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NECESSARY AND SUFFICIENT CONDITIONS FOR A

POISSON APPROXIMATION (TRIVARIATE CASE)

BY CHENG-GEE LIU

0. Introduction.

In paper [1], M. Polak has shown that V. R. Mises (1921) has derived
sufficient conditions of Poisson approximation for sums of independent univariate
Bernoulli random variables which may not be identically distributed, and that
J. Macys (1977) has derived that the converse assertion is true, i. e. the condi-
tions are necessary for Poisson approximation as well. M. Polak (1982) has
extended the univariate case to bivariate case. In this paper, we want to
extend Polak's results [1], and generalize Kawamura's results [2] to trivariate
case.

Before showing the main results, we give the following notations and
definitions.

1. Notations and definitions.

g, k, m, n: positive integers,
{βi=(l, 0, 0), e8=(0, 1, 0), e8=(0, 0, 1)}: base of 3 dimensional vectors,
E={el9 e2, e3, ex+e2f ex+eZi e2+ez, e1

J

re2

J

rez},
i: 3 dimensional vector belonging to E,
8=(slf s2, sB): 3 dimensional vector,

As: frequence of the observation i in nk trivariate Bernoulli trials,
t)\ the trial number for the -th occurrence of observation i in the nk trials

with ίj e{ l , •••, nk}, where / = 1 , 2, •••, Ait

Fi={(H, th - , fi,); t[<ti< ~<t*Ai},
d : the set of integers expressed in (ίj, •••, tι

Ai) belonging to Ft denoted as

Σ : the sum of all terms for (ίj, •••, t
Fi

Σ : the sum of all terms for (ί{, •• , ί i / ) e F , with the condition
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POISSON APPROXIMATION 369

A-:={/{eii Άe^t -rl e3> -^e1+e2> -^e1+e3> ^-e^Λ-e^y J^e1+e2+e3)>

\C\—\_A\ Σ ^4i=s,, y=l, 2, 3], where we can obtain A^maxs, for every i,
<i,ep=l j

Σ - the sum of all terms for ^4/s with the restriction of [C],

λii nonnegative real parameter for every i
tln, t'Sn: integers which are consisting with the elements of G, with rn, sn&

{1, 2, •••, Λi\, where n is positive integer.
Ank(A), Bnk(A), Cnk{A) i sum of the product of probabilities which will be

deduced later from (2.2.1), (2.8) and (2.1.1).

2. Conditions sufficient for Poisson approximation.

Let {Xkj=(XlkJ, X2kJ, X3kj)> J = l , 2, •••, nk} be a sequence of independent
trivariate Bernoulli vectors for every k^l with

(2.0) P[X J k J=i]=P*/i), for every i<ΞEU{0},

where

Σ Λ/ i )=l .

To explain XΛ j (y==l, 2, •••, nΛ), we may consider the following example
for nk = 16.

Example 1.

7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 sum

XlkJ 0 1 0 1 0 0 1 1 1 0 1 0 1 0 1 1 9

X2kJ 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 0 5

X3k3 1 0 1 1 0 1 0 1 0 0 0 0 0 1 1 0 7

Let us denote Sk= Σ>Xkj= Σ (XIkj, X2kJy X3kj) for every k^l. In this
; = 1 .7 = 1

example, we have SΛ=(9, 5, 7). However, in the following discussion Pkj(i)
expressed in (2.0) will be replaced by P;(ι) for simplicity. Then P[S*=s] can
be expressed easily as follows.

(2.1) p [ S , = s ] = Σ { Σ [ΠΛjiCβx)]

Σ C e
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Π*'- Σ C Π'Λji+ .(βi+β,)]
{ G ^ G v G V G ) 3

β

FΈe ί ΠVίj2+β
l^GlGGG

Σ C β l Π e

++ 1

UPg(0).

For simplicity, if the term in the braces {•••} of (2.1) is replaced by Cnjt(A),
then we have

(2.1.1) p[S*=«]= Σ {Cnk{A))nUPM
t ( G V G v G \ J G y G \ J G V G )

and also by (2.1) we have

(2.2) PlSk=s2= Σ { Σ (ΠΛjiω/P^O)) Σ (ΠPMeJ/Pφ
LCI Fei j=l J J Fe2 J=l J J

eι+e2 j 1
Gei +e2n(GeiVGe2vGe3) =0

Σ ( β

+

Similarly, if the term in the braces {•••} of (2.2) is replaced by Ank(A), then
we have
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(2.2.1)

THEOREM 1. // the following conditions (2.3) and (2.4) are satisfied for the
sequence of independent Bernoulli distribution which may not be identically dis-
tributed,

(2.3) Σ Pkβ)->λt as &->oo for all i

(2.4) min Pkj(0)-+l as

then we have

(2.5) Y\mP\_Sk--

for every s, where [C~\ = [£; m Σ Ai=sJfί / = 1 , 2, 3].

l^eιl-^€2 . . . 2^el+e2+e3
— « Ί = γ» Ael Λ g 2 Λ ei+β 2+e 3

Proof. In order to prove the theorem, we consider the following three
steps.

