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SELF-MAPS OF SPHERE BUNDLES 11
By J. LYLE NOAKES

§1. Introduction.

Let E be an oriented orthogonal g¢-sphere bundle over a connected finite
CW-complex B. A fibre-preserving map f:E—FE is said to have degree m
when its restriction to some fibre is a map of degree m in the familiar sense;
because B is path-connected it makes no difference which fibre we choose.
Given E and an integer m is there a fibre-preserving map f: E—E of degree m?
This question was put to me in 1971 by I. M. James, and in [2] there are some
answers in fairly general situations. In the present paper I consider in more
detail the special case where B is a sphere S™*'. We first make some simple
observations.

The identity map has degree 1, and when ¢ is even E always admits a
fibre-preserving map of degree —1; this is because the antipodal map a: S9—S¢
commutes with the action of the group SO(g+1) of rotations in R?** and there-
fore extends to a fibre-preserving map: it would be interesting to know what
happens when E is a general oriented g-spherical fibration with ¢ even. If E
admits fibre-preserving maps of degrees m, n then their composite is a fibre-
preserving map of degree mn. Apart from this, nothing is very obvious.

Let n: E—~B be the projection. Then when E has a cross-section s the
composite sw: E—FE is a fibre-preserving map of degree 0. In [2] the converse
is proved, namely that if E admits a fibre-preserving map of degree 0 then E
has a cross-section. (It is not the case that every fibre-preserving map f: E—FE
of degree 0 is homotopic through fibre-preserving maps to one of the form sz
for some cross-section s, but if B is covered by £ contractible open subsets
then f* is homotopic through fibre-preserving maps to s= for some cross-section
s.) Some of the main results of [2] describe the structure of the set A(E) of
integers m such that E admits a fibre-preserving map of degree m. In the
present paper we prove some results that allow us to estimate A(E) when
B=ST+1.

If E* is a fibre bundle over S™! with fibre F* let o(E*) be the obstruction
to a cross-section of E*, as defined in §2 below. From now on let B=S"*.
In § 2 we show that a necessary condition for there to be a fibre-preserving map
E—E of degree m is that ¢n.o(E)=0o(E). Here ¢,: n,S%>x,S? is induced by a
map of degree m on S%
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THEOREM 1. Let q be odd. [If there is a fibre-preserving map E—E of
degree m then

(i) @1-no(E)=0 and

(i) (mm—1)/2)[tg+1, tgs1]° 2% 0(E£)=0.

Here [,] is the J.H.C. Whitehead product, and 3, is the suspension homo-
morphism. Theorem 1 is proved as (4.1), (4.3) in §4.

Our methods can also be used to give conditions sufficient for the existence
of a fibre-preserving map E—FE of degree m. In [1] Part II, §5 some calcula-
tions are carried out and, for example, necessary and sufficient conditions are
given when ¢ is odd and r<qg+2.

In §5 of the present paper we consider the special cases where ¢=1, 3, 7,
and prove that the necessary conditions given in Theorem 1 are then sufficient.
When ¢=1 condition (ii) of Theorem 1 is satisfied trivially. When ¢=3 we
obtain as (5.3), (5.5)

COROLLARY 1. Let ¢g=3. Then there is a fibre-preserving map E—E of
degree meboth

(i) (m—1)o(FE)=0 and

(i) (mim—1)/2)a, Zko(E)=0

where a,=r,S* is described explicitly in §5. In an interesting paper [5] Seiya
Sasao considers a related problem, and in § 6 of the present paper we compare

Corollary 1 with Sasao’s results.

When ¢ is even it may be the case that E has a cross-section and yet there
exist no fibre-preserving maps E—E of some degrees m: this cannot happen
when ¢ is odd. When E has a cross-section we can write E as the fibre
suspension of an oriented orthogonal ¢—1-sphere bundle E’, and in §7 we prove

THEOREM 2. Let g be even and suppose that E has a cross-section. Then
there is a fibre-preserving map E—E of degree me
(mm—1)/2)tq, t]* S40(E")E [meg, 7741577 .
By [9] 3.59 we have [¢g, ¢o]°2%0(E")=[¢,, 2x0(E’)] and so we have

COROLLARY 2. Let q be even and suppose that E has a cross-section. Then
there are fibre-preserving maps E—E of all odd degrees, and of all degrees m=0
mod 4.

§2. The Obstruction to a Fibre-Preserving Map—Generalities.

It is known that a fibre-preserving map of fibre bundles corresponds naturally
to a cross-section of a bundle whose fibre is a function space. This point of
view is traceable to [. M. James and was taken in [2] to prove results about
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the structure of A(E); it also turns out to be helpful when doing calculations.

