W. TAKAHASHI AND P.-J. ZHANG KODAI MATH. J. 11 (1988), 129--140

ASYMPTOTIC BEHAVIOR OF ALMOST-ORBITS OF SEMIGROUPS OF LIPSCHITZIAN MAPPINGS IN BANACH SPACES

BY WATARU TAKAHASHI AND PEI-JUN ZHANG

Abstract

Let C be a nonempty closed convex subset of a uniformly convex Banach space E, G a right reversible semitopological semigroup and $S = \{S(t) : t \in G\}$ a continuous representation of G as Lipschitzian self-mappings on C. We consider the asymptotic behavior of an almost-orbit $\{u(t) : t \in G\}$ of $S = \{S(t) : t \in G\}$. We show that if E has a Fréchet differentiable norm and if $\limsup k_t \leq 1$, then the closed convex set

$$\bigcap_{s \in G} \overline{co} \{ u(t) : t \ge s \} \cap F(S)$$

consists of at most one point, where k_t is the Lipschitzian constant of S(t). This result is applied to study the problem of weak convergence of the net $\{u(t): t \in G\}$.

1. Introduction.

Let C be a nonempty closed convex subset of a real Banach space E and let T be a mapping of C into itself. T is said to be a Lipschitzian mapping if for each $n \ge 1$ there exists a positive real number k_n such that

$$|T^n x - T^n y| \leq k_n |x - y|$$

for all $x, y \in C$. A Lipschitzian mapping is said to be nonexpansive if $k_n=1$ for all $n \ge 1$ and asymptotically nonexpansive if $\lim k_n=1$, respectively. Let

 $S = \{S(t): t \ge 0\}$ be a family of nonexpansive mappings of C into itself such that S(0)=I, S(t+s)=S(t)S(s) for all $t, s \in [0, \infty)$ and S(t)x is continuous in $t \in [0, \infty)$ for each $x \in C$. Then S is said to be a nonexpansive semigroup on C. In [1], Bruck introduced the notion of an almost-orbit of a nonexpansive mapping. Miyadera and Kobayashi [11] extended the notion to the case of a nonexpansive semigroup; see also Takahashi and Park [14] for general commutative semigroups. Recently, the authors established the weak convergence of an almost-orbit of a noncommutative Lipschitzian semigroup in a Hilbert space [15]. In this paper, we shall extend the result in [15] to the case of Banach spaces.

Received November 19, 1987

Let G be a right reversible semitopological semigroup and let $S = \{S(t) : t \in G\}$ be a Lipschitzian representation of G on C. We show that if C is a nonempty closed convex subset of a uniformly convex Banach space E and if $\limsup k_t \leq 1$,

where k_t is the Lipschitzian constant of S(t) $(t \in G)$, then the set F(S) of all common fixed points of $S = \{S(t): t \in G\}$ is closed and convex. Moreover, if E has a Fréchet differentiable norm and if $\{u(t): t \in G\}$ is an almost-orbit of $S = \{S(t): t \in G\}$, then the set

$$\bigcap_{s\in G} \overline{co} \{ u(t) : t \ge s \} \cap F(S)$$

consists of at most one point, where $\overline{co}\{u(t):t \ge s\}$ is the closed convex hull of $\{u(t):t \ge s\}$. Using this result, we establish the weak convergence of an almostorbit $\{u(t):t \ge G\}$ of a right reversible Lipschitzian semigroup in a Banach space. We also show that if P is the metric projection of E onto F(S), then the strong limit of Pu(t) exists. These extend results in [10], [12], [14], [15]. Our proofs employ the methods of Hirano-Takahashi [7], Ishihara-Takahashi [9], Miyadera-Kobayashi [11], Takahashi [13] and Takahashi-Park [14].

