SELF-MAPS OF SPHERE BUNDLES II

By J. Lyle Noakes

§1. Introduction.

Let E be an oriented orthogonal q-sphere bundle over a connected finite CW-complex B. A fibre-preserving map $f: E \rightarrow E$ is said to have degree m when its restriction to some fibre is a map of degree m in the familiar sense; because B is path-connected it makes no difference which fibre we choose. Given E and an integer m is there a fibre-preserving map $f: E \rightarrow E$ of degree m? This question was put to me in 1971 by I.M. James, and in [2] there are some answers in fairly general situations. In the present paper I consider in more detail the special case where B is a sphere S^{r+1} . We first make some simple observations.

The identity map has degree 1, and when q is even E always admits a fibre-preserving map of degree -1; this is because the antipodal map $a: S^q \rightarrow S^q$ commutes with the action of the group SO(q+1) of rotations in \mathbb{R}^{q+1} and therefore extends to a fibre-preserving map: it would be interesting to know what happens when E is a general oriented q-spherical fibration with q even. If E admits fibre-preserving maps of degrees m, n then their composite is a fibre-preserving map of degrees mn. Apart from this, nothing is very obvious.

Let $\pi: E \to B$ be the projection. Then when E has a cross-section s the composite $s\pi: E \to E$ is a fibre-preserving map of degree 0. In [2] the converse is proved, namely that if E admits a fibre-preserving map of degree 0 then E has a cross-section. (It is not the case that every fibre-preserving map $f: E \to E$ of degree 0 is homotopic through fibre-preserving maps to one of the form $s\pi$ for some cross-section s, but if B is covered by k contractible open subsets then f^k is homotopic through fibre-preserving maps to $s\pi$ for some cross-section s.) Some of the main results of [2] describe the structure of the set A(E) of integers m such that E admits a fibre-preserving map of degree m. In the present paper we prove some results that allow us to estimate A(E) when $B=S^{r+1}$.

If E^* is a fibre bundle over S^{r+1} with fibre F^* let $o(E^*)$ be the obstruction to a cross-section of E^* , as defined in §2 below. From now on let $B=S^{r+1}$. In §2 we show that a necessary condition for there to be a fibre-preserving map $E \rightarrow E$ of degree *m* is that $\phi_m o(E) = o(E)$. Here $\phi_m : \pi_r S^q \rightarrow \pi_r S^q$ is induced by a map of degree *m* on S^q .

Received February 23, 1988

THEOREM 1. Let q be odd. If there is a fibre-preserving map $E \rightarrow E$ of degree m then

- (i) $\phi_{1-m}o(E) = 0$ and
- (ii) $(m(m-1)/2)[\epsilon_{q+1}, \epsilon_{q+1}] \circ \sum_{*}^{q+1} o(E) = 0.$

Here [,] is the J.H.C. Whitehead product, and \sum_* is the suspension homomorphism. Theorem 1 is proved as (4.1), (4.3) in §4.

Our methods can also be used to give conditions sufficient for the existence of a fibre-preserving map $E \rightarrow E$ of degree *m*. In [1] Part II, §5 some calculations are carried out and, for example, necessary and sufficient conditions are given when *q* is odd and $r \leq q+2$.

In §5 of the present paper we consider the special cases where q=1, 3, 7, and prove that the necessary conditions given in Theorem 1 are then sufficient. When q=1 condition (ii) of Theorem 1 is satisfied trivially. When q=3 we obtain as (5.3), (5.5)

COROLLARY 1. Let q=3. Then there is a fibre-preserving map $E \rightarrow E$ of degree $m \Leftrightarrow both$

- (i) (m-1)o(E)=0 and
- (ii) $(m(m-1)/2)a_4 \circ \sum_{*}^{4}o(E) = 0$

where $a_4 \in \pi_7 S^4$ is described explicitly in §5. In an interesting paper [5] Seiya Sasao considers a related problem, and in §6 of the present paper we compare Corollary 1 with Sasao's results.

