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DEFORMATIONS OF SOME ALGEBRAIC SURFACES

WITH q=0 AND pg=l

BY NAOKI HASHIMOTO

§ 1. Introduction.
3

Let Ma be an afϊϊne algebraic surface in C 3 defined by Λ(u/)=1+ Σ wΛι=0

where Λly A2, Λ3 are linearly independent non-negative integral vectors. Let Δ

be the simplex in Rz spun by 0, Al9 Λ2 and Az. In [6, 7], Oka showed that

Ma has a canonical smooth compactification in a toric variety W of dimension

three. Let A4f •••, At be the other integral points on Δ and let ht(w)=h(w)

+ Σ tiivΛi. There exists a Zariski open set Uβ of Cι~s such that the family of

afϊϊne algebraic surfaces Mf={ht(w)=0\ (t^Ue) has a simultaneous smooth
compactification Mt in W (MQ=M). This deformation is called the embedded
deformation of M ([7]). Let vt be the sheaf of the germs of the holomorphic
section of the normal bundle of Mt in W and let Θt and Θw be the sheaves of
the germ of holomorphic vector fields of Mt and W respectively. We have the
canonical exact sequence:

(1.1) 0 — > θt — > Θw I Mt — ^ vt —> 0.

This induces the following long exact sequence:

0 _ > H\Mt, θt) —> H\Mt, Θw\Mt) — > H\Mtt vt)

(1.2) — > H\Mt, θt) —> H\Mt9 Θw I Mt) —> H\Mtί vt)

In [7], Oka has studied the infinitesimal displacement map

(1.3) ξ*:TtU*—>H\Mt,vt),

and the Kodaira-Spencer map δ°ξe where δ is the canonical homomorphism

(1.4) δ:HXMt,vt)—>HKMt,Θt).

The dimension of Ker δ is at least 3. He gives an example (See § 7, [7]) where
dim Kerδ=3 and δ is surjective.
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The purpose of this note is to give an example of an algebraic surface M
embedded in a toric variety W such that dimKerd=12 and δ is not surjective
(Theorem 2.11). M is locally defined by h(w)=l+wl+wlwi+wlwl=O.

The Author is greatly indebted to Professor M. Oka for many helpful sug-
gestions and discussions, and for reading the manuscript.

§2. Deformation of surfaces M.

In this section, we study the algebraic surface M introduced in § 1 and its
deformation {MJ through the infinitesimal displacement. We use the same
notation as in [6, 7],

Let Ma be the afϊine algebraic surface in C 3 which is defined by

(2.1) h(w)=l+wl+wlwi+wlwl=O.

Let Δ be as in § 1. Δ has 27 other integral points Aif •••, Aw and let Λ(u/, f )=
30

h(w)+ Σ tiWAκ Mf is defined by h(w, f)=0. For the compactification of Mf,
.7=4

we consider the homogeneous polynomial fs(z, t) which is defined by

(2.2) fs(z, t)=hΞ(z1/zQ) zjz*, zjz,y t)-z8

Q.

and let

(2.3) f(z, t)=fs(z,

for sufficiently large L. Let Mt be the compactification of Mf through the

troidal embedding theory as in [7]. Mt has the following numerical invariants.

(2.4) K2=0, *(Mt)=24, πx{Mt)^Z/2Z and />,=1.