2. Preliminaries.

Let E be a real Banach space and let E^* be its dual, that is, the space of all continuous linear functionals on E. The value of $f \in E^*$ at $x \in E$ will be denoted by $\langle x, f \rangle$. With each $x \in E$, we associate the set

$$J(x) = \{ f \in E^* : \langle x, f \rangle = |x|^2 = |f|^2 \}.$$

Using the Hahn-Banach theorem, it is readily verified that $J(x) \neq \emptyset$ for any $x \in E$. The multi-valued map $J: E \to E^*$ is called the duality map of E. Let $U = \{x \in E : |x| = 1\}$ be the unit sphere of E. Then a Banach space E is said to be smooth provided the limit

$$\lim_{t \to 0} \frac{|x+th| - |x|}{t} \tag{1}$$

exists for each $x, h \in U$. In this case, the norm of E is said to be Gâteaux differentiable. It is said to be Fréchet differentiable if for each x in U, limit (1) is attained uniformly for h in U. The space E is said to have a uniformly Gâteaux differentiable norm if for each $h \in U$, limit (1) is attained uniformly for $x \in U$. The norm of E is said to be uniformly Fréchet differentiable (and E is said to be uniformly smooth) if limit (1) is attained uniformly for (x, h) in $U \times U$. It is well known that if E is smooth, then the duality map J is single valued. It is also known that if E has a Fréchet differentiable norm, J is norm to norm continuous; see [2] and [4] for more details.

Let G be a semitopological semigroup, i.e., G is a semigroup with a Hausdorff topology such that for each $a \in G$ the mappings $g \rightarrow a \cdot g$ and $g \rightarrow g \cdot a$ from G to G are continuous. G is said to be right reversible if any two closed left ideals of G have nonvoid intersection. If G is right reversible, (G, \leq) is a directed system when the binary relation " \leq " on G is defined by $a \leq b$ if and only if $\{a\} \cup \overline{Ga} \supseteq \{b\} \cup \overline{Gb}$.

3. Lemmas.

In this section, we prove several lemmas which are crucial in studying the asymptotic behavior of almost-orbits.

Let C be a nonempty closed convex subset of a Banach space E and let G be a semitopological semigroup.

DEFINITION 1. A family $S = \{S(t) : t \in G\}$ of mappings from C into itself is said to be a *(continuous) representation* of G on C if S satisfies the following:

- (1) S(ts)x=S(t)S(s)x for all $t, s \in G$ and $x \in C$;
- (2) For every $x \in C$, the mapping $s \rightarrow S(s)x$ from G into C is continuous.

DEFINITION 2. Let $S = \{S(t) : t \in G\}$ be a representation of G on C. S is said to be *Lipschitzian* on C if for each $t \in G$, there exists $k_t > 0$ such that $|S(t)x - S(t)y| \le k_t |x-y|$ for all $x, y \in C$.

See [5] and [8] for fixed point theorems of semigroups of Lipschitzian mappings. Denote by F(S) the set of all common fixed points of mappings S(t), $t \in G$ in C. Then we have the following:

THEOREM 1. Let C be a nonempty closed convex subset of a uniformly convex real Banach space E and let $S = \{S(t): t \in G\}$ be a Lipschitzian representation of a right reversible semitopological semigroup G on C. If $\limsup_{t \to t} k_t \leq 1$, then F(S) is a closed and convex subset of C.

Proof. The closedness of F(S) is obvious. To show convexity it is sufficient to show that $z=(x+y/2)\in F(S)$ for all $x, y\in F(S)$. Let $x, y\in F(S), x\neq y$. If $\lim_{x \to \infty} S(t)z=z$, then for any $s\in G$,

$$S(s)z = \lim S(s)S(t)z = \lim S(st)z = \lim S(t)z = z$$
,

i.e., $z \in F(S)$. Hence, it suffices to prove that $\lim_{t} S(t)z=z$. If not, there exists $\varepsilon > 0$ such that for any $t \in G$, there is $t' \in G$ with $t' \ge t$ and

$$4|S(t')z-z| = |2(S(t')z-x)-2(y-S(t')z)| \ge \varepsilon.$$

Choose d > 0 so small that

$$(R+d)\left(1-\delta\left(\frac{\varepsilon}{R+d}\right)\right) < R$$
,

where R = |x-y| > 0 and δ is the modulus of convexity of E. Since $\limsup_{t \to 0} k_t$

 ≤ 1 , it follows that there is $t_0 \in G$ such that $k_t | x - y | \leq |x - y| + d$ for $t \geq t_0$.