When q is even it may be the case that E has a cross-section and yet there exist no fibre-preserving maps $E \rightarrow E$ of some degrees m: this cannot happen when q is odd. When E has a cross-section we can write E as the fibre suspension of an oriented orthogonal q-1-sphere bundle E', and in §7 we prove

THEOREM 2. Let q be even and suppose that E has a cross-section. Then there is a fibre-preserving map $E \rightarrow E$ of degree $m \Leftrightarrow$

$$(m(m-1)/2)[\iota_q, \iota_q] \circ \sum_{*}^q o(E') \in [m\iota_q, \pi_{r+1}S^q]$$

By [9] 3.59 we have $[\iota_q, \iota_q] \circ \sum_{*}^q o(E') = [\iota_q, \sum_{*} o(E')]$ and so we have

COROLLARY 2. Let q be even and suppose that E has a cross-section. Then there are fibre-preserving maps $E \rightarrow E$ of all odd degrees, and of all degrees $m \equiv 0 \mod 4$.

§2. The Obstruction to a Fibre-Preserving Map—Generalities.

It is known that a fibre-preserving map of fibre bundles corresponds naturally to a cross-section of a bundle whose fibre is a function space. This point of view is traceable to I. M. James and was taken in [2] to prove results about

380

the structure of A(E); it also turns out to be helpful when doing calculations.

Let G_m^q be the function space of maps $f: S^q \to S^q$ of degree *m*, with the compact-open topology. We define a left action * of the group SO(q+1) of rotations on G_m^q by $(A*f)(x) = A \cdot (f(A^{-1} \cdot x))$. Here \cdot is the standard action of SO(q+1) on S^q . Let *E* be an oriented orthogonal *q*-sphere bundle over *B*, and let *P* be its associated principal SO(q+1)-bundle. Let E_m be the bundle PG_m^q associated with *P* and with fibre G_m^q .

There is a natural one to one correspondence between fibre-preserving maps $E \rightarrow E$ of degree *m* and cross-sections of E_m , and we look for obstructions to a cross-section of E_m . When *B* is a sphere S^{r+1} there is only one obstruction which can be defined in a familiar way, but its calculation in particular cases is not so easy.

Indeed, let E^* be any fibre bundle over S^{r+1} with fibre F^* . Then the homotopy exact sequence of the fibering takes the form

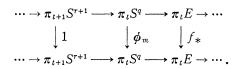
$$\cdots \to \pi_{t+1} S^{r+1} \longrightarrow \pi_t F^* \longrightarrow \pi_t E^* \longrightarrow \pi_t S^{r+1} \longrightarrow \pi_{t-1} F^* \to \cdots.$$

Let c_{r+1} be the generator of $\pi_{r+1}S^{r+1}$ represented by the identity map, and let $o(E^*)$ be the image in $\pi_r F^*$ of c_{r+1} . Then E^* has a cross-section if and only if $o(E^*)$ is the trivial element of $\pi_r F^*$, and so $o(E^*)$ may be regarded as the obstruction to a cross-section of E^* . So when $B=S^{r+1}$ the obstruction to a fibre-preserving map $E \rightarrow E$ of degree m is $o(E_m) \in \pi_r G_m^q$. We want to calculate this obstruction in terms of standard invariants of E, for example o(E). We first point out

(2.1) A necessary condition for there to be a fibre-preserving map $E \rightarrow E$ of degree *m* is that $\phi_m o(E) = o(E)$.

Here $\phi_m: \pi_r S^q \to \pi_r S^q$ is induced by composition with a map $S^q \to S^q$ of degree *m*. We note that ϕ_m is not in general multiplication by *m*, although this is the case if r < 2q - 1. (For clarification of this point see [9] Theorem 5.15.)

To prove (2.1) observe that a fibre-preserving map $f: E \rightarrow E$ of degree *m* produces the following commuting diagram, where the rows are the homotopy exact sequence of *E*.



§3. Odd Values of q.

