H. NAKAZATO
KODAI MATH. J.
11 (1988), 141—153

THE ¢-ANALOGUE OF THE p-ADIC GAMMA FUNCTION
By HaJIME NAKAZATO

Introduction.

The p-adic gamma function [,(x) was defined and studied by Morita [9]
and the p-adic log-gamma function G,(x) was defined and studied by Diamond
[3]. The Morita’s gamma function I,(x) is defined by

F(x)—llm( 1)"H* for xeZ,,

mZp

where n runs over positive integers and JT* means that indices ;j divisivle by
p are omitted. The Diamond’s log-gamma function G,(x) and G3(x) are
defined by

1
p(x)—llm?z— Z (x—{—;){log(x—l—;) 1} for xC,—Z%,
and
G",f(x):limjw 2 (x+){log(x+5)—1} for xeC,—Z%,
n-ce P 0S<pn
where log is the Iwasawa p-adic logarithm [5], C, denotes the completion of
the algebraic closure of the p-adic number field @, and X* means that indices

7 divisible by p are omitted in the summation.
Then G,(x) and G¥(x) have the following two connections with I(x).

THEOREM (Diamond [3], Ferrero-Greenberg [4]).

(1) log I'(x)=G¥=x)  for xspZ,.
"
(2) log Iy(x)= ?g Gp("pl) for xeZ,.
2% P

A generalized p-adic gamma function I3 (x), depending on a parameter
geC, with |g—1|,<1 and ¢#1, was defined and studied by Koblitz [7], [8].
We recall that the Koblitz’ function [ q(x) is defined by

Ly a)=lim (-1 1% =2

for xe€Z,,
mZp
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142 HAJIME NAKAZATO

where n runs over positive integers.
As for the log-gamma functions G,(x) and G¥(x) Koblitz defined only the

p-adic psi-function ¢, (x) and ¢F (x), which are analogues of the derivatives
d d
¢p(x)=—&}—Gp(x) and 91”5("):7{?%(")'

For ¢=C, such that |¢g—1],<1 and log(g)+0, let
]pllp/(p-l)

[log(g)l, ~

Let d(x)= mmlx ul, and d*(x)=min|x—ul, for x=C,.
uezZ*

p
Let D(g)={x=C,|0<d(x)<r(g)} and
D¥g)={xe C,|0<d*(x)<r(q)}.

r(g)=

Putting
()—l'm—l— > o 1=¢™ for x<D(q)
¢p,q7"‘nlawpn 05 Zpn g 1— x q
and
1 qx+1
&3, q(x)—llm—— 5‘_,* 1= for xeD*(),

Koblitz [7] gave the following
THEOREM.

d
(@) Wlogl},,q(x)ngﬁq(x) for xepZ,.

(2) dd log I, q(x)—% p> ¢p q,,(”’) (1———)10g 11 for xeZ,.

+1E

The purpose of this paper is to construct and study natural analogues
Gp,ox) and G} (x) of the p-adic log-gamma functions G,(x) and G¥(x), which
have connections with I, ().

Let [,(2) be the p-adic dilogarithm defined and studied by Coleman [2]. For
a positive integer n, let i=[(n—1)/p]1+1 where [ ] means Gauss symbol. Then
the map ~ extends to a continuous function on Z, with values in Z, (See [7]).
Since [,(z) is locally analytic on C,—{1}. Using Diamond’s theorem [3], we may
define analogues G, x) and G% (x) of the log-gamma functions G,(x) and

G¥(x) by
1
Gy o0)=lim— 3 [ log()xqm (x+7)log (1—-9)}

17 05;<p

for x=D(¢) and
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G} m)=lim > 3 Lig*+)—(x+1) log (1—0)}

{_L
—w ™ os52on L log(q)

for x=D*(g). Then we obtain

THEOREM (3.1). Suppose ]q—1|p<lp|},"”“’.

