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Abstract

Let C be a nonempty closed convex subset of a uniformly convex Banach space
E, G a right reversible semitopological semigroup and S={S(t) : t^G} a continuous
representation of G as Lipschitzian self-mappings on C. We consider the asymptotic
behavior of an almost-orbit {u(t) : t<=G} of S={S(t) : ί e G } . We show that if E has
a Frechet differentiable norm and if limsup&ί^l, then the closed convex set

Γ\cδ{u(t):t^s}Γ\F(S)
SGG

consists of at most one point, where kt is the Lipschitzian constant of S(t). This result
is applied to study the problem of weak convergence of the net {u(t) : t<=G}.

1. Introduction.

Let C be a nonempty closed convex subset of a real Banach space E and
let T be a mapping of C into itself. T is said to be a Lipschitzian mapping if
for each n ^ l there exists a positive real number kn such that

\Tnx-Tny\<kn\x-y\

for all x, y<^C. A Lipschitzian mapping is said to be nonexpansive if kn—l
for all n ^ l and asymptotically nonexpansive if lim kn — l} respectively. Let

S={S(t):t^O} be a family of nonexpansive mappings of C into itself such that
S(0)=J, S(t+s)=S(t)S(s) for all t, SGΞ[0, OO) and S(t)x is continuous in te [0, oo>
for each Λ G C . Then S is said to be a nonexpansive semigroup on C. In [1],
Bruck introduced the notion of an ' almost-orbit of a nonexpansive mapping.
Miyadera and Kobayashi [11] extended the notion to the case of a nonexpansive
semigroup; see also Takahashi and Park [14] for general commutative semi-
groups. Recently, the authors .established the weak convergence of an almost-
orbit of a noncommutative Lipschitzian semigroup in a Hubert space [15]. In
this paper, we shall extend the result in [15] to the case of Banach spaces.
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Let G be a right reversible semitopological semigroup and let S={S(t):
be a Lipschitzian representation of G on C. We show that if C is a nonempty
closed convex subset of a uniformly convex Banach space E and if limsup kt^l,

where kt is the Lipschitzian constant of S(t) (teG), then the set F(S) of all
common fixed points of S={S(t):t<=G} is closed and convex. Moreover, if E
has a Frechet differentiable norm and if \u(t):t&G] is an almost-orbit of
S={S(f):fe=G}, then the set

consists of at most one point, where co{u(t):t^s} is the closed convex hull of
{u(t):t^s}. Using this result, we establish the weak convergence of an almost-
orbit {u(t):t(=G} of a right reversible Lipschitzian semigroup in a Banach space.
We also show that if P is the metric projection of E onto F(S), then the strong
limit of Pu(t) exists. These extend results in [10], [12], [14], [15]. Our proofs
employ the methods of Hirano-Takahashi [7], Ishihara-Takahashi [9], Miyadera-
Kobayashi [11], Takahashi [13] and Takahashi-Park [14].

2. Preliminaries.

Let E be a real Banach space and let £ * be its dual, that is, the space of
all continuous linear functionals on E. The value of / G P at X G £ will be
denoted by (x, />. With each x e £ , we associate the set

Using the Hahn-Banach theorem, it is readily verified that J(x)Φ0 for any
The multi-valued map J:E-*E* is called the duality map of E. Let

| # | = 1 } be the unit sphere of E. Then a Banach space E is said to
be smooth provided the limit

lim l * + ' * l - l * l ( 1 )
ί->0 t

exists for each x, h^U. In this case, the norm of E is said to be Gateaux dif-
ferentiable. It is said to be Frechet differentiable if for each x in U, limit (1)
is attained uniformly for h in U. The space E is said to have a uniformly
Gateaux differentiable norm if for each λe£7, limit (1) is attained uniformly
for XGU. The norm of E is said to be uniformly Frechet differentiable (and
E is said to be uniformly smooth) if limit (1) is attained uniformly for (x, h) in
UxU. It is well known that if E is smooth, then the duality map / is single
valued. It is also known that if E has a Frechet differentiable norm, / is norm
to norm continuous; see [2] and [4] for more details.