Let G% be the function space of maps f:S?%—S? of degree m, with the
compact-open topology. We define a left action * of the group SO(¢g+1) of
rotations on G%, by (Axf)(x)=A-(f(A'-x)). Here - is the standard action of
SO(g+1) on S%. Let E be an oriented orthogonal g-sphere bundle over B, and
let P be its associated principal SO(¢+1)-bundle. Let E, be the bundle PG%
associated with P and with fibre G%.

There is a natural one to one correspondence between fibre-preserving maps
E—E of degree m and cross-sections of E,, and we look for obstructions to a
cross-section of E,. When B is a sphere S™*' there is only one obstruction
which can be defined in a familiar way, but its calculation in particular cases
is not so easy.

Indeed, let E* be any fibre bundle over S™*' with fibre F*. Then the
homotopy exact sequence of the fibering takes the form

e —> 7ft+ISr+1 — W;F* — ﬂtE* —_> 7f¢ST+1 I ﬂ.'t_lF* —> e

Let ¢,4, be the generator of m,,,S™*! represented by the identity map, and let
o(E*) be the image in n,F* of ¢,,;. Then E* has a cross-section if and only
if o(E*) is the trivial element of n,F*, and so o(E*) may be regarded as the
obstruction to a cross-section of E*. So when B=S"*! the obstruction to a
fibre-preserving map E—FE of degree mis o(E,)=xr.G%. We want to calculate
this obstruction in terms of standard invariants of E, for example o(E). We
first point out

(2.1) A necessary condition for there to be a fibre-preserving map E—E of
degree m is that ¢no(E)=o(E).

Here ¢n: n,.S%—>m,S? is induced by composition with a map S?%—S? of degree m.
We note that ¢, is not in general multiplication by m, although this is the
case if r<2¢—1. (For clarification of this point see [9] Theorem 5.15.)

To prove (2.1) observe that a fibre-preserving map f: E—FE of degree m
produces the following commuting diagram, where the rows are the homotopy
exact sequence of E.

cee —> n-t_H.ST"'l _ TEtSq_') “LE —> eee

1 [gn |7

o Ty STH — 1,51 —> 71, E —> oo

§3. Odd Values of q.

Let kn:S?%—>G% be the map defined in [2] §2 where n=m, 1, 0 according
as ¢ is odd, ¢ is even and m is odd, or ¢ and m are both even. (Given x, y&S?
let @ be the distance along some geodesic from x to y. On this geodesic and
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at distance m@ we have k,(x)(y). Then k, is equivariant with respect to the
standard left action of SO(g+1) on S? and the left action * on G4.

As in §2, P is the principal SO(¢+1)-bundle over B associated with E, and
because it is equivariant k, extends from fibres to a fibre-preserving map
P(k,): E-E,; for the rest of this section we take ¢ to be odd, so that n=m.
Then if E has a cross-section s the composite P(k,)s is a cross-section of E.,
and therefore there is a flbre-preserving map E—E of degree m.

Now let B=S"*!. When E does not have a cross-section the condition that
o(E ) should be zero translates into a condition on o(E) as follows. Consider
the commuting diagram of group homomorphisms

M d ﬂ't+1sr+l I— 72'55‘1 I ﬂ;E — ﬂtS”“ — ﬂ.'t_lsq —> e

el L e

i

v = 7 ST — 1,GY —> n,E, — 7, ST

> 41 GY — oo

where the unlabelled vertical arrow denotes the homomorphism induced by
P(k,). Taking t=v-+1 we obtain o(E,,)=Fk.0(E). In practice we usually know
o(E); but the homomorphism k.. is a less accessible object, in part because the
computation of =n,G% is complicated by the appearance of Whitehead products

[8].

§4. Homotopy Groups of Function Spaces.

Let (1,0,0, ---, 0)=S? be chosen as the basepoint and let F4%, be the sub-
space of G% consisting of the basepoint-preserving maps of degree m. The
evaluation map e: G%—S% given by e(f)=f(,0,0, ---, 0), is a fibration with
fibre FY. Let I,: n F%—m,.,S? be the Hurewicz isomorphism [8]. Then the
homotopy exact sequence of ¢ gives us an exact sequence

Pt+1 Cx Pt

= Ty ST ——> W48 — 1,GL —— T, ST Typq ST

of homomorphisms of abelian groups. The unlabelled arrow denotes the homo-
morphism 7,/;' where 7 is the inclusion of F¢, in G%. According to [8], [10],
P(0)==*[me,, 6] where [,] is the Whitehead product.