Here K is a canonical divisor, e(Mt) is the topological Euler characteristic and
pg is the geometric genus. For the calculation, we use §9 of [5]. Mt is a
minimal surface. Let us recall the compactification Mt of Mf. Let Vt=/~1(0)
(t is fixed). The dual Newton diagram Γ*(f) contains five particular vertices
P 1 = ί (5, 3, 0, 2), P f=«(3, 5, 0, 2), P,=\l, 1, 1, 2), P 4 = U 1, 2, 1) and P='( l , 1,1,1).
Let 21* be a simplicial unimodular subdivision of Γ*(f) and let π : Z->C3 be the
associated birational proper morphism and let Ϋ be the proper transform of V.
For each strictly positive vertex Q of J * with dimΔ((?)^l, there is a corre-
sponding exceptional divisor E(Q) and £(0) of ft: X-±CZ and π: V->V respec-
tively. £(Q) is a toric variety. Then it is shown in [5, 6] that the exceptional
divisor E(P) is a smooth compactification of Mf which is a hypersurface in the
toric variety E(P). We denote E{P) by W hereafter. Let S be the 3-simplexes
of J * which contains P as a vertex. Then S gives a canonical affϊne coordinate
system of W. In our case, \S\ is 24. For a vertex Q which is adjacent to P
and dimΔ(P)Γ\Δ(Q)*>l, there is a corresponding divisor C((?) of Mt. In our
case, we have the divisor C(T12) besides C(Pt) (/=1, •••, 4) where 7 ^ = ^ , 2, 0,1).
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Take the following 3-simρlex σ=(P, R, P2, Ps) in S where # = ' ( 3 , 4, 1, 3).
<τ is fixed hereafter. The defining equation of Mt in Cl is

(2.5) hσ(y, t)=yΛylyl«+ylyί+l+ ΣJ t3y
BJ=0.

4

where the monomials yBJ (/=4, •••, 30) are embedded monomials. As / is 30,
the dimension of the embedded deformation is 27. Then by Theorem (5.1) of
[7], we have the next Lemma.

LEMMA 2.6.

dim H\Mt, v e)=30.

By the Riemann-Roch theorem, we have the Euler-Poincare characteristics
l(θt) is -20.

LEMMA 2.7.

H\Mtί θw\Mt)^C12 and H\Mt,θt)=Q.

Proof. We follow the method of calculation in §7 of [7]. Take the 3-
simplex r=(P, Pl9 S, P4) in S where S=*(4, 3, 2, 3). We denote yσt, yτ% by yu u%

respectively. Then we have yi^u^uluj2, yi—ui*ui*uz and 3>3=w712wi5w3. Let
v<=H\Mt, θw\Mt). By the GAGA-principle, v can be expressed in ClΓ\Mt as

3 § fi
Σ ^ - Λ — where v3 is a Laurent polynomial in yu •••, ̂ 3 and -^— is equal to

yj-z— by definition. We may assume that υ3 has a regular form on C(PX) and

C(P4) simultaneously (For the definitions of divisors C(Pt) and regular forms,
see Lemma (7.6) of [7]). Assume that the monomial yv has a non-zero coefficient
in Vf. As we have

we must have 8^2+8^3+8^16^^9^2+12^—1. Combine this with i ^ — δti,

v3^—δi3 where δi3 is the Kronecker's symbol. The possible cases are -^—,

^' y*yΫW>

^T- yίylyΫW

^f^i^δ-^— and ylyfy'z1-^—. After checking their linear combinations in de-
dy8 oys

tail, we have
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(2.9) v=a1-=
oy

ny^lyi1-^—, in CσΓλMt,oy

where a^C (/—I, •••, 12) are arbitrary constants, and

£ = 2
dyi dy2 dy3

On the other hand, an easy calculation shows that v as in (2.9) is holomorphic
on Mt. Thus, H\Mt, Θw\Mt)^C12.

Now we consider H°(Mt, θt). Let v be as in (2.9). We can write v as

v— Σ atXt. We show that the mapping θ: H°(Mt, θw\Mt)->H\Mt, vt) is injec-
12

tive. Assume that θ{v)σ—ΊloLιXi{h(J)=Q modulo hσ(y, t). We claim that all
t=l

at (/=1, •••, 12) vanish. We have,

where ^ = ^ = ^ = 1 . We can see that the support of Xi(yAή is included in the
support of A*. As the right hand side of the above equality has no constant

1212

term, this implies *Σ aιXi(hσ)*ϊ0 modulo hσ. This shows that the mapping θ
1

1 = 1

is injective, completing the proof of Lemma (2.7).

LEMMA 2.10.

H\Mt, θw\Mt)=0.

