Z. SZAFRANIEC
KODAI MATH. J.
11 (1988), 78—85

ON THE NUMBER OF BRANCHES OF AN
1-DIMENSIONAL SEMIANALYTIC SET

BY ZBIGNIEW SZAFRANIEC

1. Introduction.

Let F=(Fy, -+, Fpo1): (R™, 0)—>(R™, 0) be a germ of an analytic map, and
let F:(B, 0)—>(R™? 0) be a representative mapping of F, where B is a small
ball centered at the origin in R™ Let us donote X=F-Y0)NB. Assume that
0= R™ is an isolated singular point in X (i.e. 0 R™ is an isolated point in
{xe X|rank[DEF(x)]<n—1}). If B is small enough, the set X—{0} is void or
a finite disjoint union of analytic curves.

Let G: (Ig”, 0)—(R, 0) be an analytic germ. We may suppose that a re-
presentative G of G is defined in B.

DEFINITION 1.1. ~We shall say that a pair (G, F) has property .« if 0 R™
is isolated in {x= X|G(x)=0}.

Assume that a pair (G, F) has property .«/. There is a well-known fact
that if B is small enough then the function G has a constant sign on each
connected component of X—{0}. Let

b(F)=the number of branches of X—{0}, N
b+(G, F)=the number of branches of X— {0} on which G is positive,
b-(G, F)=the number of branches of X—{0} on which G is negative.
Of course, b.(G, F)+b-(G, F)=b(F). N
G, F, -, Foy)

Let (x, -+, x») be a coordinate system in R". Let A=
a(xb ) xn)

be the Jacobian of a map (G, Fy, -, F,_)): BoR™, and let H=(A, F,, -, F,_):
(B, 0)—(R™, 0). In this paper we show (Theorem 3.1) that

b(G, F)—=b-(G, F)=2deg(H),

where deg(H) is the topological degree of the map-germ H: (R™", 0)—(R™", 0) at
the origin.

Let w=x2+ --- +x%. Clearly, a pair (w, F) has property .« and b.(w, F)=
b(F), b_(w, F)=0. Thus, as a consequence of the above fact, we get a formula
for the number b(F). This formula was proved by Kenji Aoki, Takuo Fukuda,
Wei-Zhi Sun and Takashi Nishimura (in case n=2 [1], in general case [2]).
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Let ®=x,, and let us assume that a pair (@, F) has property .. Thus
there are b.(@, F) branches of X—{0} contained in the half region {x,>0} and
b.(6, F) branches contained in the half region {x,<0}. In this case we get a
formula for a number b.(0, F)—b-(O, F). This formula was proved by K.
Aoki, T. Fukuda and T. Nishimura [3].

A proof presented here differs from that which are presented in [1,2,3].
It seems to be more geometrical.

Our result may be used in a more general case. Let Gy, -, Gs: (R™, 0)—
(R, 0) be germs of analytic functions. Assume that each pair (G,, F), 1<i<s,
has property 7. Let B=(B, -, B:){0, 1}*. If B is small enough then a
semianalytic set

Xp={xE X—{0} [(=1)F1G,(x)>0, -, (=1)#:G (x)>0}

is void or a finite union of curves. We shall show how to compute the number
of branches of Xj in terms of topological degrees of some finite family of map-
germs H,:(R", 0)—(R™, 0), ac{0, 1}* (see Theorem 3.4).

There is possible a different aproach to the same problem in case n=2.
In [4] is described another algorithm of calculating of the number of branches
of X in terms of Puiseux series of F and Gy, -, G,.

2. Preliminaries.

The following lemma is the most essential for the further part of this paper.

LEMMA 2.1. Let F=(F,, -+, Fo,.):U-R™?, G:U—R, be C*-functions
defined in an open set UCR™. Assume that rank[DF(x,)]=n—1, where x,=U.
From the implicit function theorem W={xcU|F(x)=F(x,)} is an 1-dimensional
C*-manifold in some neighbourhood of x,.

Lot A= a(%(xF b ’xF 'S") be the Jacobian of @ map (G, Fy, - , Fa-): U—R™,
1y "y n

let H=(A, F,, -, Fau): U>R™, and let A1=a(Aa:(f;’ — f 5 ) —get[DH]. Then
(i) GIW has a critical point at x, if and only if A(xe)=0,
(ii) G|W has a non-degenerate critical point at x, if and only if A(x,)=0
and Ay(x,)#0,
(iii) Zf A(x0)=0 and A,(x,)>0 then G|W has a minimum at x,,
@(iv) if A(x0)=0 and A,(x,)<0 then G|W has a maximum at x,.