For the rest of §4 let ¢ be odd, and let £ be an oriented orthogonal ¢-
sphere bundle over S™*!. The composite ek, : S?—S? is a map of degree 1—m,
and composition with this defines the homomorphism @;_n: 7,S%—=x.5% Con-
sequently

(4.1) A necessary condition for E to admit a fibre-preserving map
E—FE of degree m is that ¢,_n.(o(E))=0.

(When r<2¢g—1 this is equivalent to (2.1), and (2.1) has been proved whether ¢
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is odd or even.)

Let j: G4, —F%" be the inclusion defined by suspending maps of degree m.

LEMMA (4.2). The homomorphism
Injsbms: ©, 5 —> n,.GY) —> 7w, FI' —> 7"-'1—+q+15‘l+l

is given by
B> £(m(m—1)/2)[cqs1, tgr]-2Z57B .

Here Xy : 7, S%>m, ST is the suspension homomorphism.

To prove (4.2) we note that I,j«kn.xS is the Hopf construction of the adjoint
kh i ST S%—S? of k,, preceded by 3%4B. It therefore suffices to show that
Iij sk mxtg=2(m(m—1)/2)[tgs1, tq+1]. But when m=—1 [6] §23.5 tells us that
I_ 7k 14ty is the Hopf construction of a generator ¢ of the kernel of the homo-
morphism 7,S0(¢+1)—r,SO(g+2) induced by the usual inclusion 7’.

Now il 1jxk-1xtq=2x Jo=Jixp=0 where | denotes the Whitehead homo-
morphisms. By [4] Theorem 7.7 I_,jxk_ixtq=nltqs1, tq+1] for some integer n.

But k&, has type (2, —1) and so, by [9] 3.70, I_,j«k_1x¢, has Hopf invariant
+2. But, by [9] Theorem 5.31, [¢441, ¢g+:] has Hopf invariant +2. So n==1.
This proves (4.2) in the special case where m=—1.

From the definition of 2, we find that 2, (x, v)=Fki_n(y, x)=Fkn-1(y, kL:(y, x))
and so [,j«knxty is the Hopf construction of the composite

7 ’

switch 1X kL, Bl
SIXS? —— S1x S S%x S S

which, according to [3] Theorem 2.19, differs by a multiple of a Whitehead
product [¢4+1, ¢g+1] from the negative of the Hopf construction of just
IXk%, k-1
SIX S ———— SIS ——— S

namely —I - mjsCs(k-1xtq, Pm-1x¢q) Where ¢: G1,XG%,_,—GI_, is defined by tak-
ing composites. But this last expression equals In_ijsxRm-1xtq—Pm-1L-17%R-14¢,
and so, inductively, Zulnjxkmxts=0.

We can now argue as in the case where m=—1, noting that %, is a map
of type (1—m, m). This proves (4.2).

Recall again that o(E,)=*Fk,+0(E). Then in addition to (4.1) we have

(4.3) A necessary condition for E to admit a fibre-preserving map E—E
of degree m is that (m(m—1)/2)[t4r1, te+1]° 2% 0(E)=0.

We emphasise that here ¢ is odd. In the particular cases where ¢=1, 3, 7 it
is possible to say even more.
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§5. Necessary and Sufficient Conditions When ¢=1, 3, 7.

When ¢=1 questions about fibre-preserving maps are easy to answer, be-
cause 7,4+, S' is trivial for 7>0. Consequently e¢: GL—S' is a weak homotopy
equivalence. Let E be an oriented 1-sphere bundle over a connected finite CW-
complex B, and let X(E)eH*B; Z) be the Euler characteristic of E, namely
the obstruction to a cross-section of £. Then because ek, is a map of degree
1—m it follows that there is a single obstruction to a cross-section of E,,
namely (1—m)X(E). We have

(5.1) When ¢g=1 E admits a fibre-preserving map E—E of degree m
if and only if (1—m)X(E)=0.

The situation when ¢+1 is nontrivial however, and for the remainder of §5
we suppose that B=S"' where »<3¢—1, and that ¢ is 3 or 7. We prove

(5.2) The necessary conditions (4.1), (4.3) are also sufficient for £ to admit a
fibre-preserving map EF—FE of degree m.

Proof of (5.2): If (4.1) holds then we know that k,4o(E)=i Iy for some
rER4S% If (4.3) also holds then [,y l7'y=0. But I,.juln is 2« and so
we know that ZJ4r=0.