Let G be a semitopological semigroup, i.e., G is a semigroup with a Haus-
dorff topology such that for each G G G the mappings g-^a-g and g-+g-a from
G to G are continuous. G is said to be right reversible if any two closed left
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ideals of G have nonvoid intersection. If G is right reversible, (G, ̂ ) is a

directed system when the binary relation "<£" on G is defined by a^b if and

only if {a}\jGa^{b}UGb,

3. Lemmas.

In this section, we prove several lemmas which are crucial in studying the
asymptotic behavior of almost-orbits.

Let C be a nonempty closed convex subset of a Banach space E and let G
be a semitopological semigroup.

DEFINITION 1. A family S={S(t):t^G] of mappings from C into itself is
said to be a (continuous) representation of G on C if S satisfies the following:

(1) S(ts)x=S(t)S(s)x for all t, S G G and X G C ;
(2) For every x e C , the mapping s-^S(s)x from G into C is continuous.

DEFINITION 2. Let S={S(t):teG] be a representation of G on C. S is said
to be Lipschitzian on C if for each ί e G , there exists kt>0 such that \S(t)x —
S(t)y\£kt\x-y\ for all *,

See [5] and [8] for fixed point theorems of semigroups of Lipschitzian
mappings. Denote by F(S) the set of all common fixed points of mappings
S(ί), ί e G in G. Then we have the following:

THEOREM 1. Let C be a nonempty closed convex subset of a uniformly convex

real Banach space E and let S—{S(t)\t<^G) be a Lipschitzian representation of

a right reversible semitopological semigroup G on C. If lim sup £ ^ 1 , then F(S)

is a closed and convex subset of C.

Proof. The closedness of F(S) is obvious. To show convexity it is suffi-
cient to show that z=(x+y/2)^F(S) for all x, y^F(S). Let x, y^F(S), xφy.
If limS(t)z—z, then for any

t

S(s)z=lim

t t t

i.e., z^F(S). Hence, it suffices to prove that lim S(t)z=z. If not, there exists

ε>0 such that for any £eG, there is ί Έ G with t'^t and

Choose d>0 so small that

where R=\x—y\>0 and δ is the modulus of convexity of E. Since lim sup kt
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^ 1 , it follows that there is ί0GG such that kt\x—y\£\x—y\+d for t^t0.
P\λtu=2(S(tί)z-x), v=2(y-S(tΌ)z). Then | t t-v |=4|S(fί)z-* |^e. Further,

since tί^Uf we have

\u\=2\S(tί)z-x\£kso\x-y\£\x-y\+d=R+d,

\v\=2\y-S(tl)z\£kt.9\x-y\£\x-y\+d=R+d.

So, we have

and hence

u-\-v
\χ-y\ =

2

This is a contradiction. Therefore, lim S(t)z=z. The proof is completed.

DEFINITION 3. Let G be right reversible and let S={S(t):t^G} be a re-
presentation of G on C. A function u\G-+C is called an almost-orbit of S =
{S(f):te=G} if

lim (sup I u(st)-S(s)u(t) | ) = 0 .
t s

LEMMA 1. Let G be right reversible and let S={S(t):t^G} be Lipschitzian
on C with lim sup kt^l. If {u(t):t^G} and {v(t):t^G} are almost-orbits of

S={S(t):t<EiG}, then the limit of \u(t)—v(t)\ exists. In particular, for every
ZΪΞF(S), the limit of \u(t)-z\ exists.

Proof. Put

=suρ I u(ts)-S(t)u(s) I, ^(s)=:sup Iv(ts)-S(t)v(s) I

for s(=G. Then lim^(s)=lim^(s)=O. Since, for any 5,

I u(ts)-v(ts) I ^ I u(ts)-S(t)u(s) I +1 S(t)u(s)-S(t)v(s) \ +1 S(t)v(s)-v(ts) \

^φ(s)+ψ(s)+kt\u(s)-v(s)\,

we have

inf sup I u(τ)-v(τ)\ ^φ(s)+ψ{s)+(mί sup kτ)\ u(s)-v(s)\

^φ(s)+φ(s)+\u(s)-v(s)\,
and then

inf sup I u(τ)—v(τ) | ̂ sup inf | u(s)—v(s) \ .