Let $k_m: S^q \to G_n^q$ be the map defined in [2] §2 where n=m, 1, 0 according as q is odd, q is even and m is odd, or q and m are both even. (Given $x, y \in S^q$ let θ be the distance along some geodesic from x to y. On this geodesic and at distance $m\theta$ we have $k_m(x)(y)$. Then k_m is equivariant with respect to the standard left action of SO(q+1) on S^q and the left action * on G_n^q .

As in §2, P is the principal SO(q+1)-bundle over B associated with E, and because it is equivariant k_m extends from fibres to a fibre-preserving map $P(k_m): E \rightarrow E_n$; for the rest of this section we take q to be odd, so that n=m. Then if E has a cross-section s the composite $P(k_m)s$ is a cross-section of E_m , and therefore there is a fibre-preserving map $E \rightarrow E$ of degree m.

Now let $B=S^{r+1}$. When E does not have a cross-section the condition that $o(E_m)$ should be zero translates into a condition on o(E) as follows. Consider the commuting diagram of group homomorphisms

where the unlabelled vertical arrow denotes the homomorphism induced by $P(k_m)$. Taking t=r+1 we obtain $o(E_m)=k_m \cdot o(E)$. In practice we usually know o(E); but the homomorphism $k_m \cdot$ is a less accessible object, in part because the computation of $\pi_r G_m^q$ is complicated by the appearance of Whitehead products [8].

§4. Homotopy Groups of Function Spaces.

Let $(1, 0, 0, \dots, 0) \in S^q$ be chosen as the basepoint and let F_m^q be the subspace of G_m^q consisting of the basepoint-preserving maps of degree *m*. The evaluation map $e: G_m^q \to S^q$, given by $e(f) = f(1, 0, 0, \dots, 0)$, is a fibration with fibre F_m^q . Let $I_m: \pi_t F_m^q \to \pi_{t+q} S^q$ be the Hurewicz isomorphism [8]. Then the homotopy exact sequence of *e* gives us an exact sequence

$$\cdots \to \pi_{t+1} S^q \xrightarrow{P_{t+1}} \pi_{t+q} S^q \longrightarrow \pi_t G^q_m \xrightarrow{e_*} \pi_t S^q \xrightarrow{P_t} \pi_{t+q-1} S^q \to \cdots$$

of homomorphisms of abelian groups. The unlabelled arrow denotes the homomorphism $i_*I_m^{-1}$ where *i* is the inclusion of F_m^q in G_m^q . According to [8], [10], $P_t(\theta) = \pm [m \iota_q, \theta]$ where [,] is the Whitehead product.

For the rest of §4 let q be odd, and let E be an oriented orthogonal q-sphere bundle over S^{r+1} . The composite $ek_m: S^q \to S^q$ is a map of degree 1-m, and composition with this defines the homomorphism $\phi_{1-m}: \pi_r S^q \to \pi_r S^q$. Consequently

(4.1) A necessary condition for E to admit a fibre-preserving map $E \rightarrow E$ of degree m is that $\phi_{1-m}(o(E))=0$.

(When r < 2q-1 this is equivalent to (2.1), and (2.1) has been proved whether q

is odd or even.)

Let $j: G_m^q \to F_m^{q+1}$ be the inclusion defined by suspending maps of degree m.

LEMMA (4.2). The homomorphism

$$I_m j_* k_{m*} : \pi_r S^q \longrightarrow \pi_r G_m^q \longrightarrow \pi_r F_m^{q+1} \longrightarrow \pi_{r+q+1} S^{q+1}$$

is given by

$$\beta \longmapsto \pm (m(m-1)/2)[\iota_{q+1}, \iota_{q+1}] \circ \sum_{*}^{q+1} \beta$$
.

Here $\sum_*: \pi_r S^q \rightarrow \pi_{r+1} S^{q+1}$ is the suspension homomorphism.

