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Abstract

Let C be a nonempty closed convex subset of a uniformly convex Banach space
E, G a right reversible semitopological semigroup and S={S(¢): t&G} a continuous
representation of G as Lipschitzian self-mappings on C. We consider the asymptotic
behavior of an almost-orbit {#(t) : t&G} of S={S(f) : teG}. We show that if E has
a Fréchet differentiable norm and if limtsup k;<1, then the closed convex set

Ncof{u(t) :tz=syNF(S)
seG

consists of at most one point, where k; is the Lipschitzian constant of S(f). This result
is applied to study the problem of weak convergence of the net {u(f):{=G}.

1. Introduction.

Let C be a nonempty closed convex subset of a real Banach space E and
let T be a mapping of C into itself. T is said to be a Lipschitzian mapping if
for each n=1 there exists a positive real number k%, such that

[Tx—T"y|Skalx—y|

for all x, yeC. A Lipschitzian mapping is said to be nonexpansive if k,=1
for all n=1 and asymptotically nonexpansive if lim k£,=1, respectively. Let
n

S={S(#):t=0} be a family of nonexpansive mappings of C into itself such that
S0)=1I, SEt+s)=S#)S(s) for all ¢, s=[0, c0) and S(¢)x is continuous in t=[0, o)
for each x&C. Then S is said to be a nonexpansive semigroup on C. In [1],
Bruck introduced the notion of an "almost-orbit of a nonexpansive mapping.
Miyadera and Kobayashi [11] extended the notion to the case of a nonexpansive
semigroup; see also Takahashi and Park [14] for general commutative semi-
groups. Recently, the authors established the weak convergence of an almost-
orbit of a noncommutative Lipschitzian semigroup in a Hilbert space [15]. In
this paper, we shall extend the result in [15] to the case of Banach spaces.
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Let G be a right reversible semitopological semigroup and let S={S(¢):t=G}
be a Lipschitzian representation of G on C. We show that if C is a nonempty
closed convex subset of a uniformly convex Banach space E and if limtsup k<1,

where k, is the Lipschitzian constant of S(¥) (tG), then the set F(S) of all
common fixed points of S={S():t<G} is closed and convex. Moreover, if E
has a Fréchet differentiable norm and if {u(f):t=G} is an almost-orbit of
S={S(t):t=G}, then the set

ngc—o{u(t):tés}f\F(S)

consists of at most one point, where co{u(?):¢=s} is the closed convex hull of
{u(t):t=s}. Using this result, we establish the weak convergence of an almost-
orbit {u(?):t=G} of a right reversible Lipschitzian semigroup in a Banach space.
We also show that if P is the metric projection of E onto F(S), then the strong
limit of Pu(t) exists. These extend results in [10], [12], [14], [15]. Our proofs
employ the methods of Hirano-Takahashi [7], Ishihara-Takahashi [9], Miyadera-
Kobayashi [11], Takahashi [13] and Takahashi-Park [14].

2. Preliminaries.

Let E be a real Banach space and let E* be its dual, that is, the space of
all continuous linear functionals on E. The value of f€E* at xe E will be
denoted by <x, f>. With each x&E, we associate the set

Jx)y={feE*: L, [r=|x’=|fI"}.

Using the Hahn-Banach theorem, it is readily verified that J(x)#@ for any
x€E. The multi-valued map J: E—E* is called the duality map of E. Let
U={x=E:|x|=1} be the unit sphere of E. Then a Banach space E is said to
be smooth provided the limit

lim |x+th]|—|x|

-0 t

(D

exists for each x, AcU. In this case, the norm of E is said to be Gateaux dif-
ferentiable. It is said to be Fréchet differentiable if for each x in U, limit (1)
is attained uniformly for A in U. The space E is said to have a uniformly
Gateaux differentiable norm if for each h€U, limit (1) is attained uniformly
for x€U. The norm of E is said to be uniformly Fréchet differentiable (and
E is said to be uniformly smooth) if limit (1) is attained uniformly for (x, &) in
UxU. 1t is well known that if E is smooth, then the duality map J is single
valued. It is also known that if E has a Fréchet differentiable norm, J is norm
to norm continuous; see [2] and [4] for more details.

Let G be a semitopological semigroup, i.e., G is a semigroup with a Haus-
dorff topology such that for each ¢=G the mappings g—a-g and g—g-a from
G to G are continuous. G is said to be right reversible if any two closed left
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ideals of G have nonvoid intersection. If G is right reversible, (G, £) is a
directed system when the binary relation “<” on G is defined by a<b if and

only if {a}UGa={b}UGb.