-
(1) log I, (x)=G% q(x)—l— loglg)  for xEpZ,.

x+7Y\ , log(q) s 1—¢?
(2)  logly(x)= %E%{Gp,qp( 5 )t ap | Ha— B log T
for x€Z,.

Remark. By the definition of ~ we have

——(x)— L‘WWZ% for x&Z,.

Differentiating in the equations of our theorem in the above sense we have the
equations of the Koblitz’ theorem.

For G, (x) and G} (x) we have the difference equations (2.3), the multiplica-
tion-theorem (2.6) and the reflection formula (2.4).

Remark. 1t is possible to define and study “twisted” functions of our p-
adic gamma functions.

Notation and definition.

Let @ be the rational number field and let Z be the integer ring. Let p
be an odd prime. Let @,, Z, and C, be the p-adic number field, the p-adic
integer ring and the p-adic completion of the algebraic closure of @,. Let [x],
be the absolute value of x=C% such that |p|,=p~"

Let log(u)=log,(u) be the Iwasawa p-adic logarithm [5] on u=C%. Then
we have

log(u)= Zz)l(—~1)""1%(u—l)" for |u—1],<1.
Let exp(u)=exp,(u) be the p-adic exponential function defined by
exp(u)— ni‘u for Jul,<|p|L/®-b,

Let [,(u) be the p-adic dilogarithm [2] on u=C, with u+#1. Then we have

(u)—Z—l—u for |u|,<l.
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We assume hereafter that ¢g=C, with [¢—1|,<|p|5/»-» and ¢g#1. Then
we have [7]

'pl;)/(l’-l) _ lplé/(ﬁ—l)
llog(®)l, ~ |11—ql»
Dg)={x€Cr—Z,| | x| ,<r()}

D¥g)={xeCp—ZF|1x],<r(g)}.

r(g)= >1,

and

Let ¢*=exp(u-log(g)) for |u|,<r(g). Then

log(g*)=u-log(g)  for |u|,<r(qg).

1. Definition of G, (x) and G% ,(x).
Let

L, (u)= l(g")—u-log(l—q)  for |u|,<r(g), u#0.

~ log(q)

where [,(x) is the p-adic dilogarithm [2] and log is the p-adic logarithm nor-
malized by log(p»)=0 [5].
Using the functional equation

Ly(x)+1,(1—x)=log(x) log(l—x) for x+#0 and x+1,

we have
L, ()= 2@ )l 2(1—g*)+u-log - for |ulp,<r(q), u+#0.
Since
[(1—g")=1—g"+(1/4)(1—¢")*+
=—u-log(g)+(log(g)*{—u*/2+u®/4+-}.
We have

lirrll Ly (u)=—u+u-log(u).

LEMMA (L.1). (1) L, (u) s locally analytic onsusCp with |ul|,<r(q)
and u+0.

d 1—g*
(2) o Ledw=log 7.
(3) Lo ) Lo, — )= 4" log(g).
(4) Lo )+ Lo oo —uw)=—1u-log(g).

Proof. Since [,(x) is locally analytic on x#1 and™g* is analytic on |u|,<
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r(g). [(g*) is locally analytic on |ul|,<r(g), u#0. Thus L, (u) is locally
analytic on |u|,<r(q), u=0.
Since

—’9—’3%_—") for x+#1 and x=0.

d
dg ==

Differetiating L, ((u) gives the equation (2).
Using

L)+ 1/ )=~ (log ()Y,

we have the equation (3).
A simple calculation gives the equation (4).

Remark. If we define L, ,(u) as the function on the right hand side above
then Lemma 1.1 can be proved without using Coleman [2].

We use the following lemma due to Diamond [3] to construct our p-adic
functions.

