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DEFORMATIONS OF SOME ALGEBRAIC SURFACES
WITH ¢q=0 AND p,=1

By NAok1i HASHIMOTO
§1. Introduction.

Let M@ be an affine algebraic surface in C® defined by A(w)=1+ éw“t:O

where A,, A,, A, are linearly independent non-negative integral vectors. Let A

be the simplex in R?® spun by 6, A;, A, and A,. In [6, 7], Oka showed that
M*® has a canonical smooth compactification in a toric variety W of dimension
three. Let A, ---, A, be the other integral points on A and let h,(w)=h(w)

l
+ X t;w#. There exists a Zariski open set U¢ of C'-® such that the family of
1=4

affine algebraic surfaces M¢={h(w)=0} ((cU® has a simultaneous smooth
compactification M, in W (M,=M). This deformation is called the embedded
deformation of M ([7]). Let v, be the sheaf of the germs of the holomorphic
section of the normal bundle of M, in W and let @, and @y be the sheaves of
the germ of holomorphic vector fields of M, and W respectively. We have the
canonical exact sequence:

(1.1) O"'_>@¢—'—)@W1M¢—‘—)l)t__>0.
This induces the following long exact sequence:

0 — HY(M,, ©,) — H"(M,, Ow|M,) —> H'(M,, v,)

0
1.2) — HY(M,, 6.) —> H'(M,, Ow|M,) —> H(M,, v;)

In [7], Oka has studied the infinitesimal displacement map

13 g T, U — H'(M,, v,),

and the Kodaira-Spencer map d-£° where 0 is the canonical homomorphism
1.4 0: H(M,, v;) —> H'(M,, 6,).

The dimension of Kerd is at least 3. He gives an example (See §7, [7]) where
dim Ker =3 and J is surjective.
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The .purpose of this note is to give an example of an algebraic surface M
embedded in a toric variety W such that dim Ker d=12 and é is not surjective
(Theorem 2.11). M is locally defined by A(w)=1+wi+wiwi+wiwi=0.

The Author is greatly indebted to Professor M. Oka for many helpful sug-
gestions and discussions, and for reading the manuscript.

§2. Deformation of surfaces M.

In this section, we study the algebraic surface M introduced in §1 and its
deformation {M,} through the infinitesimal displacement. We use the same
notation as in [6, 7].

Let M“ be the affine algebraic surface in C*® which is defined by

@1 h(w)=14wi+wiwi+wiwi=0.

Let A be as in §1. A has 27 other integral points Aj, -+, Ay and let A(w, 1)=

h(w)+ 3 tw. ¢ is defined by h(w, t)=0. For the compactification of M,
J=4

we consider the homogeneous polynomial fs(z, ) which is defined by

2.2) falz, V=hg(z:/z0, 22/20, 23/20, )25 .
and let
(2.3) flz, )=fs(z, )+2z5+2§,

for sufficiently large L. Let M, be the compactification of M¢ through the
troidal embedding theory as in [7]. M, has the following numerical invariants.

(2.4) K*=0, e(M,)=24, mn,M,)=Z/2Z and p,=l1.

Here K is a canonical divisor, e(M,) is the topological Euler characteristic and
Dy is the geometric genus. For the calculation, we use §9 of [5]. M, is a
minimal surface. Let us recall the compactification M, of M¢. Let V,=f"*0)
(t is fixed). The dual Newton diagram I'*(f) contains five particular vertices
P,=%5, 3,0, 2), ,.=%3, 5, 0, 2), ,='(1, 1, 1, 2), =1, 1, 2, 1) and P=%1,1,1,1).
Let 2* be a simplicial unimodular subdivision of I™*(f) and let #: X—C?® be the
associated birational proper morphism and let ¥ be the proper transform of V.
For each strictly positive vertex Q of X* with dim A(Q)=1, there is a corre-
sponding exceptional divisor E(Q) and E(Q) of #: X—C* and #:V—V respec-
tively. FE(Q) is a toric variety. Then it is shown in [5, 6] that the exceptional
divisor E(P) is a smooth compactification of M which is a hypersurface in the
toric variety E(P). We denote E(P) by W hereafter. Let S be the 3-simplexes
of 2* which contains P as a vertex. Then S gives a canonical affine coordinate
system of W. In our case, |S| is 24. For a vertex Q which is adjacent to P
and dim A(P)NA(Q)=1, there is a corresponding divisor C(Q) of M,. In our
case, we have the divisor C(T ;) besides C(P,) (=1, ---, 4) where T,,=%2, 2,0, 1).
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Take the following 3-simplex ¢=(P, R, P,, P;) in & where R=%3, 4, 1, 3).
o is fixed hereafter. The defining equation of M, in C} is

