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ON JORIS’ THEOREM ON DIFFERENTIABILITY
OF FUNCTIONS

By ICHIRO AMEMIYA AND KAZUO MASUDA

1. Introduction.

Let f: R"—>R be a function. If f?, f’eC=, does it follow that feC=?
The Inverse Function Theorem does not immediately give the answer. In 1982
H. Joris answered this problem affirmatively by showing the following theorem.

THEOREM 1 (H. Joris [J]). Let ny, n,, -+, nn be positive integers with g.c.d.
{ny, na, -, nut=1. If f: R*>R is a function such that f"=C> for i=1,2,---,m,
then feC=>.

In the same paper H. Joris proposed the next problem.

PROBLEM. Find the other families of smooth functions {¢;: R—R|i=1,2, -, m}
having the following property: For any function f:R"—R, f is smooth if and
only if @i f is smooth for i=1,2, -, m.

If we assume the continuity of f, then we need only consider the germs at
x=0 since the study of differentiability is a local problem. In 1985 J. Duncan,
S.G. Krantz and H.R. Parks gave a certain family {@:} for continuous f.

THEOREM 2 (J. Duncan, S.G. Krantz and H.R. Parks, [D] Theorem 2). Let
¢:: R—R be smooth functions such that ¢,(x)=x"+ “higher order terms” near
x=0 for i=1,2, -, m with g.c.d.{ny, ny, ---, nu}=1. Then {¢;} has the follow-
ing property: For any continuous function f:R"—R with f(0)=0, f is smooth
near x=0 if and only if ¢;°f is smooth near x=0 for i=1, 2, -, m.

In the present paper, we give a simple proof of Joris’ Theorem (§ 2) and the
necessary and sufficient condition for {¢;} to have the property mentioned in
Theorem 2 (§3 Theorem 3). In Appendix (§ 4), we discuss this condition further,
especially for polynomials ¢..

2. Simple proof of Joris’ Theorem.

The essential part of our proof is the following algebraic lemma.
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LEMMA 1. Let R be a ring and S a subring of R with the property:

(P) if a=R and a’€S for every sufficiently large positive integer r, then
aE€S. Then the ring S[x] of formal power series of x with coefficients in S has
the property (P) as a subring of R[x].

Proof. Suppose f=37,a,x** for some £=>0, a;€ R, and f=S[x] for
every large r, then since aj is the coefficient of the lowest term of f7, a;S
and hence by (P) a,&S. The set S’ of all the elements a of ® for which a,a™
€S for every positive integer m is a subring of ® including S, because a,a™,
ab"™ S implies aja™™b™™ S for ¥=2 and hence aq(ab)"=S. Now we prove, by
induction, a,=S8’ for every n. Suppose a,, a;, -+, a,S’, then for f,=31",a,x**,
a,fmreS[x] for every m. So aof(f—fn) P™=3],const. fT+ia, fTP™ = S[x]
and hence the coefficient a}*'a{fP™ of x#r+k+r+DT+L™ jn g F7(f— f YT+D™ g in
S. Therefore, by (P), aa, S, that is, a,+,=S’. Since a,&8" for every n,
a,f"=S[x] for every m. Then for f—aux*=ax**'+4 -, (f—axx*=f"+
Syr_.const.ad fT*x**=S[x]. This shows a,=S and repeating the same argument,
we have a,=S for every n, that is, f&S[x], which completes the proof of
Lemma 1.

