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ON THE NUMBER OF BRANCHES OF AN

1-DIMENSIONAL SEMIANALYTIC SET

BY ZBIGNIEW SZAFRANIEC

1. Introduction.

Let F=(Flf •••, F n -i) : (Rn, 0)->(Rn-\ 0) be a germ of an analytic map, and
let P: (B, O-KJB*"1, 0) be a representative mapping of F, where B is a small
ball centered at the origin in Rn. Let us donote X=F~\0)Γ\B. Assume that
0<=Rn is an isolated singular point in X (i.e. 0(=Rn is an isolated point in
{x^X\mnklDP(x)2<n-l}). If B is small enough, the set X-{0} is void or
a finite disjoint union of analytic curves.

Let G: (RJ1, 0)->GR, 0) be an analytic germ. We may suppose that a re-
presentative G of G is defined in B,

DEFINITION 1.1. We shall say that a pair (G, F) has property si if
is isolated in

Assume that a pair (G, F) has property J/ . There is a well-known fact
that if B is small enough then the function G has a constant sign on each
connected component of X— {0}. Let

&CF)=the number of branches of X— {0},
&+(G, F)=the number of branches of X— {0} on which G is positive,
b-(G, F)=the number of branches of X— {0} on which G is negative.

Of course, ft+(G, F)+ft-(G, F)=b(F).

Let (Xi, ..., *„) be a coordinate system in Rn. Let Δ = K ' ' '" ' "~lJ

^ O\%1, '" , Xn)

be the Jacobian of a map (G, Fu •••, / V i ) : -β - ^ β 7 1 , and let H=(A, Pu •••, / V O :

( 5 , O ) - ^ ^ 7 1 , 0). In this paper we show (Theorem 3.1) that

6+(G, F)-b-(G, F)=2deg(H),

where deg(if) is the topological degree of the map-germ H: (Rn, 0)->(Rn, 0) at
the origin.

Let ω=xt-\— +x2

n. Clearly, a pair (ω, F) has property si and b+(ω, F ) =
b(F), b-(ω, F)=0. Thus, as a consequence of the above fact, we get a formula
for the number b(F). This formula was proved by Kenji Aoki, Takuo Fukuda,
Wei-Zhi Sun and Takashi Nishimura (in case n = 2 [1], in general case [2]).
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Let Θ — xny and let us assume that a pair (θ, F) has property sέ. Thus
there are b+(Θ, F) branches of X—{0\ contained in the half region {xn>0} and
b-(Θ, F) branches contained in the half region {xn<0}. In this case we get a
formula for a number b+(Θ, F)—b-{Θ, F). This formula was proved by K.
Aoki, T. Fukuda and T. Nishimura [3].

A proof presented here differs from that which are presented in [1,2,3].
It seems to be more geometrical.

Our result may be used in a more general case. Let Gu •••, Gs: (Rn, 0)->
OR, 0) be germs of analytic functions. Assume that each pair (Gt, F), l<^'^s,
has property s/. Let β=(βu •••, /3s)e{0, 1}S. If B is small enough then a
semianalytic set

is void or a finite union of curves. We shall show how to compute the number

of branches of Xβ in terms of topological degrees of some finite family of map-

germs Ha:(Rn, 0)->(/T, 0), α e { 0 , 1}S (see Theorem 3.4).

There is possible a different aproach to the same problem in case n—2.

In [4] is described another algorithm of calculating of the number of branches

of Xβ in terms of Puiseux series of F and Gu •••, Gs.

2. Preliminaries.

The following lemma is the most essential for the further part of this paper.

LEMMA 2.1. Let F=(FU •••, F n - 0 : U-^Rn'\ G : U->R, be C2-functions

defined in an open set UcRn. Assume that rank[DF(^0)] = w—1, where xo<^U.

From the implicit function theorem W={x^U\F(x)=F(xo)\ is an l-dimensional

C2-manifold in some neighbourhood of x0.