30
(2.5) ho(y, D=1t yivi*+yiyi+1+ ]Z=}4t;y31=0 .
where the monomials y%s (j=4, ---, 30) are embedded monomials. As / is 30,

the dimension of the embedded deformation is 27. Then by Theorem (5.1) of
[7], we have the next Lemma.

LEMMA 2.6.
dim H*(M,, v,)=30.

By the Riemann-Roch theorem, we have the Euler-Poincare characteristics
2O,) is —20.

LEMMA 2.7.
H(M,, Op|M)=C* and H'(M,, ©,)=0.

Proof. We follow the method of calculation in §7 of [7]. Take the 3-
simplex t=(P, P, S, P,) in S where S—‘(4 3, 2, 3). Wedenote y,,, y" by ¥., u,
respectively. Then we have y,=ul*ujus? y,=ui’uz*u, and y;=ui?uzus Let
veH“(Mt, Ow|M,). By the GAGA-principle, v can be expressed in C:N\M, as

2 Vim— 8 where v, is a Laurent polynomial in y,, -, y; and is equal to

0
ay:
0 ..
y,-w by definition. We may assume that v, has a regular form on C(FP;) and
j

C(P,) simultaneously (For the definitions of divisors C(P,) and regular forms,
see Lemma (7.6) of [7]). Assume that the monomial y” has a non-zero coefficient
in v;. As we have

(2.8) yu: u}e”l‘gl’z"z”aug”l“4”2'5"3u'§2”1+”2+”8 ,

we must have 8v,+8y,+8=16y,=9,+12v,—1. Combine this with v,=—0;s,

v;==—0;3 where J;, is the Kronecker’s symbol. The possible cases are ai ,
_é_ é 2 2 é 2402 5 2,038 é 844 5 845 é
Y1Ys I Y1Ye 3y, ylyzys_ay‘, ylyzya——‘ayl y Y1da 3. YiY2Ys FI Yi)e P

5, 5 5 3 5
_ly 2’ 3 s _l_; 213 —1_-—’ _1_—)
Iyis— 3.’ YiYa 37, ) V3 34 YiY2 Vs P Vs 37, Y2Ys 37

b
yly%ysl-gy—s, yly%ys‘m, yiy

é 25—1a ss—la 48-—15
a ’ ylyzys ays) y1y2ys ayay ylyZys ays’

2
1

yiy! yaai and yfyity3? ays . After checking their linear combinations in de-

tail, we have
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~

(2.9 v= 0(13 +azy1y35+a3y1y2D+a4y1yzys+D-l asyiyiD

~ Pl d
+aeyivtys D+ a,yiyiD+asytyiD+agm—+ a5 —
0y, 0y,

d .
+ay.y3 a Fay:1y3y3t 05’ in C,NM;,
3

where a;€C (:=1, ---, 12) are arbitrary constants, and

On the other hand, an easy calculation shows that v as in (2.9) is holomorphic
on Mt' ThuS, HO(M;, @W'M;)ECH.
Now we consider H'(M,, ®,). Let v be as in (2.9). We can write v as

v= § a,X,. We show that the mapping 6: H(M,, @y |M,)—H'(M,, v,) is injec-
1=1

tive. Assume that 6(v),= 2 a, Xi(h;)=0 modulo A,(y, t). We claim that all

a, (=1, ---, 12) vanish. We have,

S aXi(ho)= 3 a Xi(ho)+ B ,%)
1= 1= =

@
=3

1,3 aXio%),

J

where #,=t,=t;=1. We can see that the support of Xi(y*7) is included in the
support of h,. As the right hand side of the above equality has no constant

term, this implies f‘, a,Xi(h,)=0 modulo h,. This shows that the mapping ¢
1=1

is injective, completing the proof of Lemma (2.7).