Put $u=2(S(t'_0)z-x)$, $v=2(y-S(t'_0)z)$. Then $|u-v|=4|S(t'_0)z-z|\ge \varepsilon$. Further, since $t'_0\ge t_{0f}$ we have

$$|u| = 2|S(t'_0)z - x| \le k_{t'_0}|x - y| \le |x - y| + d = R + d,$$

$$|v| = 2|y - S(t'_0)z| \le k_{t'_0}|x - y| \le |x - y| + d = R + d.$$

So, we have

$$\left|\frac{u+v}{2}\right| \leq (R+d) \left(1 - \delta\left(\frac{\varepsilon}{R+d}\right)\right),$$

and hence

$$|x-y| = \left|\frac{u+v}{2}\right| \leq (R+d)\left(1-\delta\left(\frac{\varepsilon}{R+d}\right)\right) < R = |x-y|$$

This is a contradiction. Therefore, $\lim_{t} S(t)z=z$. The proof is completed.

DEFINITION 3. Let G be right reversible and let $S = \{S(t) : t \in G\}$ be a representation of G on C. A function $u: G \rightarrow C$ is called an *almost-orbit* of $S = \{S(t) : t \in G\}$ if

$$\lim_t (\sup_s |u(st) - S(s)u(t)|) = 0.$$

LEMMA 1. Let G be right reversible and let $S = \{S(t) : t \in G\}$ be Lipschitzian on C with $\limsup_{t} k_t \leq 1$. If $\{u(t) : t \in G\}$ and $\{v(t) : t \in G\}$ are almost-orbits of $S = \{S(t) : t \in G\}$, then the limit of |u(t) - v(t)| exists. In particular, for every $z \in F(S)$, the limit of |u(t) - z| exists.

Proof. Put

$$\phi(s) = \sup |u(ts) - S(t)u(s)|, \qquad \phi(s) = \sup |v(ts) - S(t)v(s)|$$

for $s \in G$. Then $\lim_{s \to 0} \phi(s) = \lim_{s \to 0} \phi(s) = 0$. Since, for any $s, t \in G$,

$$|u(ts) - v(ts)| \le |u(ts) - S(t)u(s)| + |S(t)u(s) - S(t)v(s)| + |S(t)v(s) - v(ts)|$$

$$\le \phi(s) + \phi(s) + k_t |u(s) - v(s)|,$$

we have

$$\begin{split} \inf_{t} \sup_{t \leq \tau} |u(\tau) - v(\tau)| &\leq \phi(s) + \psi(s) + (\inf_{t} \sup_{t \leq \tau} |k_{\tau}|) |u(s) - v(s)| \\ &\leq \phi(s) + \psi(s) + |u(s) - v(s)| , \end{split}$$

and then

$$\inf_{t} \sup_{t \leq \tau} |u(\tau) - v(\tau)| \leq \sup_{t} \inf_{t \leq s} |u(s) - v(s)|.$$

Thus, $\lim_{t} |u(t)-v(t)|$ exists. Let $z \in F(S)$ and put $v(t) \equiv z$. Then v(t) is an

almost-orbit and hence the limit of |u(t)-z| exists.

LEMMA 2. Let G be right reversible and let $S = \{S(t): t \in G\}$ be Lipschitzian on C with $\limsup_{t} k_t \leq 1$. Let $\{u(t): t \in G\}$ be an almost-orbit of $S = \{S(t): t \in G\}$. If $F(S) \neq \emptyset$, then there exists $t_0 \in G$ such that $\{u(t): t \geq t_0\}$ is bounded.

Proof. Let $z \in F(S)$. Then, since $\lim_{t} |u(t)-z|$ exists by Lemma 1, there is $t_0 \in G$ such that $\{|u(t)-z|:t \ge t_0\}$ is bounded. Hence $\{u(t):t \ge t_0\}$ is bounded.

LEMMA 3. Let C be a nonempty closed convex subset of a uniformly convex real Banach space E. Let G be right reversible and let $S = \{S(t): t \in G\}$ be Lipschitzian on C with $\limsup_{t} k_t \leq 1$. Let $\{u(t): t \in G\}$ be an almost-orbit of $S = \{S(t): t \in G\}$. Suppose $F(S) \neq \emptyset$. Let $y \in F(S)$ and $0 < \alpha \leq \beta < 1$. Then for any $\varepsilon > 0$, there is $t_0 \in G$ such that

$$|S(t)(\lambda u(s) + (1 - \lambda)y) - (\lambda S(t)u(s) + (1 - \lambda)y)| < \varepsilon$$

for all $t, s \ge t_0$ and $\lambda \in [\alpha, \beta]$.