Let f: R*—~R be a function such that f»C* for /=1, 2, ---, m with g.c.d.
{ny, ns, -+, nx}=1. We must show that feC=. In [B] J. Boman showed that
f:R"—>R is smooth if and only if f-g is smooth for every smooth map g: R
—R". Hence we may assume that n=1, namely f: R—R. Since g.c.d.{n;}=1,
there exists a positive integer p such that any integer »=p is written as r=
Sa;n, for suitable non-negative integers a, and hence f"=II(f"™)% is smooth.
For any smooth function g(x), the co-jet j,g of g at x=a, i.e. J5-(1/n g™ (a)x™",
gives an element of the formal power series ring R[x]. We say g is flat at a
if j,g=0. It is easy to show that f is smooth near the non-flat point of f2.
In fact, assume that j7,f?#0. Choose an odd prime number »>p. Then we
have fP?=ax"+ --- and fr=bx™+ --- =x™g where g is a smooth function with
g(0)=0. Since (f?)y'=(f")? and m=rl for some positive integer /, f=x'g"" is
smooth near x=0. Let D be the set of all non-flat points of f?, then D is an
open subset of R and f7 is flat at every point in R—D for any »=p. Now
apply Lemma 1 to the ring ® of all continuous functions on D and its subring
S consisting of the restrictions of all continuous functions on R which vanish
in R—D. Obviously S has the property (P) in K. For any smooth function g
on D, {j.glae D} can be considered as an element J(g) of ®[x]. Now for our
f considered as a smooth function on D, J(f)'=J(f)eS[x] for any »=p. So,
by Lemma 1, J(f)eS[x], in other words, for every n, the n-th derivative f™
of f is the restriction of a continuous function on R vanishing in R—D. The
rest of the proof is covered by repeated applications of the following simple
lemma.

LEMMA 2. Let D be an open set of R. If f and g are both continuous func-
tions vamshing itn R—D, f 1s differentiable in D, and f'(x)=g(x) for every x&D,
then f 1s differentiable in the whole R and f'=g.
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Proof. For ac R—D and £>0, there exists é such that |a—x|<d implies
|g(x)|<e. For any b with |a—b]|<d, let ¢ be the point closest to b among
points of R—D between a and b. Then since any point x between b and ¢
belongs to D and | f'(x)| =]|g(x)| <e, we have | f(a)— f(b)| =] f(e)—f(b)| Ze|c—b|
<ela—b|. So f is differentiable at ¢ and f’(a)=0. This completes the proof.

3. Condition for {¢;}.

Here we give an answer to Joris’ Problem. In the sequel, d(g) denotes, for
g=>1%_0a,x"=R[x], the smallest n such that a,#0, d(A)=g.c.d.{d(g)| g A}
for any subset ACR[x], and [jo@i, joPs, =+, JoPm] the subalgebra of R[x]
generated by jo¢;, i=1, 2, -+, m.

THEOREM 3. Let ¢;: R—R be smooth functions with ¢,(0)=0 for i=1,2,---,m.
Then the following (1) and (2) are equivalent.

(1) For any continuous function f: R"—R with f(0)=0, f is smooth near
x=0 if and only if Q.o f is smooth near x=0 for i=1, 2, ---, m.

@) d(lje@s, o2, -, Jopm])=1.

Proof. As in section 2 we may assume that n=1. We consider two more
conditions for {¢;}.

(3) There exist smooth functions F,, j=1,2,---,1 such that F {@.(x), §o(x), -,
G n(x)=x"+ “higher order terms” near x=0 with g.c.d.{n,, ns, ---, n;} =1.

(4) There exist smooth functions F, and F, such that F {¢.(x), @o(x), -+, dm(x))
=x" near x=0 with g.c.d.{n,, n,}=1.

Proof of (2)=(3). This follows from E. Borel’s theorem which states that
for any element §=R[x] there exists a smooth function g(x) with j,g=4g.

Proof of (3)=(4). This is given in Theorem 2 [D]. Here we give another
proof. As in section 2 there exists a positive integer p such that any integer
r=p is written as r=3la;n, for some non-negative integers «, and hence
IIF ($i(x), --)*9=x"+--. Then, for any odd integer n=p, there exists
F(xy, -+, xn)ER[%1, -, xn] such that F(j,é,, ---)=x" in R[x]. By E. Borel’s
theorem there exist smooth functions F' and g, such that j,g;=0 and F(@(x), )
=x"+g,(x) near x=0. We can easily find a smooth function G with (G-F)
(¢:(x), - )=x". In fact, since y(x)=(F(@i(x), ---)"/" is smooth and j,y=x, we
have x=k(y)=y(14g,(y)) for suitable smooth functions k(y) and g.(y) with
708:=0. Put G(Y)=~k(Y*™)", then G(Y)=(Y"*(14g(Y'™")*=Y(1+gY"™)" is
smooth since 7,g2,=0 and (G-F)¢.(x), ---)=G(y(x)")=k(y(x))"=x" which com-
pletes the proof.