Proof. By the Serre duality, we have isomorphism

sH\M t , Ω'w I Mt(6C(P2)- C(P3)+ C(T12))),

as we have K=6C{P2)— C(PZ)+C(T12) by an easy calculation. Ω\y is the sheaf

of the germs of 1-forms, on W. Let ω= Σ YiSyi be a rational 1-form and
1 = 1

assume that the restriction of ω is in H\Mt> Ω1

w\Mt(6C(P2)-C(Ps)+C(T12)).
Let yv be a monomial with non-zero coefficient in'y\ (z: fixed). Then by Lemma
(7.4) of [7], we have.v2^-β+<5 ί 2, v8==l+δ<8 and 8v2+8v3^16^^9v2+12v3. This
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has the unique integral solution v=(—2, —5, 1). Let r '=(P, Pi, T1 2, S') where
S'^Cδ, 4, 1, 3). Using if=2C(P 2)-2C(P 3)+ C(P4) on CT>r\Mt, and assuming that
the restriction of ω is in H\Mt9 ΩUiK)), we have v2^—2-\-δi2f vz^2+Su9

lβi^i—9v2—12v3^0 and 4vi—2v2—3v3ί>0. The above integral solution does not
satisfy these inequalities. Hence, we have H2(Mt, Θw\Mt)—0. This completes
the proof of Lemma (2.10).

Now we are ready to show that

THEOREM 2.11. The Kodaira-Spencer map

is neither injective nor surjective.

Using Theorem (5.1) of [7], we get

COROLLARY 2.12. The canonical homomorphism

δ:H (Mt,vt)—*HKMt,θt).

is neither injective nor surjective.

Proof of Theorem 2.11. We consider the exact sequence (1.2). Considering
the section φ<=H\Mt, vt) such that φσ=l, we have that the normal bundle Nt is
defined by the divisor (^)=[16C(Λ)+4C(T1 2)]. The notation φσ is the same as
in §7, [7]. By the Riemann-Roch theorem, we have X(vt)=30, X(θt)=—20 and
X(θw\Mt)=10. Then we get H\Mty ye)=0, and using the Lemmas (2.6), (2.7)
and (2.10), H\Mt> vt)=H\Mt> <9t)=0, dim H\Mt, θw\Mt)=2and dim H\Mty Θt)
=20. This completes the proof of Proposition (2.11).

Remark 2.13. Our toric variety W has many "symmetries", i.e. we have
dim H%W, θw)=12.

We give another example of an algebraic surface N in which the surjectivity
of δ fails but dimker<5=3.

Example 2.14. Let A^α be the affine algebraic surface in CB which is defined

by

(2.15)

As the homogeneous polynomial fs(z), we take

(2.16)

N has the following invariants.

K2=0, e(iV)=24 and
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As K^CiPJ+CiPs), N is minimal, and pg=l. Then we have the following

exact sequence:

δ

0 —» H\Nt, Θw\Nt) —> H\Ntf vt) —> H\Nt, θt)

and H\Ntf θw\Nt) = C\ dim H%Nt, vt)=U, dim H\NU θt)=2Q and
dim H\Nt, θw\Nt)—9. Hence we get that the Kodaira-Spencer map δ°ξe: TtU

e

->H\Nt, θt) is not surjective, and δ is neither injective and surjective as the
case of M.

Remark 2.17. Minimal surfaces M and N with #=0, pg=l, Euler number
=24, K2—0 and non-trivial fundamental group are classified as the minimal
properly elliptic surface, and by Theorem (7.1) of p. 201, [1], the deformation
of such surfaces is also minimal.

Remark 2.18. {Bj} in (2.5) are (1, 0, 1), (1, 1, 0), (2, 0, 2), (2, 1, 1), (2, 2, 0),
(2, 2, 1), (2, 3, 0), (3, 1, 3), (3, 2, 2), (3, 3, 1), (3, 4, 0), (3, 4, 1), (3, 5, 0), (4, 3, 3),

(4, 4, 2), (4, 5, 1), (4, β, 0), (4, 7, 0), (5, β, 2), (5, 7, 1), (5, 8, 0), (6, 8, 2), (β, 9, 1),
(6, 10, 0), (7, 11, 1), (7, 12, 0) and (8, 14, 0).
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