Proof. By Lemma 1, $\lim_{t} |u(t)-y|$ exists. Let $r = \lim_{t} |u(t)-y|$. If r = 0, then from $\lim_{t} \sup k_t \leq 1$, there exists $t_0 \in G$ such that

$$|u(t)-y| < \varepsilon$$
 and $k_t \leq 2$

for all $t \ge t_0$. Hence, for s, $t \ge t_0$ and $0 \le \lambda \le 1$,

$$\begin{aligned} |S(t)(\lambda u(s) + (1-\lambda)y) - (\lambda S(t)u(s) + (1-\lambda)y)| \\ &\leq \lambda |S(t)(\lambda u(s) + (1-\lambda)y) - S(t)u(s)| + (1-\lambda)|S(t)(\lambda u(s) + (1-\lambda)y) - y| \\ &\leq \lambda k_t |\lambda u(s) + (1-\lambda)y - u(s)| + (1-\lambda)k_t |\lambda u(s) + (1-\lambda)y - y| \\ &= 2\lambda (1-\lambda)k_t |u(s) - y| < \varepsilon. \end{aligned}$$

Now, let r > 0. Then we can choose d > 0 so small that

$$(r+d)\left(1-c\delta\left(\frac{\varepsilon}{r+d}\right)\right)=r_0< r$$
,

where δ is the modulus of convexity of E and

$$c = \min \left\{ 2\lambda(1-\lambda) : a \leq \lambda \leq \beta \right\}.$$

Let a > 0 with $r_0 + 2a < r$. Then there is $t_0 \in G$ such that

$$|u(s)-y| > r-a$$
, for $s \ge t_0$,
 $|S(t)u(s)-u(ts)| < a$, for $s \ge t_0$ and $t \in G$,

WATARU TAKAHASHI AND PEI-JUN ZHANG

 $k_t \leq 2, \quad \text{for} \quad t \geq t_0,$ $k_t | u(s) - y | \leq r + d, \quad \text{for} \quad s, t \geq t_0.$

Suppose that

$$|S(t)(\lambda u(s) + (1-\lambda)y) - (\lambda S(t)u(s) + (1-\lambda)y)| \ge \varepsilon,$$

for some s, $t \ge t_0$ and $\lambda \in [\alpha, \beta]$. Put $z = \lambda u(s) + (1-\lambda)y$, $u = (1-\lambda)(S(t)z-y)$ and $v = \lambda(S(t)u(s) - S(t)z)$. Then, we have

$$|u| \leq (1-\lambda)k_t |z-y| = \lambda(1-\lambda)k_t |u(s)-y| \leq \lambda(1-\lambda)(r+d),$$

$$|v| \leq \lambda k_t |z-u(s)| = \lambda(1-\lambda)k_t |u(s)-y| \leq \lambda(1-\lambda)(r+d).$$

We also have that

$$|u-v| = |S(t)z - (\lambda S(t)u(s) + (1-\lambda)y)| \ge \varepsilon$$

and

$$\lambda u + (1 - \lambda)v = \lambda (1 - \lambda)(S(t)u(s) - y)_{\bullet}$$

By lemma in [6], we have

$$\begin{split} \lambda(1-\lambda) |S(t)u(s)-y| &= |\lambda u + (1-\lambda)v| \\ &\leq \lambda(1-\lambda)(r+d) \Big(1-2\lambda(1-\lambda)\delta\Big(\frac{\varepsilon}{r+d}\Big)\Big) \\ &\leq \lambda(1-\lambda)(r+d) \Big(1-c\delta\Big(\frac{\varepsilon}{r+d}\Big)\Big) = \lambda(1-\lambda)r_{0}, \end{split}$$

and hence $|S(t)u(s)-y| \leq r_0$. This implies that

$$|u(ts)-y| \le |u(ts)-S(t)u(s)| + |S(t)u(s)-y|$$

< $a+r_0 < r-a$.

This contradicts the fact |u(s)-y| > r-a for $s \ge t_0$. The proof is completed.

For x, $y \in E$, we denote by [x, y] the set $\{\lambda x + (1-\lambda)y : 0 \leq \lambda \leq 1\}$.

LEMMA 4 (Lau-Takahashi [10]). Let C be a nonempty closed convex subset of a uniformly convex Banach space E with a Fréchet differentiable norm and let $\{x_{\alpha}\}$ be a bounded net in C. Let $z \in \bigcap_{\beta} \overline{co} \{x_{\alpha} : \alpha \ge \beta\}$, $y \in C$ and $\{y_{\alpha}\}$ a net of elements in C with $y_{\alpha} \in [y, x_{\alpha}]$ and

$$|y_{\alpha}-z| = \min\{|u-z|: u \in [y, x_{\alpha}]\}.$$

If $y_{\alpha} \rightarrow y$, then y=z.