LEMMA (1.2). Let D be a subset of Cp such that D+Z,w contained in D
for some weC, with w+0. Let bbe a positive integer and let f(x) be a locally
analytic function on DN\(Cp—{0}). Define

1
F(x)—llm Ay OPIN nf( x+jw) for xeDN(Cpr—Z,w)
and
F*(x)=lim b;l)n S fG+iw)  for xEDN(C,—Z ).
Then

(1) the limits exist, which are independent of b,

(2) F(x) is locally analytic on DN(Cp—Z,w) and

(3) F*(x) is locally analytic on DN\(C,—Z%w).
(See Corollary of Theorem 2 of [3].)

DEFINITION (1.3). We define analogues G, ,(x) and G% ,(x) of the Diamond’s
p-adic log-gamma functions G,(x) and G¥(x) by

(1) G,,,q(x)—hm% 3 Lads+))  for x€D)
and
(2) G;,q(x)—hm;l; S Luda+i)  for x€D¥0)

Then by Lemma (1.1) and Lemma (1.2) G, (x) and G} (x) are well-defined.
And G, (x) is locally analytic on D(¢q) and G% ,(x) is locally analytic on D*(¢g).
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2. Properties of G, ((x) and G% (x).

In this section we investigate some properties of G, (x) and G%, (x).
There is a relation between G, ,(x) and G} (x).

PROPOSITION (2.1). Let By(x)=x—(1/2) the 1-st Bernoulli polynomial.
Then

G x)=Gp,((x)— Gy, qP( ) B( )k’g ll_qp

for x€D(q).

Proof. Since [g—1],<|p|3/*-" and »(g?)=r(g)/1pl,. If x=D(g) then
x/peD(g?). Thus we have

Gp.ox)—Gp,p (’%‘)

1 1 .
=limo B Lo dst-limis 3 Luo(G+i)

0s;<pn-1

1 .
=lim—{ 3 Ledt)

e DT

. . 1—¢?
——051<Z17:"'1L2'q(x+Jp)+os;{?5'”'1(x+]p> log 1—¢q }

_hm—j;l; Z* L, q(x—{—])—{—llm

1 x . 1—¢q?
-1 05]5217"-1(; +])10g' l—q

o P
—qP

=634+ Ba(5) log

Because

1
x(x)—-hrgﬁ 2 JxF.
Thus we complete the proof.
Remark. Koblitz [7] obtained that

1 1 1—qg?
I R €

—1lo
p B 1
for x= D(q).

As for the difference equation for I, ,(x) Koblitz [7] obtained the following

THEOREM (2.2).
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——lfl if xeZ%,
Fp.q(x+1)/rp,q(x)= -9 .
-1 if xepZ,.
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We have a difference equation for our functions G,,(x) and G%,(x).

THEOREM (2.3).

1—qg*
(1) Gp.x+1)—G,, (x)=log l—qq for xeD(g).
l q2?+’lv

(2)  Ghfa+n—Gin)= 3 log—1=

Remark. Koblitz [7] obtained that

Dp.(x+1)—¢p, (x)=—

Note that by (2) of Lemma (1.1) we have

],1 (L x4 ™) Lo )} =log

where 0,(p")—0(n—o0).

+oz(1>"),

Proof of Theorem (2.3). By the definition we have
(1) G, x+1)—Gp (x)

1 ) .
—1355})7{ anLz,q(x‘F1+])‘0§];an2,.1(?€+])}

—hm —{ Ly, {x+D™)— Ly, (x)}

RO St

=log =g for x=D(qg)
and
(2) G3, q(x+1>)—G* %)

1
=lim 3 = > {Lo,o(x+i+p™)— L, (x+3)}

l_qz+1.
= > log i—g for x=D*g)

0<i<p

We have the reflection formula for our functions G, (x).

for xeD*g).

Iog(q)( log 1= ) for x=D(q).

Let By(x)=x?—
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x-+(1/6) the 2-nd Bernoulli polynomial.
THEOREM (2.4).
1
(1) Gp,q(x)+Gp,q(1—x)=-Z—Bz(x)log(q) for x€D(q).

