}$ in $\mathbf{R}[x, y]$, then $d([j_0\phi_1, j_0\phi_2, \dots, j_0\phi_m])=d(\phi(x, 0))$.

Proof. $\phi(x, y)$ is obtained by using Euclidean algorithm with respect to polynomials of x whose coefficients are rational functions of y. Then $\phi(x, a)$ is the greatest common divisor of $\{\phi_i(x)-\phi_i(a)|i\}$ in R[x] for any real number a with finite exceptions. Since the coefficient of the highest order term of $\phi(x, a)$ is independent of a, the solutions x of $\phi(x, a)=0$ depend continuously on a. So $d(\phi(x, 0))$ is equal to the number of solutions x of $\phi(x, a)=0$ such that $x\to 0$ as $a\to 0$. This number is equal to the number of common solutions x of $\phi_i(x)-\phi_i(a)=0$, $i=1,2,\cdots,m$, such that $x\to 0$ as $a\to 0$. By Lemma 4 (ii) we have $d(\phi(x, 0))=d_A$.

REFERENCES

- [B] JAN BOMAN, Differentiability of a function and of its compositions with functions of one variable, Math. Scand. 20 (1967), 249-268.
- [D] JOHN DUNCAN, STEVEN, G. KRANTZ AND HAROLD R. PARKS, Nonlinear conditions for differentiability of functions, J. Analyse Math. 45 (1985), 46-68.
- [J] HENRI JORIS, Une C[∞]-application non-immersive qui possède la propriété universelle des immersions, Arch. Math. 39 (1982), 269-277.

Saitama Medical School Kawakado, Moroyama Saitama 350-04, Japan

DEPARTMENT OF MATHEMATICS TOKYO INSTITUTE OF TECHNOLOGY OH-OKAYAMA, MEGURO-KU TOKYO 152, JAPAN