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ON THE FACTORIZATION OF SEVERAL CLASSES

OF ENTIRE FUNCTIONS

BY JIANHUA ZHENG

1. Introduction and statement of results.

Gross 1 discussed the factorization of the function in the form like F{z) —
H(z)+exp(λz+G(z)), where both H(z) and G(z) are periodic entire functions
with period r. But the present author found that Theorem 7 of Gross 1 seem
to be wrong. In his Theorem 7, Gross showed that F(z) is prime, if λτ/{πi)
is an irrational. However, [H(w)+exp(λw + G(w))']<>(z+H(z)) can be expressed
in the form of F{z) too.

In this paper, the present author is to correcte the mistake of Theorem 7
of Gross 1 and to consider the factorization of the entire functions of the other
class to get some interesting, periodic, prime entire functions. We assume that
the reader is familiar with the concepts of the factorizations of entire functions.

THEOREM 1. Let F(z) be H(z)+exp(λz+G(z)), where both H{z) and G(z) are
periodic entire functions with period τ and λτ/'{πi) is an irrational. If F(z)=f(g),
where both f and g are non-linear entire functions, then we have the forms of f
and g, respectively,

f(w)=H1(w)+exp(cw+Ht(w)), g(z)=dz+H,(z),

where dc—λ, both Hx and H2 are periodic functions with period dτ and H3 is
periodic with period τ.

THEOREM 2. Let F(z)=H(z)+exp(λz+G(z)), where H and G, λ are as in
Theorem 1 and H(z)Φ constant. F(z) is prime, if one of the following condition
holds:

(i) There do not exist two non-constant periodic entire functions H^z) and
H2(z) with period τ such that H(z)=H1(z-}-H2);

(ii) For any ε>0, there are two unbounded sequence {rk\ and {r'k} of posi-
tive real number such that M(rk, G)<e2(εrk) and M(r'k, #)<exp(εM(r£/2, G)),
where e2(z)=exp(expz)

(iii) G(z)=constant.
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THEOREM 3. Let F(z)=H(z) exρ(G(z)+S(z)), where G(Φconstant) and H are
as in Theorem 1 with p(G)<+oo and p(H)<+oo(p(H) denotes the order of H)
and S is a polynomial. And let H have an infinite number of zeros which all lie
on a straight line. Then the factorization of F(z) only can be one of the follow-
ing forms:

(i) F{z)—f{P{z)), where P is a polynomial of degree 2 and f an entire func-
tion

(ii) F(z)=g(z)n, where g is an entire function and n an integer greater than 1
(iii) H{z)=Q(g{z))e-Siz\ G(z)=U(g(z)), and S(z)=(2nπi/mτ)z+c, where

ra(>0) and n are integers, Q is a rational function and U an entire function of
order zero, g is periodic with period mτ.

By Theorem 3, we have immediately

COROLLARY 1. Let F{z) be H(z)eGiz\ where both H and G are as in Theorem
3. F{z) is prime, if the following conditions hold:

(i) H(z) has at least one simple zero;
(ii) For any complex number b, either H(z-\-b) or G(z-\-b) is not even
(iii) H(z) and G(z) have no common periodic right factors.

Further we have

COROLLARY 2. For any non-negative integers k and n, F(z) — o,o§nZ'$mz
exp(cos2*+1z) is prime.

Remark, (a) By Pόlya's lemma (cf. Pόlya 5) and the facts that the lower
order λ(G) of any periodic entire function G is greater than 1 or equal to 1
and σ(G)>0 (<τ(G)=lim inf T(r, G)/rλiG')) (cf. Gross 1) and that for any non-

r->+oo

periodic entire function, the prime factorization in the sense of entire function
is equivalent to the prime factorization in the sense of generality (cf. Gross β),
we can easily verify Theorem 2, so we omit the proof of Theorem 2.

(b) From (iii) of Theorem 2, we know that the entire functions eXl*+eλ**
and H(ez)-\-eλz are prime, where both λ1/λ2 and λ are irrationals, and H(w) is a
holomorphic function in 0 < | w ; | < + cχ). Evidently, their derived functions of
any order are also prime.

(c) Recently, G. D. Song and J. Huang 7 showed that sinz exp(cosz) is
prime. However, by Corollary 1 and the fact that entire functions F and Fr

have no common right factor g unless g=d'exp(bz+c)+d, where all a, b, c and
d are constants (cf. Gross 8, p 121), we easily get more general prime functions than
theirs. In fact, we easily verify that both cosn2> sinz exp(cosn+1z) and slnnz

C0S2 exp(sin7l+1z) are prime, for any integer n^>0. Evidently, the derived
function and the second power of these functions are not pseudo prime. It
follows that product and derivative of the prime functions are not always
pseudo prime.

In order to prove our results, we need some lemmas.
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LEMMA 1. Let F(z)=H(z)+exp(λz+G(z))=f(g), where H and G, f and g, λ
are as in Theorem 1. // g(z) = T1(z)+z-exp(kz+T2(z)), where Tt (z=l, 2) are
periodic with period τ and eτk=l, then exp(kzJt-T2(z))=const ant.