By using Lemma 3 and Lemma 4, we prove the following:

LEMMA 5. Let C be a nonempty closed convex subset of a uniformly convex Banach space E with a Fréchet differentiable norm. Let G be right reversible

134

and let $S = \{S(t) : t \in G\}$ be Lipschitzian on C with $\limsup_{t} k_t \leq 1$. Suppose $F(S) \neq \emptyset$ and let $\{u(t) : t \in G\}$ be an almost-orbit of $S = \{S(t) : t \in G\}$. If $z \in \bigcap_s \overline{co} \{u(t) : t \geq s\}$ $\cap F(S)$ and $y \in F(S)$, then for any positive number ε , there is $s_0 \in G$ such that

$$\langle u(t)-y, J(y-z)\rangle \leq \varepsilon |y-z|$$

for all $t \ge s_0$.

Proof. Since $F(S) \neq \emptyset$, we may assume that $\{u(t): t \in G\}$ is bounded. If y=z, then Lemma 5 is obvious. So, let $y \neq z$. For each $t \in G$, let y_t be a unique element in [y, u(t)] with

$$|y_t-z| = \min\{|u-z|: u \in [y, u(t)]\}.$$

Since $y \neq z$, by Lemma 4, y_t does not converge to y. Thus, there is c > 0 such that for any $t \in G$, there exists $t' \ge t$ with $|y_{t'} - y| \ge c$. Let

$$y_{t'} = a_{t'} u(t') + (1 - a_{t'}) y, \quad 0 \le a_{t'} \le 1.$$

Then there is $c_0 > 0$ such that $a_{t'} \ge c_0$ all t'. In fact, since

$$c \leq |y_{t'} - y| = a_{t'} |u(t') - y| \leq a_{t'} \cdot \sup |u(t) - y|,$$

we may put $c_0 = c/(\sup_t |u(t)-y|)$. Let $k = \lim_t |u(t)-y|$. Then k > 0. Choose r > 0 with $\varepsilon > r$ and 2r < k, and take a > 0 such that

$$(R+a)\left(1-\delta\left(\frac{c_0r}{R+a}\right)\right) < R$$

where δ is the modulus of convexity of the norm and R = |z-y| > 0. Fix a' < a. By Lemma 3, there exists $t_1 \in G$ such that

$$|S(s)(c_0u(t) + (1 - c_0)y) - (c_0S(s)u(t) + (1 - c_0)y)| < a'$$
(2)

for all $s, t \ge t_1$. Since $k = \lim_t |u(t) - y| > 2r$ and $\{u(t): t \in G\}$ is an almost-orbit of $S = \{S(t): t \in G\}$. We can choose $t_2 \in G$ so that

$$|u(t)-y| \ge 2r, \quad t \ge t_2,$$

$$|u(st)-S(s)u(t)| < r, \quad t \ge t_2, \quad s \in G.$$

Furthermore, since $\lim_{t} \sup k_t \leq 1$ and R+a' < R+a, we can choose $t_3 \in G$ such that $k_s R+a' \leq R+a$ for all $s \geq t_3$.

Now, let $t_0 \in G$ with $t_0 \ge t_i$, $i_0 = 1, 2, 3$. Fix $t' \ge t_0$. Then, since $a_{t'} \ge c_0$, we have

$$c_0 u(t') + (1-c_0) y \in [y, a_{t'} u(t') + (1-a_{t'}) y] = [y, y_{t'}].$$

Hence

$$|c_0u(t')+(1-c_0)y-z| \le \max\{|z-y|, |z-y_{t'}|\} = |z-y| = R$$

By (2), we obtain

$$|c_0 S(s)u(t') + (1 - c_0)y - z| \le |S(s)(c_0 u(t') + (1 - c_0)y) - z| + a'$$

$$\le k_s |c_0 u(t') + (1 - c_0)y - z| + a' \le k_s R + a' \le R + a$$

for $s \ge t_0$. On the other hand, since |y-z| = R < R+a and

$$|(c_0S(s)u(t')+(1-c_0)y-z)-(y-z)| = |c_0S(s)u(t')+(1-c_0)y-y|$$

= $c_0|S(s)u(t')-y| \ge c_0(|u(st')-y|-|u(st')-S(s)u(t')|) \ge c_0t$

for any $s \in G$, it follows that

$$\left|\frac{1}{2}(c_0(S(s)u(t')+(1-c_0)y-z)+\frac{1}{2}(y-z)\right| = \left|\frac{c_0}{2}S(s)u(t')+\left(1-\frac{c_0}{2}\right)y-z\right|$$
$$\leq (R+a)\left(1-\delta\left(\frac{c_0r}{R+a}\right)\right) < R$$