To prove (4.2) we note that $I_m j_* k_{m*} \beta$ is the Hopf construction of the adjoint $k'_m : S^q \times S^q \to S^q$ of k_m , preceded by $\sum_{*}^{q+1} \beta$. It therefore suffices to show that $I_m j_* k_{m*} \ell_q = \pm (m(m-1)/2)[\ell_{q+1}, \ell_{q+1}]$. But when m=-1 [6] § 23.5 tells us that $I_{-1} j_* k_{-1*} \ell_q$ is the Hopf construction of a generator φ of the kernel of the homomorphism $\pi_q SO(q+1) \to \pi_q SO(q+2)$ induced by the usual inclusion i'.

Now $\sum_{*} I_{-1} j_* k_{-1*\ell_q} = \sum_{*} J \varphi = J i'_* \varphi = 0$ where J denotes the Whitehead homomorphisms. By [4] Theorem 7.7 $I_{-1} j_* k_{-1*\ell_q} = n[\iota_{q+1}, \iota_{q+1}]$ for some integer n.

But k'_{-1} has type (2, -1) and so, by [9] 3.70, $I_{-1}j_*k_{-1*}\ell_q$ has Hopf invariant ± 2 . But, by [9] Theorem 5.31, $[\ell_{q+1}, \ell_{q+1}]$ has Hopf invariant ± 2 . So $n=\pm 1$. This proves (4.2) in the special case where m=-1.

From the definition of k_m we find that $k'_m(x, y) = k'_{1-m}(y, x) = k'_{m-1}(y, k'_{-1}(y, x))$ and so $I_{mj*}k_{m*\ell_q}$ is the Hopf construction of the composite

$$S^q \times S^q \xrightarrow{\text{switch}} S^q \times S^q \xrightarrow{1 \times k'_{-1}} S^q \times S^q \xrightarrow{k'_{m-1}} S^q$$

which, according to [3] Theorem 2.19, differs by a multiple of a Whitehead product $[\iota_{q+1}, \iota_{q+1}]$ from the negative of the Hopf construction of just

$$S^q \times S^q \xrightarrow{1 \times k'_{-1}} S^q \times S^q \xrightarrow{k'_{m-1}} S^q$$

namely $-I_{1-mj*}c_*(k_{-1*\ell_q}, k_{m-1*\ell_q})$ where $c: G_{-1}^q \times G_{m-1}^q \to G_{1-m}^q$ is defined by taking composites. But this last expression equals $I_{m-1j*}k_{m-1*\ell_q} - \phi_{m-1}I_{-1j*}k_{-1*\ell_q}$ and so, inductively, $\sum_*I_mj_*k_{m*\ell_q}=0$.

We can now argue as in the case where m=-1, noting that k'_m is a map of type (1-m, m). This proves (4.2).

Recall again that $o(E_m) = k_{m*}o(E)$. Then in addition to (4.1) we have

(4.3) A necessary condition for E to admit a fibre-preserving map $E \rightarrow E$ of degree m is that $(m(m-1)/2)[\iota_{q+1}, \iota_{q+1}] \circ \sum_{k=0}^{q+1} o(E) = 0$.

We emphasise that here q is odd. In the particular cases where q=1, 3, 7 it is possible to say even more.

J. LYLE NOAKES

§ 5. Necessary and Sufficient Conditions When q=1, 3, 7.

When q=1 questions about fibre-preserving maps are easy to answer, because $\pi_{i+1}S^i$ is trivial for i>0. Consequently $e: G_m^i \rightarrow S^i$ is a weak homotopy equivalence. Let E be an oriented 1-sphere bundle over a connected finite CWcomplex B, and let $\chi(E) \in H^2(B; \mathbb{Z})$ be the Euler characteristic of E, namely the obstruction to a cross-section of E. Then because ek_m is a map of degree 1-m it follows that there is a single obstruction to a cross-section of E_m , namely $(1-m)\chi(E)$. We have

(5.1) When q=1 E admits a fibre-preserving map $E \rightarrow E$ of degree m if and only if $(1-m)\lambda(E)=0$.

The situation when $q \neq 1$ is nontrivial however, and for the remainder of §5 we suppose that $B=S^{r+1}$ where $r \leq 3q-1$, and that q is 3 or 7. We prove

(5.2) The necessary conditions (4.1), (4.3) are also sufficient for E to admit a fibre-preserving map $E \rightarrow E$ of degree m.