Proof of (4)=(1). This follows from Joris’ Theorem.
To prove (1)=(2), we need the following algebraic lemma. g=3a,x"R[x]
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is said to be normal if az,»=1 and a,qc,»,=0 for every £>1, and for g R[x]
with d(g)>0, [g] denotes the closed subalgebra generated by g, namely
{Zicig'lci R}

LEMMA 3. For any subalgebra ACR[x] with d(A)>0 and any positive in-
teger d with d|d(A), there exists a umque normal elemen heR[x] such that
d(h)=d and [R]DA.

Proof. First we prove the following statement.

(i) If d(h)=d and [A]NA=#{0} then [R]DA.
Since the coordinate transformation y=~h(x)"¢ induces the isomorphism R[x]=
R[y] and h corresponds to y¢, we may assume that hA=x? If there exist
elements g=x"%+ --- +¢cx™%*%+ ... €A with ¢#0 and a/fd, we can choose g
having the smallest ¢ in the above representation. Take any k=x%¢+ ---
[x¢INA=+{0}, then g*—k"=bx'¢+ --- +scx*"¢**+ -.- €A and srd+a—td<<a con-
tradicting the choice of g. This completes the proof of (i). As a corollary
we have :

(i) If d(h)=d(h,)>0 and [AIN[A,]+* {0} then [A]=[h,].
Now to show the existence of A in the lemma, choose any g=x"¢+ --- €A and
put h,=g'"=x%+ .-, then [h,]JNA>g and hence [h,]JDA by (i). We can
easily find real numbers ¢, with ¢;=1 such that A=3)2,¢;h? is normal. We
have also [A]=[h,]DA by (ii). To prove the uniqueness of h, let h, be any
element satisfying the conditions of the lemma, then [A]=[hA,] by (ii). If h—h.
+0 then d ) d(h—h,) contradicting the fact A—h,=[h]. This completes the
proof of Lemma 3.

Proof of (1)=(2). Suppose d=d([jop:, ---1)>1. By Lemma 3 there exist
F=x%+ - and F,=R[x] such that jo¢i=ﬁ‘i(ﬁ) for ;=1, 2, ---, m. By E. Borel’s
theorem we have ¢;(x)=F(h(x))+gi(x) for suitable smooth functions F,, &, g,
with j,g,=0. So it is sufficient to show that there exists a non-smooth func-
tion f for which hef and g;-f are smooth. Since h(x)=x%1+ ---)=(x+-)¢,
we can find a smooth function k2 with A(k(x))=x% Now we put f(x)=k(x'%)
if d is odd and f(x)=~F(|x]|) if d is even. Then f is not smooth and g;of is
smooth since j,g,=0. Moreover h-f is smooth, for A(f(x))=x if d is odd and
h(f(x))=x? if d is even. This contradicts (1). So the proof of Theorem 3 is
completed.

4. Appendix.

In this section we discuss about the algorithm of computing d([ /@, --]) by
use of jets jo@;. Let g be an element of R[x] with d(g)>0 and d a positive
integer with d|d(g). Then, applying Lemma 3 to the subalgebra generated by
g, we can find a unique normal element A=Ah(g, d)R[x] such that d(h)=d
and g=F(h) for some FER[x]. Note that each coefficient of A(g, d) is given
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by some polynomial of a,/aq, where g=3la,x". Now, put A=[j@i, ---],
d,=d(A) and j.,¢,~=2§‘=1al,x"w where a,;#0, [,<oo and n;,<n;< - for i=
1,2, -,m. Itis clear that g.c.d.{n,ls, j}|ds and d4|g.c.d.{n,|i}. In the
finite number of integers d such that d|g.c.d.{n:;|i}, d4is characterized by the
following proposition.