for all $s \ge t_0$. This implies that if $u_s = (c_0/2)S(s)u(t') + (1-(c_0/2))y$, then $|u_s + \alpha(y-u_s)-z| \ge |y-z|$ for all $\alpha \ge 1$. By Theorem 2.5 in [3], we have

$$\langle u_s + \alpha(y - u_s) - y, J(y - z) \rangle \geq 0$$

and hence $\langle u_s - y, J(y-z) \rangle \leq 0$ for all $s \geq t_0$. Then

$$\langle S(s)u(t')-y, J(y-z)\rangle \leq 0$$

for $s \ge t_0$. Therefore, for $s \ge t_0$,

$$\langle u(st') - y, J(y-z) \rangle \leq |u(st') - S(s)u(t')| |y-z|$$

+ $\langle S(s)u(t') - y, J(y-z) \rangle \langle r|y-z| \langle \varepsilon |y-z| .$

Hence, for $t \ge t_0 t'$, there holds

$$\langle u(t)-y, J(y-z)\rangle \leq \varepsilon |y-z|.$$

This completes the proof.

4. Asymptotic Behavior.

In this section, we study the asymptotic behavior of an almost-orbit $\{u(t):t\in G\}$ of $S=\{S(t):t\in G\}$.

THEOREM 2. Let E be a uniformly convex Banach space with a Fréchet differentiable norm and let C be a nonempty closed convex subset of E. Let G be a right reversible semitopological semigroup and let $S = \{S(t): t \in G\}$ be a Lipschitzian

136

representation of G on C with $\limsup_{t} k_t \leq 1$. Suppose that $\{u(t): t \in G\}$ is an almost-orbit of $S = \{S(t): t \in G\}$ and $F(S) \neq \emptyset$. Then the set

$$\bigcap \overline{co} \{ u(t) : t \ge s \} \cap F(S)$$

consists of at most one point.

Proof. Let $y, z \in \bigcap_{s} \overline{co} \{u(t) : t \ge s\} \cap F(S)$. Then, by Theorem 1, $(y+z/2) \in F(S)$, it follows from Lemma 5 that for every $\varepsilon > 0$, there is $t_0 \in G$ such that

$$\left\langle u(tt_0) - \frac{y+z}{2}, J\left(\frac{y+z}{2} - z\right) \right\rangle \leq \varepsilon \left| \frac{y+z}{2} - z \right| = \frac{\varepsilon}{2} |y-z|$$

for every $t \in G$. Since $y \in \overline{co} \{u(tt_0) : t \in G\}$, we have

$$\left\langle y - \frac{y+z}{2}, J\left(\frac{y+z}{2} - z\right) \right\rangle \leq \frac{\varepsilon}{2} |y-z|$$

and hence $\langle y-z, J(y-z)\rangle = |y-z|^2 \leq 2\varepsilon |y-z|$. Since ε is arbitrary, we have y=z.

For a function $u: G \to C$, let $\omega(u)$ denote the set of all weak limit points of the net $\{u(t): t \in G\}$. If $\{u(t): t \in G\}$ is an almost-orbit of a Lipschitzian semigroup $S = \{S(t): t \in G\}$ and $F(S) \neq \emptyset$, then $\{u(t): t \geq t_0\}$ is bounded for some $t_0 \in G$ and hence $\omega(u) \neq \emptyset$. Using Theorem 2, we obtain the following results.

THEOREM 3. Let E be a uniformly convex Banach space with a Fréchet differentiable norm and let C be a nonempty closed convex subset of E. Let G be a right reversible semitopological semigroup and let $S = \{S(t): t \in G\}$ be a Lipschitzian representation of G on C with $\limsup_{t} k_t \leq 1$. Suppose $F(S) \neq \emptyset$ and let $\{u(t): t \in G\}$

be an almost-orbit of $S = \{S(t) : t \in G\}$. If $\omega(u) \subset F(S)$, then the net $\{u(t) : t \in G\}$ converges weakly to some $z \in F(S)$.