(2) G, x)+Gp, -1(1—x)=—B,(x) log(q) for x=D(q).
Remark. Koblitz [7] obtained that

d
$5,d2)=p,¢-1(1—x)=—log(g)=——— Bi(x) log(g).
Proof. (1) Using the definition and replacing j by p*—j—1, we have
Gp.o(x)+Gp,o(1—x)

—lim— 3 (L 5+ Lugl— )

—lim—z 3 {Ly s+ Lud——))
+ Lo =5+ L —2=)} ).
Since (1) and (2) of Lemma (1.1), we have
S L =5+ = Lo —x =} =log T oo (1),

where 0., ;(p™)—0(n—o00).
Using this formula and (3) of Lemma (1.1) we have

(=lim S Lo Lo =)

pn
Flimph— 3 o ﬂ—I—JHlm S 0-o-fD")
1mj) j)” 0s3p™ g 1— nomosicon T 7
o1 1 2
=lim—5 2.7 > (x+7) log(g)
Flim plim— 2o A= i S o (57
nl-I};lop nl-{l;lo p" os g 1—¢q -0 057D -2-AP

1
= ng(x) log(g).

(2) Using the definition and replacing j by p®"—j—1, we have
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Gp,(2)+Gp,g-1(1—x)
2 AL, (x4 )+ Lo, 11— x+ )}
s)<p

L1
=N
L1 . .
=lim— Epn{Lz,q(x+])+Lz.q'l(—x‘—])

nooo P™ 053

—I—L2,q-1(——x—j+P")—L2,q-l(—x—j)}

(%),

Since (1) and (2) of Lemma (1.1), we have

1 o . 1—g*+ n
o {Lgg-(—x—j+p )—Lz,q-l(—x“])}:logW'l-Onj(l? ),

where 0,4 ;(p™)—0(n—co).
Then, using this formula and (4) of Lemma (1.1), we have

.1 . .
(**)ZLI_{EFOSEP"{Lz,q(x+])+L2,q'l<_x_])}

Fimp - D 10g2T0 T lim S 0w (67
"I‘I'l:p DP™ 0silpn g 1—g¢* nIroloost"o“]p

.1 .
=lim-— 3 {—(x+)log(g)}
n-eo P 05iIpn

lim p"lim L log A=4 s n
+lim p 'Jfﬂ?’?osgpn e +n1£205jz<),,n0‘”(p)

N -0

=—By(x)log(q).

The proof is completed.
We have the following corollary, which will be used in the proof of the

theorem for the connection of G, ,(x) and G¥ ,(x) with I, ,(x).

COROLLARY (2.5).
. _1
2) Gp,qp<'p‘z—)=— p24

log(q) .

Proof. We have
Gp’qp <—Z—>=1sz§§—l)/2{6p’qp(ip)_l_cp'qp(l_%)}

0<;<p P
i
_1szs<§—1)/z-2— 32 (;) ]0g(q>
__p-1

For our G, (x) and G} ,(x) we have the following multiplication-theorem.
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THEOREM (2.6). Let m be a positive integer. Then we have

+7 m
(1) Goa)=, T, Cran(rt L)+ B log o for x€D@),

and when m=0(mod p) we have

m

(2) G (0= z*cp,qm(in’:—i)+(1——l—)x-1og 11—_"q for xeD*(g).

0si<m ?

Remark. Koblitz [7] obtained that

x+i 1—g™
Gr. = 2 Gpan(E0)+Hiog - for xD.
Proof. (1) By the definition we have for x< D(q)
x4+
os?"émGp'qm( m )
1 . n
},EETOSEMOSEP"{ lOg(q’") )log(l—(] )}

=lim > {Lz,q(x+ 7)—(x+j)log 11"_": }

T MP™ 0557

m

1—
=G, o)~ Bi(x) log

(2) By the definition we have for xe D*(q)
x4+
os%mcp’qm( m )