Thus, \lm\u(t)-v(t)\ exists. Let z<=F(S) and put v(t)=z. Then v{t) is an



ASYMPTOTIC BEHAVIOR OF ALMOST-ORBITS 133

almost-orbit and hence the limit of \u(t)—z\ exists.

LEMMA 2. Let G be right reversible and let S={S(t):t^G} be Lipschitzian
on C with lim sup £ ^ 1 . Let {u(t):t(=G} be an almost-orbit of S={S(t):ttΞG}.

If F(S)Φ0, then there exists to<^G such that{ u(t):t^t0} is bounded.

Proof. Let z^F(S). Then, since lim\u(t)—z\ exists by Lemma 1, there is

ί o £G such that {\u(t)—z\ :t^t0} is bounded. Hence {u(t):t>t0} is bounded.

LEMMA 3. Let C be a nonempty closed convex subset of a uniformly convex
real Banach space E. Let G be right reversible and let S—{S{t):t^G} be Lip-
schitzian on C with lim sup &j^l. Let {u{t):t^G} be an almost-orbit of S =

{S(t):t<ΞG}. Suppose F(S)Φ0. Let y^F(S) and 0<a<β<l. Then for any

ε>0, there is to^G such that

for all t, s^t0 and /l<=[α, β] .

Proof. By Lemma 1, lim 1^(0—^I exists. Let r=lim\u{t)—y\. If r—0, then

from limsuρ& £ ^l, there exists ί o e G such that
t

\u(t)-y\<ε and kt£2

for all t^t0. Hence, for s, t^t0 and (KΛ^l,

\S(tXλu(s)+(l-λ)y)-(λS(tMs)+(X-X)y)\

^λ I S(tXλu(s)+a-λ)y)-S(t)u(s) I + ( l - i ) I S(tXλu{s)+Q.-X)y)-y I

=2λ(l-λ)kt\u(s)-y\<ε.

Now, let r > 0 . Then we can choose d>0 so small that

where δ is the modulus of convexity of E and

Let 0>O with rQ+2a<r. Then there is to^G such that

\u(s)—y\>r—a, for s^t0,

\S(t)u(s)-u(ts)\<a, for s^t0 and
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kt^2, for t^tQ,

kt I u(s)—y I <r+d, for s, ί^ί0

Suppose that

I S(t)(λu(s)+(l-λ)y)-(λS(t)u(s)+(l-λ)y) I έ e ,

for some s, ί^ί0 and Λe[α, j8]. Put z=λu(s)+(l—λ)y, u=(l-λ)(S(t)z-y) and
v=λ(S(t)u(s)—S(t)z). Then, we have

We also have that

I u -v I = I S(t)z-{λS(t)u(s)+(\-λ)y) I έ
and

λu+{l-λ)v^λ(l-λ){S{t)u{s)-y).

By lemma in [6], we have

and hence \S(t)u(s)—y\<ίr0. This implies that

I u(ts)-y I ^ I u(ts)-S(t)u(s) | + |

< α + r o < r — β .

This contradicts the fact \u(s)—y\>r—a for s^ί0. The proof is completed.

For x, y^E, we denote by [x, 3;] the set {λx+(l—λ)y: O^Ji^l}.

LEMMA 4 (Lau-Takahashi [10]). Let C be a nonempty closed convex subset
of a uniformly convex Banach space E with a Frechet differentiable norm and
let \xa) be a bounded net in C. Let z<^Γ\co{xa\ a^iβ}, y^C and {ya} a net of

β

elements in C with ^ £ [ 3 ; , xa~\ and

// ya-*y> then y=z.