Proof. We may assume that x,=0=R™. Clearly, G|W has a critical point
at 0=R™ if and only if a vector grad G(0) belongs to the linear space spaned
by vectors grad Fy(0), ---, grad F,_,(0). Thus G|W has a critical point at the
origin if and only if A(0)=0.

Assume that A(0)=0. After an ortogonal change of coordinates we_can find
a new well-oriented coordinate system (¥, -+, ¥,) such that
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(D D1F1(0>= =D1Fn—1(0)=0,

where D,f is the i-th partial derivative of f. Hence the tangent space T,W is
spaned by a vector (1, 0, -+, 0) and there are C*-functions ¢, -+, ¢, : (R, 0)—
(R, 0) such that W={(y1, ¢:(¥1), -, ¢x(¥1))| 1R} in some neighbourhood of
the origin. Clearly

(2) D1¢'2(0): =D1¢n(0)=0.

Let g(y)=G(y1, ¢o(31), **+, Pa(y1)). The function G|W has a critical point at
the origin, and then from (2) we have

3) D,g(0)=D,G(0)=0,

) Dig(0)=DiG(0)+ ?3; D;G(0)Dig:(0).

Since F;(y1, ¢o(31), -, Pal(y1))=constant, then from (2) we have
DIF0)+ 2 DiFA0)Dighi(0)=0.

Let M(x)=det[D;F;(x)], where 2<i<n, 1<j<n—1, and let
D,Fi(x) -+ DiFy(x) -+ D,Fy(x)
Ni(x)=det| -veerverereeermmmmreinieenieniinienen s ,
DyFp (%) -+ DiFn-y(x) - DoFp-y(x)

where 2<7/<n, and the column (D}F\(x), ---, DiF,_,(x)) is situated at the (7—1)-th
place. By (1) we have M(0)+0, and then from Cramer’s rule

Di:(0)=—N(0)/ M (0).
From (4) we have

) sign(Dtg(O)=sign((DIGOM(0)— 33 D.GONO) / M(©))
=sign(M(O)(DIGOM(©)— 33 DGOINO)).

—
D,Fi(x) -+ Di;Fy(x) -+ DpF\(x)
—_
Dl n—l(x) DiFn-l(x) DnFn-l(x)

Let Mi(x)=det[ } where 2</<n. From (1)

we have

® My(0)= -+ = M,(0)=0.

The change of coordinates was ortogonal and then
A(x)=D,G(x)M (x)—D,G(x)My(x)+ -+ £DrG(x)My(x),

for any x€U. By (3) and (6) we have



ON THE NUMBER OF BRANCHES 81
D, A(0)=D:G(0)M (0)— D,G(0)D,; M,(0)+ --- =D,G(0)D,M,(0).
From (1) we have
T
DiF,(0) --- DyFi(0) -+ DyFy(0)
T
DiFn 1(0) -+ DiFp1(0) -+ DpFpe1(0)

D M;(0)=det

=(=1'Ni(0).

Hence D;A0)=D:GO)M0)— E:zsziG(O)Ni(O). From (1) and (5) we have A,(0)=
D,A(0)M(0) and sign(A,(0))=sign(D?g(0)), and the lemma is proved. O

Let F=(F,, -, Fp.): (R™, 0)0—~(R™% 0) and G:(R™, 0)—(R, 0) be germs of
analytic maps. We may suppose that representatives of F and G are defined
in an open neighbourhood U of the origin. Assume that 0 R™ is an isolated
singular point in X=F ~*(0)N\U. Let B,={xeR"||x|<r}, S,={xR"||x|=r}.
Using well-known facts from the theory of semianalytic sets we get

Remark 2.2. If a pair (G, F) has property .« then there is >0 such that
(X—{0})NB, is a finite disjoint union of 1-dimensional connected analytic mani-
folds Y,, «--, Y,, £=0 (if k=0 then (X—{0})N\B, is vide). For any »'<(0, r)
the sphere S, is transverse to each Y, and S,NY, has exactly one point.
Moreover, a restricted function G|Y, has a constant sign for each 7{1, ---, k}.
Thus numbers  b(F)=k, b.(G, F)=§{x=XNS.|Gx)>0}, b-(G, F)=
#H{xe XNS, |G(x)<0} are well-defined. Of course b(F)=b+(G, F)+b-(G, F).
Let A= a(g(’xF" ’xF;‘" be the Jacobian of the map R">x+—(G(x), F(x))

1, n
€R™, and let H=(A, F): (R", 0)—~(R", 0).