Let A= d { G ' F u ' " ' F w - l ) be the Jacobian of a map (G, Fu •••, Fn-ι): U->Rn,
υ\Xi, '" , Xn)

let H=(A, Fu ~ , Fn^zU'+R", and let Δχ= 8 ( Δ * F l > ' " ' Fn'x) =det[Z?g]. Then
O(Xi, ••* , Xn)

( i ) G\W has a critical point at xQ if and only if Δ(# o )=0,
(i i) G\W has a non-degenerate critical point at x0 if and only if Δ(xo)

r=O
and A1(x0)Φθ>

(Hi) if A(XQ)—0 and ΔiUtOX) then G\W has a minimum at x0,

(iv) if Δ(Λro)=O and Δi(x 0 )<0 then G\W has a maximum at x0.

Proof. We may assume that xo=0^R n. Clearly, G\W has a critical point

at Oei? 7* if and only if a vector gradG(O) belongs to the linear space spaned

by vectors gradFx(O), •••, gτzάFn^φ). Thus G\W has a critical point at the

origin if and only if Δ(0)=0.

Assume that Δ(0)=0. After an ortogonal change of coordinates we~can find
a new well-oriented coordinate system (yu •••, yn) such that
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(1) DίF1(0)=-'=D1Fn-ί(0)=0y

where Dtf is the i-th partial derivative of /. Hence the tangent space T0W is
spaned by a vector (1, 0, •••, 0) and there are C2-functions φ2} •••, φn: (R, 0)->
OR, 0) such that W={(yu φ2(yι), •••, φn{yι))\y^-R} in some neighbourhood of
the origin. Clearly

(2) D1φt(f))= - =0 10n(O)=O.

Let g(yi)=G(yu φ2(yi), •••, φn(yι))> The function G|W has a critical point at
the origin, and then from (2) we have

(3)

(4) Dlg(0)=DlG(0)+ Σ
1 = 2

Since F/^i, ^2(^1), •••, φn(yi))^constant, then from (2) we have

DlFJfl)+ Σ

Let M(x)-άetlDiFj(x)']f where 2^/^n, l ^ ^ n - 1 , and let

where 2£i£n, and the column (ΌfF^x), •-«, DlFn-^x)) is situated at the (/—l)-th
place. By (1) we have M(0)=£0, and then from Cramer's rule

From (4) we have

(5) sign(JD^(0))-sign((^?G(0)M(0)- Σ DiGφ)Ni(0))/

=sign(M(O)(Z)ΪG(O)M(O)- Σ

DιFι(x) ." Aί\( ί ) ... BnFiU)
Let Mi(*)=det "^^ί^: L where 2^i^n. From (1)

W M DF^) D F U ) ]
we have

(6) M,(0)=-=M n (0)=0.

The change of coordinates was ortogonal and then

A(x)=DιG(x)M(x)-DtG(x)MtW+ - ±DnG(x)Mn(x),

for any xEί/. By (3) and (6) we have
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D1A(0)=D2

1G(0)M(0)-D2G(0)D1M2(0)+ - ±DnG(0)D1Mn(0).

From (1) we have

, „ ^ ^ DnFM

Z)1M<(0)=det

Hence D1A(O)=DlGφ)M(fl)- Σ DtGφ)NM. From (1) and (5) we have Δ1(0)=
1 = 2

£iΔ(0)M(0) and sign(Δi(O))=sign(£fg(O)), and the lemma is proved. D

Let F=(FU •••, i V O : (Rn, 0)~>(Rn-\ 0) and G : (Rn, 0)->(Λ, 0) be germs of
analytic maps. We may suppose that representatives of F and G are defined
in an open neighbourhood U of the origin. Assume that 0<^Rn is an isolated
singular point in X=F-1(0)ΠE/. Let Br={x^Rn\\\x\\<r}f Sr={χ(ΞRn\ | | * | | = r } .
Using well-known facts from the theory of semianalytic sets we get

Remark 2.2. If a pair (G, F) has property s/ then there is r > 0 such that
(Z-{0})Π5 r is a finite disjoint union of 1-dimensional connected analytic mani-
folds Yu •" , Yk, k^O (if k=0 then (X-{0})nBr is vide). For any r'<Ξ(0, r)
the sphere Sr> is transverse to each Yx and S r ' Π F t has exactly one point.
Moreover, a restricted function G\Yt has a constant sign for each z'e{l, •••, &K
Thus numbers b(F)=k, b+(G, F)^{x^XΓ\Sr, \G(x)>0}, b-{Gy F ) =

( |G(x)<0} are well-defined. Of course b(F)=b+(G, F)+b-(G, F).