3. Lemmas.

In this section, we prove several lemmas which are crucial in studying the
asymptotic behavior of almost-orbits.
Let C be a nonempty closed convex subset of a Banach space E and let G

be a semitopological semigroup.

DEFINITION 1. A family S={S({):t=G} of mappings from C into itself is
said to be a (continuous) representation of G on C if S satisfies the following :

(1) Sis)x=S@)S(s)x for all ¢, s€G and x=C;

(2) For every x=C, the mapping s—S(s)x from G into C is continuous.

DEFINITION 2. Let S={S@):t=G} be a representation of G on C. S is said
to be Lipschitzian on C if for each t=G, there exists £,>0 such that |S#)x—
Sy Lk x—y]| for all x, yeC.

See [6] and [8] for fixed point theorems of semigroups of Lipschitzian
mappings. Denote by F(S) the set of all common fixed points of mappings
S(t), teG in C. Then we have the following :

THEOREM 1. Let C be a nonempty closed convex subset of a uniformly convex
real Banach space E and let S={S{):t=G} be a Lipschitzian representation of
a right reversible semitopological semigroup G on C. If limcsup k<1, then F(S)

s a closed and convex subset of C.

Proof. The closedness of F(S) is obvious. To show convexity it is suffi-
cient to show that z=(x+7y/2) F(S) for all x, yeF(S). Let x, yeF(S), x#y.
If litm S(t)z=z, then for any s€G,

S(s)z:lizm S(s)S(t)z:li}n S(st)z:litm S)z=z,
i.e., z& F(S). Hence, it suffices to prove that li{n S(t)z=z. If not, there exists
¢>0 such that for any =G, there is t’G with ¢’=t and
415(t")z—z|=12(S@t")z—x)—2(y—S{t")z)| =z«
Choose d>0 so small that

(R+d)(1—( <R,

®ra)

where R=|x—y|>0 and J is the modulus of convexity of E. Since limt sup &,
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<1, it follows that there is {,&G such that k;|x—y|<|x—y|+d for t=t,.
Put u=2(S(t)z—x), v=2(y—S(t5)z). Then |u—v|=4|S()z—z|=¢e. Further,
since #;=t,; we have

lu|=2|S(t)z—x|Skylx—y|S|x—y|+d=R+d,
lv|=2]y—=SUt)z|Skylx—y|S|x—y|+d=R+d.

So, we have

5 =R (1-8(557).
and hence
!x—ylz( “Jz”’ [_s_(R+d)(1—a(Rid))<R=1x—y:.

This is a contradiction. Therefore, litm S(t)z=z. The proof is completed.

DEFINITION 3. Let G be right reversible and let S={S():t=G} be a re-
presentation of G on C. A function u:G—C is called an almost-orbit of S=
{S):teG} if

lirtn (Sl;lpl u(st)—S(s)u(t)|)=0.

LEMMA 1. Let G be right reversible and let S={S(t):t=G} be Lipschitzian
on C with limsyp k.Z1. If {u@®):teG} and {v(t):t=G} are almost-orbits of

S={S@):teG}, then the limit of |u(®)—v(t)| exists. In particular, for every
ze F(S), the limit of |u(t)—z| exists.

Proof. Put
¢(S)=Sltlp [uts)—S®uls)], ¢(s)=sgpiv(ts)—S(t)v(s)l
for s€G. Then lign ¢(s)-——1ism ¢(s)=0. Since, for any s, teG,

[u(ts)—v(ts)| < [ults)—SOu(s) [+ [ SOu(s)—S@w(s) | + | S(Hv(s)—v(ts)|

SP(s)+P(s)+kluls)—uv(s)l,
we have
inf sup| u(z)—u(r)| = ¢(s)+¢(s)+nf sup ko)l u(s)—v(s)|

S G+ P(s)+ [uls)—v(s)I,

and then
inf sup| u(r)—v(r)| <sup inf | u(s)—v(s)| .
t tst t tss

Thus, litmlu(t)——v(t)l exists. Let z€F(S) and put v(t)=z. Then w»(¢) is an
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almost-orbit and hence the limit of |u(#)—z| exists.

LEMMA 2. Let G be right reversible and let S={S(t):t=G} be Lipschitzian
on C with Iim‘sup k:=<1. Let {u(t):t=G} be an almost-orbit of S={S(t):t=G}.