LEMMA 2.10.
Hz(Mt: @W | M,)ZO .

Proof. By the Serre duality, we have isomorphism

HXM,, Ow|M)=H(M,, 2%(K))
= HY(M,, 2| M(6C(P,)—C(P)+C(Tw),
as we have K=6C(P,)— C(Ps)+C(T,,) by an easy calculation. ly is the sheaf

of the germs of l-forms,on W. Let wzéYﬂyi be a rational 1-form and
1=1

assume that the restriction of w is in H°(M,, Q¥ |M,(6C(FP.)— C(FPs)+ C(T1y)).
Let y” be a monomial with non-zero coefficient in'Y, (:: fixed). Then by Lemma
(7.4) of [7], we have,y,=—6+0;,, v;=1+0d;; and 8y,+8y,=16y,=9,+12y,. This
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has the unique integral solution yv=(—2, —5, 1). Let tv/=(P, P, Ty, S’) where
S'=%5, 4, 1, 3). Using K=2C(P,)—2C(P;)+C(P,) on C..N\M,;, and assuming that
the restriction of w is in HYM,, QLK)), we have v,=—2+0;, v;=2+0:s,
16v,—9v,—12v,=0 and 4v,—2y,—3v;=0. The above integral solution does not
satisfy these inequalities. Hence, we have H2*(M,, Oy |M;)=0. This completes
the proof of Lemma (2.10).

Now we are ready to show that

THEOREM 2.11. The Kodaira-Spencer map
d°6°: TU*— HYM,, 6,),

is neither injective nor surjective.
Using Theorem (5.1) of [7], we get

COROLLARY 2.12. The canonical homomorphism
0: H'(M,, v;) — H\(M,, 6,).

1S neither injective nor surjective.

Proof of Theorem 2.11. We consider the exact sequence (1.2). Considering
the section ¢= H(M,, v,) such that ¢,=1, we have that the normal bundle N, is
defined by the divisor (¢)=[16C(P,)+4C(T»)]. The notation ¢, is the same as
in §7, [7]. By the Riemann-Roch theorem, we have X(v,)=30, X(6,)=—20 and
UOw|M;)=10. Then we get H*M,, v,)=0, and using the Lemmas (2.6), (2.7)
and (2.10), HY(M,, v,)=H*M,, 6,)=0, dim H*M,, Ow|M,;)=2 and dim H(M,, O,)
=20. This completes the proof of Proposition (2.11).

Remark 2.13. Our toric variety W has many “symmetries”, i.e. we have
dim H'(W, Oy)=12.

We give another example of an algebraic surface N in which the surjectivity
of ¢ fails but dim ker §=3.

Example 2.14. Let N® be the affine algebraic surface in C® which is defined
by

(2.15) h(w)=1+wiwi+wiwi+wiwiw,=0.
As the homogeneous polynomial fg(z), we take

(2.16) fe(z)=z28+ 2323+ 282342123z, .

N has the following invariants,

K?=0, e(N)=24 and =,N)=Z/2Z.
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As K~C(P)+C(P;), N is minimal, and p,=1. Then we have the following
exact sequence :

)
0 —> HN,, Ow|N,) —> H*(N,, v,) —> H'(N,, 0,)
éHl(Nt) @WINL)_—)O;

and H(N,, Oy |N)=C?, dim H°(N,, v,)=14, dim HY(N,, 6,)=20 and
dim HYN,, @y |N,)=9. Hence we get that the Kodaira-Spencer map §-£¢: T,U*®
—HY(N,, 0,) is not surjective, and é is neither injective and surjective as the
case of M.

Remark 2.17. Minimal surfaces M and N with ¢=0, p,=1, Euler number
=24, K?=0 and non-trivial fundamental group are classified as the minimal
properly elliptic surface, and by Theorem (7.1) of p. 201, [1], the deformation
of such surfaces is also minimal.

Remark 2.18. {B,} in (2.5) are (1,0, 1), (1,1, 0), (2,0,2), (2,1, 1), (2, 2, 0),
221,230, 313), 322,331,340, 341, 350, 43,3)
4, 4,2), 4,5 1), 46,0, 470,56 2), 5 71), 58 0), 68 2), 69, 1),
(6, 10, 0), (7, 11, 1), (7, 12, 0) and (8, 14, 0).
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