PROPOSITION 1. For any positive integer d with d|g.c.d.{n;|i}, we have
d|dy if and only if h(jep:, d)= - =h(jobn, d).

Proof. Assume that d =rd for some r. By Lemma 3, [h DA for some
h, with d(h,)=rd and hence j,p,=F;(h,) for some F,. Let h=h(h,, d), then
hy=F(h) for some F and hence jup;=(F;°F)h). So by the uniqueness of
h(jop:, d), we have h(jop;, d)=h as desired. Conversely assume that h(j,@,, d)
=--=h. Then [h]>j.$: and hence [A]DA which implies d|d,.

The following corollary corresponds to Theorem 3[D].

COROLLARY. If jog,=x"11 then dy=g.c.d.{n,,li, j}.

Proof. We have h(j,p:, do)=--- =h and j,@¢,=F;(h) for suitable F,=R[x].
It follows from j,¢,=x"11=F,(h) that h=x%4 and from j,¢,=F;(x%4), daln,
which implies d =g.c.d.{n,l7, j}.

Proposition 1 gives an algorithm of computing d, by use of jets j,@;, but it
needs an infinite number of procedures to check whether h(jop,, d)=- =
hjopm, d) or not even though each ¢, is a polynomial. The following Proposi-
tion 2 gives a finite algorithm of computing d, for polynomials ¢,.

LEMMA 4. (i) Let M be the maximal ideal of C[x] generated by x and
@ : H—C[x]™ a map given by O(g)=(joP:°g, ), then @ is d4 to 1 map, namely
for any g+0 there exist exactly d, elements k such that @(k)=(g).

(ii) Suppose that every ¢.(x) is analytic near x=0. Let @ :U—~C™ be a map
given by O(x)=(¢i(x), ) for some neighbourhood U of 0 in C, then @ is d4 to
1 map near x=0.

Proof. (i) By Lemma 3, [h]DA for some h with d(h)=d,=d. By the
coordinate transformation we may assume that h=x? and hence j,;=33;a.,x7¢
for suitable a,,. By the definition of d, there exists a positive integer p such
that for any integer r=p we can find f€A with d{(f)=»d and hence F&
Rlxi, -, xwn] With F(JoP1, -, 1o@n)=x7¢. Therefore @(k)=@(g) if and only if
ki=g? that is, k=clg for e;=exp(2mx:/d) and n=1, 2, ---, d.

(ii) Suppose @(x)=@(y). Then ¢, (x)=a,x %1+ --)=a,y"%(1+ ---) and
Y1+ )=elax(1+ ) and hence y=elax+ -+ =y.(x). Since y,.(x) is holo-
morphic near x=0, it follows from (i) that the number of small solutions v of
D(y)=D(x) is d4 for small x=0.

COROLLARY. The following condition for {¢.} is equivalent to (1) in Theorem 1.
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(5) The map P(g)=(oPi°g, =) : H—C[x]™ is injective.

PROPOSITION 2. Suppose that each ¢; is a polynomial. Let ¢(x, y) be the
greatest common divisor of {@(x)—¢(y)|i=1, 2, -, m} in R[x, y], then d([j.,,
j0¢2y Tty J0¢m]):d(¢(x: O))’

Proof. ¢(x, y) is obtained by using Euclidean algorithm with respect to
polynomials of x whose coefficients are rational functions of y. Then ¢(x, a)
is the greatest common divisor of {¢;(x)—¢i(a)|7} in R[x] for any real number
a with finite exceptions. Since the coefficient of the highest order term of
¢(x, a) is independent of a, the solutions x of @(x, a)=0 depend continuously on
a. So d(¢(x,0)) is equal to the number of solutions x of ¢(x, a)=0 such that
x—0 as a—0. This number is equal to the number of common solutions x of
d:i(x)—¢«a)=0, =1, 2, -, m, such that x—0 as a—0. By Lemma 4 (ii) we
have d(¢(x, 0)=d4.
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