If F(S)+ @, then there exists ty, =G such that{ u(t):t=t,} is bounded.

Proof. Let z&F(S). Then, since lignlu(t)——zl exists by Lemma 1, there is

toeG such that {|u(t)—z|:t=t,} is bounded. Hence {u(?):t=t,} is bounded.

LEMMA 3. Let C be a nonempty closed convex subset of a uniformly convex
real Banach space E. Let G be right reversible and let S={S(t):t=G} be Lip-
schitzian on C with limtsup k., <1. Let {u(t):t€G} be an almost-orbit of S=

{S@):teG}. Suppose F(S)+@. Let yeF(S) and 0<a<f<1. Then for any
>0, there is t,=G such that

| SEAu(s)+(1—2)9)—AS@u(s)+L—2)y)| <
for all t, s=t, and 2€[a, B].
Proof. By Lemma 1, litm]u(t)——yl exists. Let r=litmlu(t)—yl. If =0, then
from limtsup k,<1, there exists t,&G such that
lu(t)—y]|<e and k,<2
for all t=t,. Hence, for s, 1=¢, and 021,
| S@(Au(s)+(1—)y)—(ASBu(s)+(1—2)y)]

S2ISOAu(8)+(1—2)y)—SOu(s) | +(1—2)| SE)XAu(s)+(1—)y)—y|

=2k, | 2u(s)+(1—2)y —u(s) | +A— Dk, | 2u(s)+(1—)y—y|

=2A1—=Dk, | u(s)—y| <e.

Now, let »>0. Then we can choose d>0 so small that

(r+d)(1—co( ) =re<r,

where 0 is the modulus of convexity of E and
c=min{22(1—2): a<A<B}.

Let a>0 with »,4+2a<r. Then there is t,&G such that
lu(s)—y|>r—a, for s=i,,

[ SAu(s)—uts)|<a, for s=t, and teG,
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k=2, for t=t,,
kylu(s)—y|<r+d, for s,t=t,.

Suppose that
[ SE(Au(s)+H(L—2)y)—@ASHu(s)+(1—)y)| =e,

for some s, t=t, and A€[a, B]. Put z=2Au(s)+1—2A)y, u=1—2A)(SE)z—y) and
v=AS@)u(s)—S()z). Then, we have

lu| SQ=Dkilz—y|=2A—=Dk | u(s)—y| SAA—-2A)(r+d),
vl Akl z—u(S)| =A1=Dk, | ul(s)—y | A1-D(+d).
We also have that

lu—v|=[S®z—ASB)u(s)+(1—2)y)| e
and
Au+1—Dv=201—=2)(SE)u(s)—y).

By lemma in [6], we have

A1=DISOu(s)—y|=Au+1—2w]

gz(l—z)(r+d>(l—22<l—l)5( rfd ))

&
gl(l—l)(r+d)<l—05<———r = ))=11—2r,
and hence |S(#)u(s)—y|=r,. This implies that
[u(ts)—y | < |ults)—S@Ou(s)| + [ SHul(s)—y|
<a-+r,<r—a.
This contradicts the fact |u(s)—y|>r—a for s=#,. The proof is completed.
For x, y=E, we denote by [x, y] the set {Ax+(1—2A)y: 0<AZ1).
LEMMA 4 (Lau-Takahashi [10]). Let C be a nonempty closed convex subset

of a uniformly convex Banach space E with a Fréchet differentiable norm and
let {x4} be a bounded net in C. Let z€(\co{x,: a=B}, y=C and {y.} a net of

elements in C with y,€[y, x,] and
|ye—z|=min{|lu—z|: uely, x,.]}.

If y,—y, then y=z.
By using Lemma 3 and Lemma 4, we prove the following :

LEMMA 5. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E with a Fréchet differentiable norm. Let G be right reversible
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and let S={S(t): t€ G} be Lipschitzian on C with limtsup k,<1. Suppose F(S)+@
and let {u(t):teG} be an almost-orbit of S={S(t):teG}. If ze[s\ﬁ{u(zﬁ):tzs}
NF(S) and yeF(S), then for any positive number ¢, there is s,&G such that

u®)—y, Jy—z)=c|ly—z|
for all t=s,.