By using Lemma 3 and Lemma A, we prove the following:

LEMMA 5. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E with a Frechet differ entiable norm. Let G be right reversible
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and let S={S(t): ίeG} be Lipschitzian on C with limsup kt<l. Suppose F(S)Φ0

and let {u(t):t<=G} be an almost-orbit of S={S(t):t^G}. If z^Γ\cό{u(t
s

ΠF(S) and y<^F(S), then for any positive number ε, there is SOGG such that

<u(t)-y,J(y-z)>^ε\y-z\

for all t^s0.

Proof. Since F(S)Φ0, we may assume that {u(t):t^G} is bounded. If
y=z, then Lemma 5 is obvious. So, let yΦz. For each t^G, let yt be a unique
element in [y, u(i)~] with

Since yΦz, by Lemma 4, yt does not converge to y. Thus, there is c>0 such
that for any ίeG, there exists t'^t with \yt'—y\^>c. Let

Then there is co>O such that at>^c0 all ί'. In fact, since

c£ Iy t ' -y I =flίΊ"(ίO-^ I ^^ί' -sup| w(0-^

we may put co~c/(sup\u(t)—y\). Let k=\im\u(t)—y\. Then &>0. Choose

r>0 with ε>r and 2r<k, and take α>0 such^that

where δ is the modulus of convexity of the norm and /?= \z—y \ >0. Fix a'<ia.
By Lemma 3, there exists ίiGG such that

\S(sXcou(t)+(l-co)y)-(coS(sMt)+a-co)y)\<a' (2)

for all s, ί^ί1# Since fe=lim| w(ί)—3; | >2r and {w(ί):teG} is an almost-orbit of

. We can choose ί2eG so that

\u(st)-S(s)u(t)\<r, t>t2,

Furthermore, since limsup^t^l and R-\-a'<.R-\-a, we can choose ί3£G such
t

that ksR+a'£R+a for all s^ί3.
Now, let £ 0^G with t^tt> io=l, 2, 3. Fix t'^U. Then, since flί^c0, we

have

Hence
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\ctu(t')+O.-ct)y-z\£max{\z-y\, \z-yt.\) = \z-y\=R.

By (2), we obtain

\coS(s)u(t')+a-Co)y-z\ ^ |

for s^ϊo On the other hand, since \y— z\=R<R+a and

=c01 S(s)u(f)-y I ^ c,( I u(sf O-y I - 1 u(sf )-S(s)w(f) | )

for any s<sG, it follows that

( ( S ( ) ( ί ' ) + ( l ) ) + (

for all s^ί0. This implies that if ua=(c0/2)S(s)u(t')+Q.-(c0/2))y, then |MS

α(^ — us)~z|^ 13;— J2τI for all α ^ l . By Theorem 2.5 in [3], we have

<us+a(y-us)-y, J(y-z)>^

and hence <w5—y, J(y— z)}^0 for all s^t0. Then

for s^ί0. Therefore, for

<u(st')-yfJ(y-z)>£\u(sn-S(s)u(t')\\y-z\

+<S(s)u(jt')-y, J(y-zy><r\y-z\<ε\y-z\.

Hence, for t^tot', there holds

<u(t)-y,J(y-z)>£e\y-z\.

This completes the proof.

4. Asymptotic Behavior.

In this section, we study the asymptotic behavior of an almost-orbit
{u(t):teίG} of S={S(t):t£ΞG}.

THEOREM 2. Let E be a uniformly convex Banach space with a Frechet dif-
ferentiable norm and let C be a nonempty closed convex subset of E. Let G be a
right reversible semitopological semigroup and let S={S(t): teG} be a Lipschitzian
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representation of G on C with l imsup^t^ l . Suppose that {u(t):t(=G} is an

almost-orbit of S={S(t):t^G} and F(S)Φ0. Then the set

Γ\cό{u(t):t^s}ΓλF(S)
s

consists of at most one point.