Proof. Let $z \in \omega(u)$. Then $z \in \bigcap_{s} \overline{co} \{u(t) : t \ge s\}$. By hypothesis, $\omega(u) \subset F(S)$ and hence $z \in \bigcap_{s} \overline{co} \{u(t) : t \ge s\} \cap F(S)$. It follows then from Theorem 2 that $\omega(u) = \{z\}$ and therefore $\{u(t) : t \in G\}$ converges weakly to $z \in F(S)$.

The following theorem is a generalization of Takahashi and Park [14].

THEOREM 4. Let C be a nonempty closed convex subset of a uniformly convex Banach space E. Let G be a right reversible semitopological semigroup and let $S = \{S(t): t \in G\}$ be a Lipschitzian representation of G on C with $\limsup_{t} k_t \leq 1$. Suppose $F(S) \neq \emptyset$ and let $\{u(t): t \in G\}$ be an almost-orbit of $S = \{S(t): t \in G\}$. Let P denote the metric projection of E onto F(S). Then the strong limit of the net $\{Pu(t): t \in G\}$ exists and $\lim_{t} Pu(t) = z_0$, where z_0 is a unique element in F(S) such that

WATARU TAKAHASHI AND PEI-JUN ZHANG

$$\lim_{t} |u(t) - z_0| = \min \{ \lim_{t} |u(t) - z| : z \in F(S) \}.$$

Proof. Since $F(S) \neq \emptyset$, we know that $\{u(t) : t \in G\}$ is bounded and $\lim_{t} |u(t)-z|$

=g(z) exists for each $z \in F(S)$. Let $R = \inf\{g(z) : z \in F(S)\}$ and $M = \{u \in F(S) : g(u) = R\}$. Then, since g(z) is convex and continuous on F(S) and $g(z) \to \infty$ as $|z| \to \infty$, M is a nonempty closed convex bounded subset of F(S). Fix $z_0 \in M$ with $g(z_0) = R$. Since P is the metric projection of E onto F(S), we have $|u(t) - Pu(t)| \le |u(t) - y|$ for all $t \in G$ and $y \in F(S)$, and hence

$$\inf_{t} \sup_{t \leq s} |u(s) - Pu(s)| \leq R.$$

Suppose that $\inf_{t} \sup_{t \leq s} |u(s) - Pu(s)| < R$. Then we may choose $\varepsilon > 0$ and $t_0 \in G$ so that $|u(s) - Pu(s)| \leq R - \varepsilon$ for all $s \geq t_0$. Since

$$|u(ts) - Pu(s)| \leq \phi(s) + k_t |u(s) - Pu(s)|$$

for all s, $t \in G$ and $\lim_{s} \phi(s) = 0$, where $\phi(s) = \sup_{t} |u(ts) - S(t)u(s)|$, we can choose $s \ge t_0$ such that

$$|u(ts) - Pu(s)| \leq k_t |u(s) - Pu(s)| + \frac{\varepsilon}{2} \leq k_t (R - \varepsilon) + \frac{\varepsilon}{2}$$

for all $t \in G$. Therefore, we obtain that

$$\begin{split} \lim_{t} |u(t) - Pu(s)| &= \inf_{t} \sup_{t \le \tau} |u(\tau) - Pu(s)| \le (\limsup_{t} k_{t})(R - \varepsilon) + \frac{\varepsilon}{2} \\ &\le R - \varepsilon + \frac{\varepsilon}{2} = R - \frac{\varepsilon}{2} < R \,. \end{split}$$

This is a contradiction. So we conclude that

$$\inf_t \sup_{t \leq s} |u(s) - Pu(s)| = R.$$

Now, we claim that $\lim_{t} Pu(t) = z_0$. If not, then there exists $\varepsilon > 0$ such that for any $t \in G$, $|Pu(t') - z_0| \ge \varepsilon$ for some $t' \ge t$. Choose a > 0 so small that

$$(R+a)\left(1-\delta\left(\frac{\varepsilon}{R+a}\right)\right)=R_1< R$$
,

where δ is the modulus of convexity of the norm of *E*. We have $|u(t')-Pu(t')| \leq R+a$ and $|u(t')-z_0| \leq R+a$ for large enough *t'*. Therefore we have

$$\left| u(t') - \frac{Pu(t') + z_0}{2} \right| \leq (R+a) \left(1 - \delta \left(\frac{\varepsilon}{R+a} \right) \right) = R_1.$$