Proof. Since F(S)# @, we may assume that {u(?):{€G} is bounded. If
y=z, then Lemma 5 is obvious. So, let y#z. For each =G, let y, be a unique
element in [y, u(t)] with

[ye—zl=min{|lu—z|: vsly, u@®]}.

Since y#z, by Lemma 4, y, does not converge to y. Thus, there is ¢>0 such
that for any (=G, there exists ¢’'=t with |y, —y|=c. Let

yp=ayput)+1—a;)y, 0<a, 1.
Then there is ¢,>0 such that a, =c¢, all #. In fact, since
c=lye—yl=ar|u@)—yl=a. suplu®)=y1,
we may put co:c/(s?plu(t)—yl). Let k=litm|u(t)~y|. Then £>0. Choose
r>0 with e>» and 2r<k, and take a>0 suchithat

(R+a)(1—( R‘fa ))<R,

where 0 is the modulus of convexity of the norm and R=|z—y|>0. Fix a’<a.
By Lemma 3, there exists ¢,&G such that

| S(s)(eou®)+(1—co)y)—(eaS()ul)+(1—co)y)| <a’ (2)
for all s, t=t,. Since k=1i{n[u(t)—yl>2r and {u(?):t=G} is an almost-orbit of
S={S({t):t=G}. We can choose t,=G so that

lul)—ylz2r, t=t,
Ju(st)—S(s)u@®)| <r, t=t,, s€G.
Furthermore, since lign sup 2;=<1 and R+a’<R+a, we can choose 1,=G such

that 2;,R+a’<R+a for all s=t,.
Now, let t,&G with t,=t,, 7,=1, 2, 3. Fix #’=t,. Then, since a, =c¢, we
have
cou(t)+1—co)yely, arult’)+1A—a)y1=Ly, y:].
Hence
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leout)+(1—co)y—zl =max{|z—y|, |z—yu|}=|z—y|=R.

By (2), we obtain
[ ¢oS(S)u@)+(1—co)y—z| = | S(s)cou(t)+(L—co)y)—2|+a’

Skilcou)+(1—co)y—z|+a’'<kR+a’'<R+a
for s=t,. On the other hand, since |y—z|=R<R+a and
[(coeS()u)+(1—co)y—2)—(y—2)| = coS(s)ut)+(1—co)y— |

=co| S(S)ul)—y = co(lulst)—y | —u(st’)—S()u’) )= cor

for any s=G, it follows that

FASOuE A=)y =2+ 5 (0—2)| = |- SEu)+(1-2)y—]

é(R-l—a)(l—&( Rcfa ))<R

for all s=t,. This implies that if u;=(c,/2)S(s)u(t’)+(1—(co/2))y, then |us,+
a(y—us)—z|=|y—z| for all a=1. By Theorem 2.5 in [3], we have

Custa(y—us)—y, (y—2)>=0
and hence {u,—y, J(y—2)>=0 for all s=¢,. Then
S®ut)—y, J(y—2)>=0
for s=t,. Therefore, for s=t,,
<u(st)—y, J—z2)> = lu(st)—S(s)u@)| | y—z|
HSOu)—y, (y—zan<rly—zl<ely—=z]|.
Hence, for t=t,’, there holds
u)—y, (y—z=ely—z].

This completes the proof.

4. Asymptotic Behavior.

In this section, we study the asymptotic behavior of an almost-orbit
{u(t):teG} of S={S@t):t=G}.

THEOREM 2. Let E be a uniformly convex Banach space with a Fréchet dif-
ferentiable norm and let C be a nonempty closed convex subset of E. Let G be a
right reversible semitopological semigroup and let S={S(¢):t= G} be a Lipschitzian
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representation of G on C with lirntsup k,<1. Suppose that {u(t):t=G} is an
almost-orbit of S={S(t):t=G} and F(S)+@. Then the set

Qfa{u(t):tzs}f\F(S)
consists of at most one point.
Proof. Lety, zEC\&?{u(t) 112 stNF(S). Then, by Theorem 1, (y+z/2)= F(S),

it follows from Lemma 5 that for every ¢>0, there is {,& G such that

S ) e .

for every t=G. Since yeto{u(tt,):t=G}, we have
_ytz vtz ><i _
=25 Iy =)= g 1o

and hence <y—z, J(y—z))=|y—z|?<2¢|y—=z|. Since e is arbitrary, we have
y=z.