LEMMA 2.3. If the pair (G, F) has property of then 0=R™ is isolated in
H-Y0).

Proof. From Remark 2.2 there are 1-dimensional analytic manifolds
Y,, .-+, Y}, such that (X—{0})NB,=Y,U :-- UY,. If » is sufficiently small then
from the Curve Selection Lemma there are analytic maps p;: [0, ¢)—Y,U{0}
such that »7'(0)={0} and p;: (0, e)—Y, is an analytic diffeomorphism. The
function G is analytic, G(0)=0, and from Remark 2.2, G-*(0)"\Y,=@. Thus if
r and & are small enough then G-p, is a monotonic function, and then G|Y,
has no critical points. Hence, from Lemma 2.1,

a<G’ F!) Tty Fﬂ—l)/
a(xly EP] xn) :

for every x€Y,. Clearly H-*0)NB,CF-0)NB,=Y,U --UY,U{0}. Then
0= R™ is isolated in H~%0). O

Alx)= x)#0
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Let M be a compact 1-dimensional manifold with a boundary dM. Clearly,
0M is a finite set. Let G: M—R be a C*function. Assume that a set C of
critical points of G is a finite subset of M—dM and that each critical point of
G is non-degenerate. Let

m;=#{xeC|G has a minimum at x},

m,=#{x=C|G has a maximum at x}.

LEMMA 2.4. Let the notation be as above. Suppose that
(i) if x€0M then G(x)#0,

(ii) if x=0M and G(x)<0 then G has a minimum at x,
(iii) If x=dM and G(x)>0 then G has a maximum at x.

‘Then
${xcoM|G(x)>0} —#{xsdM|G(x)<0} =2(m,—m,).

The proof is straightforward. O

3. Main theorem.

Let the notation be as above. Let deg(H) be the topological degree of the
mapping x— H(x)/||H(x)| from a small sphere S, centered at the origin to the
unit sphere in R™.

THEOREM 3.1. Assume that a pair (G, F) has property <. Then
b(G, F)—b-(G, F)=2deg(H).

Proof. Let yeR™ ! be a regular value of F, and let S,CR™ be a small
sphere centered at the origin. From Remark 2.2, X=F -%(0) is transverse to S;.
Hence, if y is sufficiently close to the origin then F-(y) is transverse to S,
too. Moreover, we may assume that

b(G, F)=#{x=XNS,|G(x)>0}=4{x=F (y)NS,|G(x)>0},

@
b-(G, F)=${x=XNS,|G(x)<0}=§{x=F(y)NS,|G(x)<0}.

In the proof of Lemma 2.3 we have shown that G|(X—{0}) has no critical
points in some neighbourhood of the origin. Since G-(0)NX={0} then if
x€XNS,N{G>0} then G|B,NX has a local maximum at x, if xeXNS.N
{G<0} then G]B,NX has a local minimum at x. Moreover, if y is close to
the origin then critical points of G|F~'()N\B, belong to Fy)N\By;. There
is a function G such that the first and second derivatives of G unlforrnly
approximate those of G, GIF ()N B, is a Morse function and the set C of
critical points of G]F (y)NB, is contained in F-*(»)N\B,, We can also
assume that
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(i) if x€F'()NS, then G(x)#0,

(ii) if xeF*(y)NS, and G(x)<0then G|F-*(y)N\B, has a local minimum
at x, . .

(iii) if xeF Y (y)NS, and G(x)>0 then G|F-'(y)N\B, has a local maximum
at x.

y a(G’ Fl; ttty Fn-l)

e AT, urse,
G|F-Yy) if and only if A(x)=0. Thus C=H-%0, y), where H=(A, F,, -+, Fp.y).
From Lemma 2.1 we have

Of course, x=F-!(y) is a critical point of

ml———#{xeél élF‘l(y) has a minimum at x}

=#{x=H-0, y)NB, |detl DH(x)1>0},
@

my=#{x=C| 6|F“(y) has a maximum at x}
=${xcH0, y)NB,|det[ DH(x)]<0} .