However, according to [4] Theorem 7.7 the kernel of Xy: 7, S%—m, S
is the image of the homomorphism

Tpoqr1 Sl —> 7w, S?
0—> [0, ¢,].

Since ¢ is 3 or 7, S? is an H-space and therefore X4 is injective. So y=0, and
therefore o(E,)=0. This proves (5.2).

The conditions (4.1), (4.3) can be simplified somewhat in the special cases
considered here, namely when ¢=3, 7. Firstly, because S? is an H-space, (4.1)
is equivalent to

(5.3) (m—1)o(E)=0.

We next analyse (4.3) but restrict ourselves to the case where ¢=3. We
recall from [7] Lemma 4.3 that

(5.4) [[4, 14]=2U4—a4 .

Here v,=x,S* is the Hopf class, namely the Hopf construction of quaternionic
multiplication restricted to S®XS® and a,=3«a; where a;=x,S® is the Hopf
construction of

g:5%x8*— §*
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given by
(x, y) —> xyx~".

(We are thinking of S? as the space of unit quaternions with vanishing real
part, and multiplication on S*® is again quaternionic.) According to [7] Theo-
rem 7.2, a; has order 12 and generates m,S°. Also n,S'=ZPZ/12Z where the
summands are generated by v, and a,.

In view of (5.4), (5.3) a necessary and sufficient condition for E to admit a
fibre-preserving map E—FE of degree m is (5.3) together with

(5.5) (m(m—1)/2)a,> Zko(E)=0.

A similar analysis can be carried out in the case where ¢=7.

§6. Comparison With a Result of Seiya Sasao.

It is interesting to compare (5.5) with Example 1 of [5]. In Example 1
Sasao takes ¢=3 and E is a principal S°-bundle over S™!, whereas (5.5) is
applicable whether E is a principal S*-bundle or not. On the other hand, (5.5)
applies when <5, whereas Sasao makes no such requirement. Sasao proves
that a map of degree m on fibres S*—S® extends to a map E—FE (not neces-
sarily fibre-preserving) if and only if

(6.1) (m(m—1)/2)a;° Zi0o(E)Eo(E) (7, 45S") .
When r<5 3y n,4:5*>n,,,S* is injective, and (6.1) is then equivalent to
6.2) (m(m—1)/2)a, Z50(E)E Z(0(E) (7 r45S7) .

So Sasao’s necessary and sufficient condition is less restrictive than (5.5) alone,
at least when r<5. ((5.5) and (5.3) must together imply Sasao’s condition, be-
cause a fibre-preserving map E—E of degree m extends a map S*—S?® of degree
m on fibres.)

§7. When ¢ is Even.

Let ¢ be even. We shall see that £ may have a cross-section and yet fail
to admit fibre-preserving maps E—FE of all degrees. It follows that there is
no SO(g+1)-equivariant map from S? to G%, whereas when ¢ was odd we had
the map k.

By (2.1), if there is a fibre-preserving map E—FE of even degree m then
dno(E)=0(E), and so if r<<2¢—1 we have (m—1)o(E)=0. But ¢ is even and so
there is a fibre-preserving map E—FE of degree —1. Therefore when there is
a fibre-preserving map E—FE of even degree, and »<2¢—1, we have o(E)=0,
namely E has a cross-section. From now on we consider only bundles £ which
have cross-sections, namely bundles £ which are unreduced fibre suspensions of
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orthogonal g—1-sphere bundles E’; we do not require »<2¢—1.

Let P’ be the principal SO(g)-bundle associated with E’ and let SO(qg) act
on S? by the suspension of the action on S?°!. Then k,: S -G%?, 7: G&L'—
F%, i: F4,—GY% are SO(g)-equivariant and therefore jk, extends from fibres to
a fibre-preserving map P’(jkn): E’—E.,. It follows that ixj«knx0(E’) is the
obstruction o(En)Er,GY% to a fibre-preserving map of degree m from E to
itself.

(7.1) There is a fibre-preserving map E—F of degree me
(m(m—l)/Z)[:q, lq]°2z<0(E/)e[7n(q’ ﬂrHSq] .

To prove (7.1) note that ixjxkmsx0(EN=isIi(Injsxknx)o(E). Now (4.2)
says that
Injskms: 7,87 —> 7, GE' —> 7, FL —> m,4¢S?

is given by

B> £(mim—1)/2)[¢q, ¢g]° 4B -

On the other hand, exactness of the sequence of homomorphisms in §4 tells us
that the kernel of 7, I3 is [m¢,, w,+,5%], and this proves (7.1).
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