For a function u:G—C, let w(u) denote the set of all weak limit points of
the net {u(?):t=G}. If {u(t):tcG} is an almost-orbit of a Lipschitzian semi-
group S={S(t):t=G} and F(S)+ @, then {u(t):t=t,} is bounded for some t,=G
and hence w(u)# @. Using Theorem 2, we obtain the following results.

THEOREM 3. Let E be a uniformly convex Banach space with a Fréchet
differentiable norm and let C be a nonempty closed convex subset of E. Let G be
a right reversible semitopological semigroup and let S={S(t):t=G} be a Lipschitzian
representation of G on C with limcsup k<1, Suppose F(S)+ @ and let {u(t):t=G}
be an almost-orbit of S={SE):t€G}. If w(u)CTF(S), then the net {ut):t=G}
converges weakly to some z€ F (S).

Proof. Let zew(u). Then zefs\'c?{u(t):tgs}. By hypothesis, @w(u)CF(S)
and hence zeOEE{u(t):tgs}mF (S). It follows then from Theorem 2 that
w(u)={z} and therefore {u(t):t=G} converges weakly to z& F(S).

The following theorem is a generalization of Takahashi and Park [14].

THEOREM 4. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E. Let G be a right reversible semitopological semigroup and let
S={S@):t€ G} be a Lipschitzian representation of G on C with limtsup k<1,

Suppose F(S)+@ and let {u(t):t€G} be an almost-orbit of S={S():t€G}. Let
P denote the metric projection of E onto F(S). Then the strong limit of the net
{Pu(t):teG} exists and litm Pu(t)=z,, where z, is a unique element in F(S) such

that
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li{nlu(t)—zol=min{1itm|u(t)——zl 1 zeF(S)}.

Proof. Since F(S)+ @, we know that {u(t):t=G} is bounded and lirtnl u(t)—z|

=g(z) exists for each zF(S). Let R=inf{g(z):2=F(S)} and M={ucsF(S):
g(u)=R}. Then, since g(z) is convex and continuous on F(S) and g(z)—co as
|z]—oc0, M is a nonempty closed convex bounded subset of F(S). Fix z,eM
with g(z,)=R. Since P is the metric projection of E onto F(S), we have
|u()— Pu@)| £ |u®)—y| for all t€G and y< F(S), and hence

iIclf Stl;IIsZ)I u(s)—Pu(s)| <R.

Suppose that iltlf sttsxg)lu(s)—Pu(s)] <R. Then we may choose ¢>0 and #,€G so
that |u(s)—Pu(s)|<R—¢ for all s=t,. Since
[u(ts)— Pu(s)| < ¢(s)+ k.| u(s)— Pu(s)|
for all s, teG and lilsrn @(s)=(, where ¢(s):5121plu(ts)—S(t)u(s)l, we can choose
s=t, such that
|(t)— Pu(s)| S k| u(s)— Pu(s) | + 5 Skl R—e) 4
for all tG. Therefore, we obtain that

litrn | u@)— Pu(s)| =i1}f StLépl u(t)— Pu(s)| g(limtsup k) (R—e)+ %
€ e
éR—e-l-?—R——2—<R~

This is a contradiction. So we conclude that

i1;1f stlép |u(s)—Pu(s)|=R.

Now, we claim that lim Pu(t)=z,. If not, then there exists ¢>0 such that
t
for any teG, |Pu(t’)—z,|=¢ for some #'=t. Choose a>0 so small that

&€
R+a

where 0 is the modulus of convexity of the norm of E. We have |u(t’)— Pu(t’)|
<R+a and |u@t’)—z,|<R+a for large enough #’. Therefore we have

Pu(t+2z,
2

(R+a)(1-8(——))=Ri<R,

u(t’)—

<(R+a)(1-5( R ia ))=F..

Since w, =(Pu(t’)+z,)/2€ F(S), as in the above,
[u@t)—we | Sk ult)—we | +6()
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for all teG. Since lim ¢(s)=0, there is ¢’ such that

and hence

R—R R—R
Iu(tt/)"wu | §kciu(t/)‘wt' | +_2_1‘§ktR1+le
. . . R'—Rl
hgn lu®)—w, | zutlf stgpl u(s)—we | é(hmtsup kt)R1+—2*—
<R+ R-;Rl _ R;R1 <R.

This contradicts the fact R=inf{g(z):z= F(S)}. Therefore, we have 1i§n Pu(t)=z,.

Consequently, it follows that the element z,& F(S) with g(z,)=min {g(z) : z& F(S)}
is unique. The proof is completed.
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