Proof of (5.2): If (4.1) holds then we know that $k_{m*}o(E)=i_*I_m^{-1}\gamma$ for some $\gamma \in \pi_{r+q}S^q$. If (4.3) also holds then $I_m j_* i_* I_m^{-1}\gamma=0$. But $I_m j_* i_* I_m^{-1}$ is Σ_* and so we know that $\Sigma_* \gamma=0$.

However, according to [4] Theorem 7.7 the kernel of $\sum_* : \pi_r S^q \rightarrow \pi_{r+1} S^{q+1}$ is the image of the homomorphism

$$\pi_{r-q+1}S^q \longrightarrow \pi_r S^q$$
$$\delta \longmapsto [\delta, \, \ell_q] \,.$$

Since q is 3 or 7, S^q is an H-space and therefore \sum_* is injective. So $\gamma=0$, and therefore $o(E_m)=0$. This proves (5.2).

The conditions (4.1), (4.3) can be simplified somewhat in the special cases considered here, namely when q=3, 7. Firstly, because S^q is an *H*-space, (4.1) is equivalent to

(5.3)
$$(m-1)o(E)=0$$
.

We next analyse (4.3) but restrict ourselves to the case where q=3. We recall from [7] Lemma 4.3 that

$$[\mathfrak{c}_4, \mathfrak{c}_4] = 2\nu_4 - a_4.$$

Here $\nu_4 \in \pi_7 S^4$ is the Hopf class, namely the Hopf construction of quaternionic multiplication restricted to $S^3 \times S^3$, and $a_4 = \sum_* a_3$ where $a_3 \in \pi_6 S^3$ is the Hopf construction of

$$g: S^3 \times S^2 \longrightarrow S^2$$

given by

$$(x, y) \mapsto xyx^{-1}$$
.

(We are thinking of S^2 as the space of unit quaternions with vanishing real part, and multiplication on S^3 is again quaternionic.) According to [7] Theorem 7.2, a_3 has order 12 and generates $\pi_8 S^3$. Also $\pi_7 S^4 \cong \mathbb{Z} \oplus \mathbb{Z}/12\mathbb{Z}$ where the summands are generated by ν_4 and a_4 .

In view of (5.4), (5.3) a necessary and sufficient condition for E to admit a fibre-preserving map $E \rightarrow E$ of degree m is (5.3) together with

(5.5)
$$(m(m-1)/2)a_4 \circ \sum_{*}^{4}o(E) = 0.$$

A similar analysis can be carried out in the case where q=7.

§6. Comparison With a Result of Seiya Sasao.

It is interesting to compare (5.5) with Example 1 of [5]. In Example 1 Sasao takes q=3 and E is a principal S^3 -bundle over S^{r+1} , whereas (5.5) is applicable whether E is a principal S^3 -bundle or not. On the other hand, (5.5) applies when $r \leq 5$, whereas Sasao makes no such requirement. Sasao proves that a map of degree m on fibres $S^3 \rightarrow S^3$ extends to a map $E \rightarrow E$ (not necessarily fibre-preserving) if and only if

(6.1)
$$(m(m-1)/2)a_3 \circ \sum_{*}^{3}o(E) \in o(E) \circ (\pi_{r+3}S^r).$$

When $r \leq 5 \sum_{*} : \pi_{r+3}S^3 \rightarrow \pi_{r+4}S^4$ is injective, and (6.1) is then equivalent to

(6.2)
$$(m(m-1)/2)a_4 \circ \sum_{*}^4 o(E) \in \sum_{*} (o(E) \circ (\pi_{r+3}S^r).$$

So Sasao's necessary and sufficient condition is less restrictive than (5.5) alone, at least when $r \leq 5$. ((5.5) and (5.3) must together imply Sasao's condition, because a fibre-preserving map $E \rightarrow E$ of degree *m* extends a map $S^3 \rightarrow S^3$ of degree *m* on fibres.)