By making a little modification of the method of Urabe 2, we can verify
Lemma 1.

LEMMA 2. Let F(z)—H(z)JrQ(z)y where H(z) (Φconstant) is an entire func-
tion of finite lower order, periodic with period τ (say) and Q{z) (Φconstant) a
polynomial. Then F(z) is left-prime in the sense of entire function, (cf. Urabe 3).

LEMMA 3 (cf. Edrei 4). Let f(z) be an entire function. Assume that there
exist an unbounded sequence {an\ of fimt complex number such that all the roots
°f f(z) — an(n=^l, 2, •••) lie on a straight line. Then f(z) is a polynomial of
degree at most 2.

2. Proof of Theorems.

Proof of Theorem 1. Assume τ—l without the loss of generality. Then
we have

(1) f(g(z+l))-f(g(z))=(eλ-l) exp (λz+G(z))Φθ.

It shows that

(2) g(z+l)-g(z)=exp(V1(z)),

where Vx is an entire function. Further, we have

(3)

By the same method as in the above, we can find out an entire function V2(z)
such that

(4) g(z+2)-g(z)=exp(V2(z)).

Combining (2), (3) and (4), we get immediately

(5)

Then if follows by BoreΓs Theorem (cf. Gross 8, p 165) and (5) that Vλ(z-{-l) —
Vx{z)+k, where k is a constant. Put G1(z)=V1(z)—kz. Then Gλ(z) is periodic
with period 1. And it follows from (2) that

(6) g

We consider two cases of the following, separately.
(I) The case when ekφl. We obtain from (6) without difficulty
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(7) g(z)

where H1 is periodic with period 1. Analysing the proof of Theorem 7 of
Gross 1, we know that the expression (7) of g does not hold.

(II) The case when ek—\. We easily get from (6) the form of g(z)

(8) g(z)=H1(z)+z-exp(kz+G1(z)),

where Hλ is as in the above. Thus it follows by Lemma 1 and (8) that g{z)
can be written as g(z)=H1(z)+dz, for some non-zero complex number d. Since
F(z)=f(H1(z)+dz), we have immediately

(9) f(H1(z)+dz+d)-f(H1(z)+dz)=(eλ-l)-e^(iz+G(z))Φθ.

Function Hχ{z)+dz can assume any complex number, hence it shows from (9)
that

(10) f(w + d)-f(w)=exp(V(w)),

for some entire function V(w). From (9) and (10), we have exp (V (dz-\-H^z))
=(eλ — l)-exp(λz+G(z)), i.e. V(dz+H1(z))=λz+G(z)+clf for some complex num-
ber cλ. Differentiating both the sides of the former equality, we have
V/(H1(z)+dz)'(d+H'1(z))=λ+G'(z). It follows that Vf{Hx{z)+dz) is periodic with
period 1. Hence we have

V/(H1(z)+dz+d)=V/(H1(z)-^rdz),

V'(w + d)=V'(w), V(w + d)=V(w) + c , (c: a constant).

Put G2(w)=V(w)—(c/d)w. Then G2 is periodic with period d. Thus it follows
from (10) that

(11)

If ec=l, we can easily find out a periodic entire function H2(w) of period
d such that f{w) has the form f(w)=H2(w)+(w/d)'exp((c/d)w + G2(w)). From
the forms of F(z) and g(z), we know that this expression of f{w) contradict
F(z)=f(g). Therefore ecφl. Thus it follows from (11) that f{w) can be ex-
pressed as

where H2 is periodic with period d. Comparing the forms of F and f(g), we
have c=λ. Thus we complete the proof of Theorem 1.

Proof of Theorem 3. Let F(z) be f(g). We divide four cases of the fol-
lowing to be considered, separately.

(I) The case when g is a polynomial. Then / certainly is transcendental
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entire. F(z) has infinite many zeros, so does f(z). By Lemma 3, g must be
of degree at most 2.

(II) The case when g is a transcendental entire function and / is entire. By
Lemma 3, f(w) only has a finite number of zeros. Hence f(w) can be written
as f(w)=Q(w)eUcw:> with a polynomial Q and an entire function U. We treat
two subcases of the following, separately.

(II. 1) The subcase when Q has two distinct zeros. Then g is of finite
order. By p(H)<+<χ> and F=f{g), we have

(12) H(z)=Q(g(z)) exp(M(z)),

where M is a polynomial. Further, we easily get

(13) U(g(z))=G(z)+S(z)+M(z)+2k0πi,

for some integer k0.
If S(z)+M(z)Φ constant, it follows by Lemma 2 and (13) that U is linear.

Put U(w)—aw+b, (aφQ). Therefore we have the equality g(z)=l/a(G(z)+S(z)
+M(z)+2koπi—b). Taking a point z0 such that H(zo)Φθ, we establish from (12)
the equality

(14) H(zo)=Q(—G(zo)+ — (S(
\a a

for any positive integer n. However, the right side of (14) approaches 0 or oo
as n-»+oo. This is absurd. Hence S(z)+M(z)=constant. It follows from (13)
that U certainly is of order zero (cf. Polya 5) and g a periodic function of
period mτ for some positive number m (cf. Gross 8, p 106). Thus from (12),
exp(M(z)) is periodic with period mτ, so is exp(S(z)). Then S(z) must have
the form S(z)=(2nπi/mτ)z+c with an integer n and a constant c. Thus we
obtain the factorization of case (iii).