Let Δ = 3 ( < ? ; F l ' '" ' ^β""1 be the Jacobian of the map i 2 n 3 x ^ ( G ( x
O\Xu '" > Xn)

eiRn, and let i/=(Δ, F):(Rn, 0)-^(Rn, 0).

LEMMA 2.3. // ίΛe ία*'r (G, F) /zαs property s0 then 0<=Rn is isolated in

Proof. From Remark 2.2 there are 1-dimensional analytic manifolds
Yu -", Yk such that (X-iO^ΓλBr^Y.KJ ••• UYk. If r is sufficiently small then
from the Curve Selection Lemma there are analytic maps pt: [0, ε)-+YtU{0}
such that pj\0)={0} and pt: (0, ε)->Ft is an analytic diffeomorphism. The
function G is analytic, G(0)=0, and from Remark 2.2, G" 1 (O)ΠF ι =0. Thus if
r and ε are small enough then G°pt is a monotonic function, and then G\Yt

has no critical points. Hence, from Lemma 2.1,

9(G, Fi, •••, Fn_i
- x ), Xn)

for every xt=Yt. Clearly / / - 1 ( 0 ) n 5 r c F - 1 ( 0 ) n B r = 7 i U ••• UF,U{0}. Then
0 e / r is isolated in //-2(0). •
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Let M be a compact 1-dimensional manifold with a boundary dM. Clearly,
dM is a finite set. Let G: M-»JR be a C2-function. Assume that a set C of
critical points of G is a finite subset of M—dM and that each critical point of
G is non-degenerate. Let

has a minimum at #},

has a maximum at JC}.

LEMMA 2.4. Lei fΛβ notation be as above. Suppose that
( i ) if X G 3 M fA<m G(x)Φθ,

(ii) // xedM and G(x)<0 then G has a minimum at x,
(iii) // x^dM and G(x)>0 then G has a maximum at x.

Then
%{x<=dM\G(x)>0}-${xt=dM\G(x)<0}=2(m1--mi).

The proof is straightforward. D

3. Main theorem.

Let the notation be as above. Let άeg(H) be the topological degree of the
mapping x*-+H(x)/\\H(x)\\ from a small sphere Sr centered at the origin to the
unit sphere in Rn.

THEOREM 3.1. Assume that a pair (G, F) has property s/. Then

b+(G, F)-b-(G, F)=2deg(H).

Proof. Let y<=Rn~ι be a regular value of F, and let SrdRn be a small
sphere centered at the origin. From Remark 2.2, X=F~\0) is transverse to Sr.
Hence, if y is sufficiently close to the origin then F~\y) is transverse to Sr

too. Moreover, we may assume that

b+(G, F)=%

b-(G, F)=#{x<ΞXΓλSr\G(x)<0}=#{χςΞF-\y)rΛSr\G(x)<0}.

In the proof of Lemma 2.3 we have shown that G\(X— {0}) has no critical
points in some neighbourhood of the origin. Since G~\0)Γ\X={0} then if
xelΛ5 r Λ{G>0} then G|J5 r πZhas a local maximum at x, if x<=XΓΛSrΓ\
{G<0} then G\BrΓ\X has a local minimum at x. Moreover, if y is close to
the origin then critical points of G\F'Xy)Γ\Br belong to F'\y)Γ\BrU. There
is a function G such that the first and second derivatives of G uniformly
approximate those of G, G\F'\y)Γ\Br is a Morse function and the set C of
critical points of G\F"\y)r\Br is contained in F-\y)Γ\Br/2. We can also
assume that
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( i ) if xe=F-\y)nSr then G(x)Φθ,
(ii) if x<ΞF-\y)ΓλSr and G(x)<0 then G\F~\y)r\Br has a local minimum

at x,
(iii) if x G F - ^ Λ S r and G(x)>0 then GIF^OOn^r has a local maximum

at x.