The function 5|F -(y)N B, has only non-degenerate critical points and then,
from Lemma 2.1,
{x& H0, y)NB, |det[DH(x)]=0} =@ .

Hence the point (0, y) is a regular value of J24 | B,.
Let d be the degree of the mapping

S, 2x —> Hx)/|Hx)|le S,

From (2), m;—m,=d. Clearly, if v is sufficiently close to the origin and G is
sufficiently close to G then d=deg(H), and then m,—m,=deg(H).
The function G|F-'(y)N\B, satysfies all assumptions of Lemma 2.4. Thus

#{xe F(9)NS, | G(x)>01 —#{xe F-'(9)NS, | G(x) <0}
=2(m,—m,).
Then from (1) we have

b(G, F)—b_(G, F)=2deg(H). O

Let w=x%+ --- +x3. Clearly a pair (w, F) has property /. Of course,
bi(w, F)=b(F), b-(w, F)=0. As a consequence of Theorem 3.1 we get a
theorem which was proved by K. Aoki, T. Fukuda, W.Z. Sun and T. Nishimura

[1,2].

3((0, Fl) Ty Fn—l)
a(xlr ) xn)
(R™ 0)—»(R™, 0). Then 0&R™ is isolated in H-'(0) and

, and let H=(, Fy, -, F,_):

THEOREM 3.2. Let A=
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b(F)=2deg(H). 0

Let §=x,. Then a pair (8, F) has property &« if and only if 0=R™ is
isolated in XN\ {x,=0}. In this case

b.(0, F)=the number of branches of X— {0} which are contained
in the half region {x,>0},

b_(6, F)=the number of branches of X—{0} which are contained
in the half region {x,<0}.

Let
A: a(or Fl’ Ty Fn'—l) :a(Fly Tty Fn-l)
(xy, -+, Xa) 0(xz, vy Xa)
and let
- a(Fh ) Fn—l) . n s n
=(Tr s B Fa) 1 (R, 0 —> (R, 0).

As a consequence of Theorem 3.1 we get a following theorem which was proved
in [3].

THEOREM 3.3. Assume that a pair (0, F) has property /. Then 0=R" is
isolated in H-'(0) and

b0, F)—b_(8, F)=2deg(H). O

Let G4, -+, Gs: (R", 0)—(R, 0) be analytic functions. For any a=(a,, -, a;)
< {0, 1}® let us define a germ G,: (R", 0)—(R, 0) by
, if a=(, -+, 0)
Gz{ﬁlcgi, it a0, -, 0).
1=
Assume that each pair (G,, F) has property .«/. Then for each a<{0, 1}*
a pair (G., F) has property &7 too. According to Lemma 2.3 and Theorem 3.1
there is a map H,:(R" 0)—(R", 0) defined in terms of G, and F such that
b (Gy, F)—b-(G,, F)=2deg(H,). From Remark 2.2 there is a small constant

r>0 such that each function G, has a constant sign on each branch of (X—{0})
NB,. For any B=(B,, -+, Bs) let

bp=#{x€ XNS, [(=D1G(x)>0, -+, (=1)#:G(x)>0}.

Thus by is the number of branches of (X—{0})N\B, on which G, has a sign
(—D#, for every i€ {1, ---, s}.

THEOREM 3.4. The numbers bg, B {0, 1}, are determined by numbers
deg(H,), ac {0, 1}°.
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Proof. If s=1 then the theorem is a consequence of Theorems 3.1 and 3.2.

We shall prove the theorem in case s=2.
We have a non-singular system of linear equations:

beo,0yFbeo, 1y Fber, 00 Fber, 1n=b(F)

b, tbe, =, 00—ba, 1y=b+(Gy, F)—b_(G,, F)
b, b, b, =0, 15=04(G2, F)—b_(G,, F)
beo,5—=bw,n—=ba, 00, 1y=b:(G.G,, F)—b_(G,G,, F)

By Theorem 3.1, numbers bg, 8= {0, 1}?, are determined by numbers deg(H,),
ac {0, 1}2.
The case s>2 is left to the reader. O
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