(II. 2) The subcase when Q(w)=u(w—wo)
n, where u is a constant and n a

positive integer. Then f(w) can be written as

(15) f(w)=u(w-wo)
n'exp(U(w)).

We may assume that U(w)Φconstant. In fact, if £/(u>)=constant, we get
the factorization of case (ii). Further, g{z) can be written as

(16) g(z)=wo+h(z)'exp(W(z)),

where W(z) and h{z) are both entire functions and ρ(h)<+oo. Thus it follows
that

(17) H(z)=h(z)n>exp(N(z)),

for some polynomial N(z). Furthermore, we have

(18) U(g(z))=G{z)+S{z)+N(z)-nW(z)+2koπi,
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for some integer k0. Since p(G)< + 00, it follows from (16) and (18) that W is
a polynomial. According to the same method as in subcase (II. 1), we can show

(19) S(z)+N(z)=nW(z)+cl9 (cx: a constant) .

Thus it follows from (16) and (19) that (g-wo)
n=hnenW=Hexρ(S-c1), i.e.

(20) H(z)=(g(z)-wo)
n'exp(c1-S(z)).

From (18) and (19), we have immediately the equality G(z)^=U(g(z))—(2koπi+c1).
Then U is an entire function of order zero and g is periodic with period mτ
for some positive integer m. From (20), we can write S(z) as (2sπi/mτ)-z+c
with a constant c and an integer s. Then we get the factorization of case (iii).

(III) The case when g is transcendental entire and / non-entire mero-
morphic. Then we can write f(w) and g{z) as fή:(w)/(w—w1)

q and wλ+
exp(W(z)), respectively, where q is a positive integer and wx a complex num-
ber, / * and W are both entire functions and f*(wχ)Φθ. By Lemma 3, / * only
has finite many zeros. Then we can write f*{w) as Q(w)exp(U(w)), where Q
is a polynomial with QiwJφQ and U an entire function. It follows by ρ(H)<+00
that W is a polynomial. Hence there exists a polynomial P(z) such that H(z)=
Qiw^exp W(z))-exp P(z). And we easily get the equality G(z)+S(z)+P(z)+qW(z)
=U(g(z))+2k0πi for some integer k0. If ί/(ι^)=constant, then G{z)—constant.
This is a contradiction. Hence U(w)Φ constant. By the same method as in case
(II), we can easily get the factorization of case (iii).

(IV) The case when g is transcendental meromorphic and / is a non-
polynomial rational function. The case can be reduced to case (III) by some
suitable linear linear transformation.

Thus we complete the proof of Theorem 3.

Proof of Corollary 2. According to Theorem 3, we only need prove that
there do not exist an entire function U(w) of order zero and a rational function
Q(w) such that

(21) cos2k+1z=U(g), co$nz-ύr\z=Q{g),

where g is a periodic entire function with period 2raπ, for some positive
integer m.

Otherwise, suppose that there are U and Q, g to satisfy (21). Evidently,
U is a polynomial. Let wλ and w2 (w^w2) be both zeros of U(w) of multi-
plicity mx and m2, respectively, where mxΦ2k+1 and m2Φ2kJr 1 and let z% (z'=l,2)
be any roots of g—w% (z=l, 2) of multiplicity n% (/=1, 2), respectively. From
(21), we have n1m1=2k+l and n2m2=2k+l. Hence nt>3 (*=1, 2). However,
by Nevanlinna's Theory, we know this is impossible. Therefore, U(w) can be
expressed as (w—w1)

t'P2k+1(w), for a polynomial P(w) and an integer t
(0^t<2k+l). We divide two cases of the following to be considered, separately.

(I) The case when ί=0. Then we have immediately cos z=ξP(g(z)), where
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ξ is a constant with ξ2k+1—l. Thus it shows from the latter of (21) that

(22)

Put Q!=Q/(ξP)n and P,=ξP. Obviously, Qx is a polynomial. Hence (22) can
be rewritten as 1 = P I 2 + Q I 2 = ( P I + Z Q I ) ( P I - Z ' Q I ) . It follows that Pi±zQi are both
polynomials and have no zeros. Then both Px±iQi are constants, i.e. Pλ and
Qx is both constants. This is absurd.

(II) The case when tφO. Then we can write g(z) as Wi~\-Xs(z), for some
entire function X and some integer s satisfying st—2kJrl. If follows from the
former of (21) that

(23) cos z=ξX-P{wx+X')=ξP2(X),

where P2(w) denotes ξw-PiwxΛ-w8). From the latter of (21) and (23), we easily
obtain the equality P2

2n(l—P2

2)=Q2(w1

Jriυs). By the same method as in case
(I), we can show that P2 and Q are both constants. This also is impossible.

Thus we complete the proof of Corollary 2.
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