Let A = 9 ( ^ F l > '" ' Fn~1\ Of course, X G F " 1 ^ ) is a critical point of

G\F-\y) if and only if A(x)=0. Thus C=/f-1(O, 3>), where # = $ , Ή, - , ^n-i).
From Lemma 2.1 we have

# { | I ^ ) has a minimum at *}

=#{xe#- 1 (0, ^ ) Π 5 r | d e t [ M ( x ) ] > 0 } ,
(2)

τn2—#{xeC| G I F " ^ ) has a maximum at x}

The function G|F" 1 (3;)Π5 r has only non-degenerate critical points and then,
from Lemma 2.1,

Hence the point (0, y) is a regular value of H\Br.
Let d be the degree of the mapping

From (2), m1—m2—d. Clearly, if y is sufficiently close to the origin and G is
sufficiently close to^G then d=deg(H), and then mι—mz=άeg(H).

The function G\F~\y)Γ\Br satysίies all assumptions of Lemma 2.4. Thus

r I G(x)>0} -#{χς=F-\y)nSr \ G(x)<0}

=2(m1—m2).

Then from (1) we have

6+(G, F)-b-(G, F)=2deg(H). D

Let ω—x\Λ- ••• +%n Clearly a pair (ω, F ) has property J / . Of course,
^+(cϋ, F)=b(F), b-(ω, F ) = 0 . As a consequence of Theorem 3.1 we get a
theorem which was proved by K. Aoki, T. Fukuda, W. Z. Sun and T. Nishimura
[1,2].

THEOREM 3.2. Let A=d{ω'Fu '" ' Fn:ι), and let H=(Δ, Fl9 - , F ^ ) :

(Rn, 0)^(Rn

f 0). Then 0^Rn is isolated in H~\0) and
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δ(F)=2deg(J7). D

Let θ=xι. Then a pair (0, F) has property J / if and only if 0<=Rn is
isolated in XΓ\{xι=0}. In this case

b+(θt F ) = t h e number of branches of X— {0} which are contained
in the half region

b-(θ, F ) = t h e number of branches of X— {0} which are contained

in the half region {%i<0}.

Let

V\%1> '" i Xn) V\X2> '" > Xn)

and let

H=(d(£u '">Fn-Λ , Fu - , Fn-λ : (Rn, 0) — > (ΛΛ, 0).

As a consequence of Theorem 3.1 we get a following theorem which was proved
in [3].

THEOREM 3.3. Assume that a pair (θ, F) has property J / . Then 0^Rn is
isolated in H~\0) and

b+(θ,F)-b-(θ,F)=2άeg(H). Π

Let Gu •••, Gs: (jRn, 0)->(iJ, 0) be analytic functions. For any a—{au •••, α,)

e { 0 , 1}S let us define a germ Ga: (J?71, 0)->(Λ, 0) by

•ω, if α = ( 0 , » , 0 )

C Λ if aΦ®, . - , 0 ) .
1

Assume that each pair (Gt, F) has property J / . Then for each α<={0, 1}S

a pair (Gα, F) has property J / too. According to Lemma 2.3 and Theorem 3.1
there is a map Ha: (Rn, 0)->(Rn, 0) defined in terms of Ga and F such that
b+(Ga, F)-b-(Ga, F)=2άeg(Ha). From Remark 2.2 there is a small constant
r > 0 such that each function Gt has a constant sign on each branch of (X— {0})
Γ\Br. For any 0=(j8 l f •••, j8t) let

Thus ?̂̂  is the number of branches of (Z— {0})ίΛBr on which G t has a sign
(—iy», for every *'e{l, •••, s}.

THEOREM 3.4. TΛe numbers bβ, βeΞ{0, I}5, are determined by numbers
deg(Ha),atΞ{0,l}s.
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Proof. If s—1 then the theorem is a consequence of Theorems 3.1 and 3.2.

We shall prove the theorem in case s=2.

We have a non-singular system of linear equations:

0,0) + fr(0,l) — &C1.0) — ̂ ( l , l ) = ^ + ( G ! i , F) — b-{Glt F)

o,o)—6(O,i)+6(i,o)—6α,i)=6+(G2, F)—b-(G2, F)

0,0)—6(0,1)—6(i )0)+6α>i)=6+(6 :iG2, F)—b-(G1G2, F)

By Theorem 3.1, numbers 6̂ , βe{0, I}2, are determined by numbers deg(//α),

αe{0, I}2.

The case s>2 is left to the reader. •
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