Since $w_{t'} = (Pu(t') + z_0)/2 \in F(S)$, as in the above,

$$|u(tt') - w_{t'}| \leq k_t |u(t') - w_{t'}| + \phi(t')$$

138

for all $t \in G$. Since $\lim_{s \to 0} \phi(s) = 0$, there is t' such that

$$|u(tt') - w_{t'}| \leq k_t |u(t') - w_{t'}| + \frac{R - R_1}{2} \leq k_t R_1 + \frac{R - R_1}{2},$$

and hence

$$\begin{split} \lim_{t} |u(t) - w_{t'}| &= \inf_{t} \sup_{t \le s} |u(s) - w_{t'}| \le (\limsup_{t} k_{t}) R_{1} + \frac{R - R_{1}}{2} \\ &\le R_{1} + \frac{R - R_{1}}{2} = \frac{R + R_{1}}{2} < R \,. \end{split}$$

This contradicts the fact $R = \inf \{g(z) : z \in F(S)\}$. Therefore, we have $\lim_{t} Pu(t) = z_0$.

Consequently, it follows that the element $z_0 \in F(S)$ with $g(z_0) = \min \{g(z) : z \in F(S)\}$ is unique. The proof is completed.

References

- [1] R.E. BRUCK, A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, Israel J. Math., 32 (1979), 107-116.
- [2] F.E. BROWDER, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Sympos. Pure Math., Vol. 18, No. 2, Amer. Math. Soc., Providence, R.I., 1976.
- [3] F.R. DEUTSCH AND P.H. MASERICK, Application of the Hahn-Banach theorem in approximation theory, SIAM Rev., 9 (1967), 516-530.
- [4] J. DIESTEL, Geometry of Banach spaces, selected topics, Lecture notes in mathematics, 485 (1975), Springer-Verlag, Berlin-Heidelberg, New York.
- [5] K. GOEBEL, W.A. KIRK AND R.L. THELE, Uniformly Lipschitzian families of transformations in Banach space, Can. J. Math., 26 (1974), 1245-1256.
- [6] C.W. GROETSH, A note on segmenting Mann iterates, J. Math. Anal. Appl., 40 (1972), 369-372.
- [7] N. HIRANO AND W. TAKAHASHI, Nonlinear ergodic theorems for an amenable semigroup of nonexpansive mappings in a Banach space, Pacific J. Math., 112 (1984), 333-346.
- [8] H. ISHIHARA AND W. TAKAHASHI, Fixed point theorems for uniformly Lipschitzian semigroups in Hilbert spaces, J. Math. Anal. Appl., 127 (1987), 206-210.
- [9] H. ISHIHARA AND W. TAKAHASHI, A nonlinear ergodic theorem for a reversible semigroup of Lipschitzian mappings in a Hilbert space, to appear in Proc. Amer. Math. Soc.
- [10] A. T. LAU AND W. TAKAHASHI, Weak convergence and non-linear ergodic theorems for reversible semigroup of nonexpansive mappings, Pacific J. Math., 126 (1987), 277-294.
- [11] I. MIYADERA AND K. KOBAYASHI, On the asymptotic behavior of almost-orbits of nonlinear contraction semigroups in Banach spaces, Nonlinear Analysis, 6 (1982), 349-365.
- [12] G. MOROŞANU, Asymptotic behavior of solutions of differential equations associated to monotone operators, Nonlinear Analysis, 3 (1979), 873-883.
- [13] W. TAKAHASHI, A nonlinear ergodic theorem for a reversible semigroup of

nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc., 97 (1986), 55-58.

- [14] W. TAKAHASHI AND J.Y. PARK, On the asymptotic behavior of almost-orbits of commutative semigroups in Banach spaces, Nonlinear and Convex Analysis, Marcel Dekker, Inc., New York and Basel (1987), 271-293.
- [15] W. TAKAHASHI AND PEI-JUN ZHANG, Asymptotic behavior of almost-orbits of reversible semigroups of Lipschitzian mappings, to appear.

Department of Information Science Tokyo Institute of Technology Oh-okayama, Meguro-ku, Tokyo 152, Japan