~hmi

1 x+i
* -
n=co D" os§<"m os;<p"{ log(g™)

lig=++im)— (£ + 5) log(1—g™)}

. . 1—g™
=lim * ALt =Gt log L)

T~ MP" 05;<m ™

.:Gg.q(x)—(Bl(x) — B, (%))log ll—_q;n

_ 1 1—q™
_G;t,q(x)—(kz)x-log =

Letting m=p we have the following

COROLLARY (2.7).

x+1 1 1—q?
G.u0)=, 3, Cru( 5 )—l—(l—;)x-log o 2=
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Letting x=0 and using Corollary (2.5) we have the following

COROLLARY (2.8).

_ i\__ p-—1
G3. q(o)—o<%:<pGp,qp ('5) =— —2‘4—10g(4) .

3. Connections with I, (x).

In this section we study the connections of G, ,(x) and G% (x) with I ,(x).
By the definition of I (x) [7] we have

I (H=-—1.
Then the difference equation of Theorem (2.2) follows
I, (0)=1.
Thus we have
(i) log I, ,(0)=0.
By Theorem (2.2) we have
g1 it xezx,
(ii) log Iy, (x+1)—log Iy, ((x)= I—¢
0 if xepZ,.

Using Corollary (2.5) we have

7\ log(g) \ _
(i) 0<;<p{G” -aP ( p) 24 }_O
Then the connections of G, (x) and G¥ ,(x) with I3, (x) are the following

THEOREM (3.1).

-1
(1) logly ()=Gh+Llogle)  for xepZ,.
(2) log Iy, (%)
AYR! 1—g?
=osi<p{ ""“’(xjj_Z)‘*' Ogiq_)'}"'(x“f)mg l_q for xeZ,.
z+iez},

Remark. Koblitz [7] obtained that

(1) d;lxlogrp.q(x):¢§,q(x) for xepZ,,

(2) ——d—logl"p,q(x)z

P ¢p,qp<x7+i)+<l—-—l—>logl_qp for x€Z,.

P 1—¢

1
B o
z+i€£‘p
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Proof of Theorem (3.1). Since both sides of (2) are continuous in x&Z,,
it suffices to prove (2) for x=any non-negative integer n.

Let A, denote the left side of (2) for x=n, and let B, denote the right
side of (2) for x=n. We prove A,=B, by induction n.

Note that by (i) and (iii) we have A,=B,. Suppose that A,=B,.

By (ii) we have

1—q™ .
log if nz=0(mod p),
An+l_An=‘ l_q
0 if n=0(mod p).
We claim that
1—q* .
log if n==0(mod p),
Bn+1'_Bn=< l—q
0 if n=0(mod p).

In fact we have

Bn+x_Bn

- B, Jor o)

0s1
n+l+z$§gnod )

+ os%p {Gp’qp(n—:i)_*— %}

n+1%0 (mod p)

- g 14"
+{(n+1)—(n+1)>—n-+7}log I

= 3 a3 Gw()

051< 0s1<
n+!+zssognod » p n+z$0(mgd ») p

Y
+{Ln=1)/$1+1—[n/p1Hog Lo,
(a) Case of nz=0(mod p). We have
+ 1—qg?
(*)_—"Gp’qp %)—Gp,qp(‘g‘>+log l_q
O St 1—¢? _, 1=¢"
=log 1—g? +log . =log =g
(b) Case of n=0(mod p). We have
(*)=0.

By (a) and (b) we have

Ans1—An=Br—B,,
and so we have
An+1=Bn+1-
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This completes the induction.
To prove (1) we use Corollary (2.7) and the following formula

=(1~——lp—)-x for xepZ,.

By (2) for x&pZ,, we have

log Iy, o(x)
=3 p{cp,qp( "Zi)+ logi")}ﬂx—f)log 11'_’7;
=3 Gr.o "+’)+(1~—)x log- q,, +-2= log@)
=G}, q<x)+ log(q)
The proof is completed.
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