§7. When q is Even.

Let q be even. We shall see that E may have a cross-section and yet fail to admit fibre-preserving maps $E \rightarrow E$ of all degrees. It follows that there is no SO(q+1)-equivariant map from S^q to G_m^q , whereas when q was odd we had the map k_m .

By (2.1), if there is a fibre-preserving map $E \to E$ of even degree *m* then $\phi_m o(E) = o(E)$, and so if r < 2q-1 we have (m-1)o(E)=0. But *q* is even and so there is a fibre-preserving map $E \to E$ of degree -1. Therefore when there is a fibre-preserving map $E \to E$ of even degree, and r < 2q-1, we have o(E)=0, namely *E* has a cross-section. From now on we consider only bundles *E* which have cross-sections, namely bundles *E* which are unreduced fibre suspensions of

J. LYLE NOAKES

orthogonal q-1-sphere bundles E'; we do not require r < 2q-1.

Let P' be the principal SO(q)-bundle associated with E' and let SO(q) act on S^q by the suspension of the action on S^{q-1} . Then $k_m: S^{q-1} \rightarrow G_m^{q-1}$, $j: G_m^{q-1} \rightarrow F_m^q$, $i: F_m^q \rightarrow G_m^q$ are SO(q)-equivariant and therefore jk_m extends from fibres to a fibre-preserving map $P'(jk_m): E' \rightarrow E_m$. It follows that $i_*j_*k_{m*}o(E')$ is the obstruction $o(E_m) \in \pi_r G_m^q$ to a fibre-preserving map of degree m from E to itself.

(7.1) There is a fibre-preserving map $E \rightarrow E$ of degree $m \Leftrightarrow$

 $(m(m-1)/2)[\iota_a, \iota_a] \circ \sum_{*}^q o(E') \in [m\iota_a, \pi_{r+1}S^q].$

To prove (7.1) note that $i_*j_*k_{m*}o(E')=i_*I_m^{-1}(I_mj_*k_{m*})o(E')$. Now (4.2) says that

$$I_m j_* k_{m*} \colon \pi_r S^{q-1} \longrightarrow \pi_r G_m^{q-1} \longrightarrow \pi_r F_m^q \longrightarrow \pi_{r+q} S^q$$

is given by

$$\beta \longmapsto \pm (m(m-1)/2)[\iota_q, \iota_q] \circ \sum_{*}^{q} \beta.$$

On the other hand, exactness of the sequence of homomorphisms in §4 tells us that the kernel of $i_*I_m^{-1}$ is $[m\iota_q, \pi_{r+1}S^q]$, and this proves (7.1).

References

- [1] J.L. NOAKES, Some topics in homotopy theory, Oxford D. Phil Thesis 1974.
- [2] J.L. NOAKES, Self-maps of sphere bundles I, J. Pure and Applied Algebra 10 (1977) 95-99.
- $[\ 3\]$ I.M. JAMES, On the suspension triad, Annals of Math. 63 (1956) 191-247.
- [4] I.M. JAMES, On the suspension sequence, Annals of Math. 65 (1957) 74-107.
- [5] S. SASAO, Extendability of certain maps, Kodai Math. J. 10 (1987) 108-115.
- [6] N.E. STEENROD, "The Topology of Fibre Bundles", Princeton University Press, 1951.
- [7] H. TODA, Generalized Whitehead products and homotopy groups of spheres, J. of the Institute of Polytechnics, Osaka City University 3 (1952) 43-81.
- [8] G.W. WHITEHEAD, On products in homotopy groups, Annals of Math. 47 (1946) 460-475.
- [9] G.W. WHITEHEAD, A generalization of the Hopf invariant, Annals of Math. 51 (1950) 192-237.
- [10] J.H.C. WHITEHEAD, On certain theorems of G.W. Whitehead, Annals of Math. 58 (1953) 418-428.

DEPARTMENT OF MATHEMATICS University of Western Australia Nedlands, WA6009, Australia

386