Proof. Let y, z^Γ\co{u{t): t^s}Γ\F(S). Then, by Theorem 1, (y+z/2)eΞF(S),

it follows from Lemma 5 that for every ε>0, there is to<=G such that

y+z
—z

ε
2

for every t^G. Since y<=Έd{u(tto):t<=G}, we have

v y + z

and hence (y— z, J(y— z)y~\y— z\2<2ε\y — z\. Since ε is arbitrary, we have
y=z.

For a function u: G->C, let α>(w) denote the set of all weak limit points of
the net {u(t):t^G}. If {u(t):t^G} is an almost-orbit of a Lipschitzian semi-
group S={S(t):t^G] and F(S)Φ0, then {w(O:^o} is bounded for some to^G
and hence ω(u)Φ0. Using Theorem 2, we obtain the following results.

THEOREM 3. Let E be a uniformly convex Banach space with a Frechet
differentiable norm and let C be a nonempty closed convex subset of E. Let G be
a right reversible semitopological semigroup and let S = {S(t): te G} be a Lipschitzian
representation of G on C with lim sup kt^l. Suppose F(S)Φ 0 and let \u(t): teG}

be an almost-orbit of S={S(t):t^G}. If ω(u)(ZF(S), then the net {u(t):t^G\
converges weakly to some z<=F(S).

Proof. Let z^ω(u). Then ztΞp\Έδ{u(t): t^s}. By hypothesis, ω(u)dF(S)

and hence z^Γ\cd{u(t):t^s}ΓΛF(S). It follows then from Theorem 2 that
s

ω(u)={z} and therefore {u(t):t^G} converges weakly to z^F(S).

The following theorem is a generalization of Takahashi and Park [14].

THEOREM 4. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E. Let G be a right reversible semitopological semigroup and let
S—{S(t):t^G} be a Lipschitzian representation of G on C with lim sup kt^l.

Suppose F{S)Φ0 and let {u(t):t^G} be an almost-orbit of S={S(t):t(=G}. Let
P denote the metric projection of E onto F(S). Then the strong limit of the net
{Pu(t):t^G} exists and lim Pu(t)—zOy where z0 is a unique element in F(S) such
that
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)—2r| : ZΪΞF(S)}.

Proof. Since F(S)Φ 0, we know that {u(t): feG} is bounded and lim| u(t)—z\

=g(z) exists for each ZEΞF(S). Let R=mf{g(z):z^F(S)} and M={M
g(u)=R}. Then, since gθ) is convex and continuous on F(S) and ̂ )->oo as
|*|-»oo, Mis a nonempty closed convex bounded subset of F(S). Fix zo^M
with g(zQ)—R. Since P is the metric projection of E onto F(S), we have
u(t)-Pu(t)\<\u(t)-y\ for all £<EΞG and y^F{S), and hence

Suppose that infsup|M(S)—PM(5)|</?. Then we may choose ε>0 and ίo^G so

that |M(S)—PM(S)|^/?—e for all s^t0. Since

for all s, t(=G and lim0(s)=o, where ^(s)=sup|M(ίs)—S(ί)M(s)|, we can choose
such that

for all ίeG. Therefore, we obtain that

This is a contradiction. So we conclude that

Now, we claim that lim Pu(t)=z0. If not, then there exists ε>0 such that
t

for any ίeG, |Pw(ίO—^ol^ε for some t'^t. Choose <2>0 so small that

where δ is the modulus of convexity of the norm of E. We have \u(t')—Pu(t')\
and \u(t')—zo\^R+a for large enough f. Therefore we have

nit')- m>)+Z°
2

Since uv=(Pκ(f')+*o)/2eF(S), as in the above,
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for all ίeG. Since lim0(s)=O, there is t' such that

and hence
n D

lim| w(0—^ί' I— inf sup|u(s)— wt> I ^ ( l i m s u p k^R^ — -
t t t^s t A

This contradicts the fact R='mί{g(z): zeF(S)). Therefore, we have WmPu(t)=z0.
ί

Consequently, it follows that the element zQ^F(S) with g{z0) — min {g(z): z^F(S)}
is unique. The proof is completed.
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