(step 1) We want to prove that

(2.6)

Consider the inequality

[- l , oo),

putting y ——x and y=zχ/(l— χ)f # e [ 0 , 1), we obtain
JCG[0, 1). Now putting Δ^=P ί(βi)+-P^(β2)+ ••• +-P^(βi+β2+e8) = l—Pg(0), where
O^Δ^<1 (by (2.4)) for sufficiently large fe (l^g^nk), and using the last
inequality, we get

e-siϊΓFϊw^^g Π Pβ(0)^e'gΈiJ',

and from (2.3), (2.4) we can prove that

(step 2) In order to derive the limiting value of (2.1), we need to prove

(2.8) by (2.7). In this step, let us prove (2.7) and (2.8). Let us put

71k Fβl
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Λeι+e2

Σ Π PtΫ+^+eJ Σ Π
ei+c2 J=l J Fe!+es 3=1

Σ "π%2-

i 2 3

Σ Π Pί
. 7 = 1 •>

Now we are going to prove that

Π(2.7) Σ [ Π Λ ί ( i ) ] - » t f ' M J for every

The proof is given by induction with respect to AΛ.
(1) i4,=l. By (2.3), it is obvious that

ftf)-^^ as

(2) Ai=2. By (2.3) and (2.4), we have

because

0

and by (2.3), (2.4) the right hand side of the inequality tends to 0, so we have

2 V"1 P i(i\P i(i\ ΓV P ΐi\Ί2 \ ^ "P (i\ \. 22 «e

(3) Assume that (2.7) is correct as Ai=m—1, that is,

- 1 ) ! as

In order to finish tne induction, let us prove (2.7) as Ai—m.

Multiply the left h

(by (2.3)), we obtain

nk

Multiply the left hand side of the last relation by ΣP f« (i) which tends to
4 m

(2.7.1) Σ Ptί(i)UPAi)+ Σ PM)UPti(ι)+ -
<ί< < 4 - i J=1 J <;< < 4 - i ; = 1 '

+ Σ Λi_1(i)Π1Λί(i)+ Σ ΠΛ-(i)
?̂< <4-i α J=1 ' 4<^<-<4-! J = 1 J

m

Σ ΠΛ<(i)+ + Σ
ιj<ιί,<*i< <«i- 1

 J = 1 ' «{<"<'ί.-
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Eachjof the first (m—1) terms of (2.7.1) may be nonnegative and estimated by

[l-minP,(0)] Σ ΠΛ}(i),

which is an upper bound of these terms and tends to 0; that is,

0^[each of the first (m-1) terms of (2.7.1)]

^ [ l - m i n P , ( 0 ) ] 4 Σ . ΎlPήii)-

So each of the first (m—1) terms tends to 0, and each of the last m terms has
the same value, then we can obtain the limiting value of (2.7.1) to be

TO

that is, (2.7) is correct as Ai—m and we finish the proof of (2.7) by the induc-
tion. Then by (2.7), we have

(2.8) Bnk(A)-> ^Tj^l'^Ifflί \ a s *-*°°>
tihs is the result of step 2.

(step 3) Let us define

*e2 *e2

)-Σ UPMe2),

(2.9) R ( ) Σ Π ^ ) Σ ΠR (e,)=Σ Π
eiVGe2 Fe3 .7=1 J

Σ β

Fei+e2+es

Π
1

In this step, we want to prove that each of R*(i) in (2.9) tends to 0 as &-»oo;
that is,

(2.10) lim/?*(i)=0 for every /eJF—{0,

where # means the union of G's depending on ι.
It is easy to see that for sufficient large k

n nk
(9 11) Y1 TT P i(i)<Γ V P idV

Fι J=l 0 ,ι=1 0



374 CHENG-GEE LIU

It is obvious from (2.9) that J?*(e8) is nonnegative, because the probability
is nonnegative and i?*(e2) may be estimated as follows:

R(e2)£ Σ P A ) Σ Σ Π/We,)
Gei r x = l r l s x = l Fe2 .7=1 ;

^ 2

+ Σ Pφ(et)Pt'i(et) Σ Σ Π /We2)
r i < r 2

 r l r2 si<s 2 ^ β 2 J=l ^

+ Σ ΠΛ iCβ.) Σ

Σ
2

Π

(where i4=minC4βl, Ae2)).

By (2.4) and (2.11), the right hand side of the last inequality tends to 0 as
&—>oo. So we have R(e2)-+0 as &->oo. In the same way, we can proved each

R*(i) of (2.9) tends to 0 as &-»oo, for every i&E, and we finish step 3.
Now we prove theorem 1 as follows. By the definition of Bnk(A) and (2.9),

we have

Λei Ae2 Ag3

(2.12) BnΛA)={Σ, Π/W*i)Σ UPMe2)Σ, Π f t * )
Fei 3=1 ; Fe2 3 = 1 J Fez 3 = 1 J

Σ Π Pteι+e^iΛ-e2) Σ ί l Pte^+e^i+ez)
Feι+e2 3=1 J Fe\+e$ 3=1 J

FΣ, eU3Pte/Me2+e,)

Σ

 eiγ[+eZPte1+e2i
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Π ^ ( ) [ Λ ( ) Σ Π Λ (
F β l J = l >

Σ Π e3Pt*ii+*2+e

ei+e2+ez 3s*! J

^G^G^G y G ^ G

where

and F is a polynomial of /?*(e2), •••, Λ*(£), •-, ̂ 5 } ί (βi+e2+β 3 ) which coefficients

may be expressed by the product of Σ ' s , and we denote F by the following:

Σ Π^fe)i?fe)Σ Π

1 2

Π
3 = !

Ge1 +

Σ ΠΛjl(*i)Σ ΠΛjsCβ,
F e i ; = 1 ^ F β 2 ; = 1 -̂

! + e2 +

Π

+ Σ ΠPMe,)- Σ TLPMes)R*(e3)
Fei 3 = ! 3 Fe2+e3 J = l }

G ( G v J G 0

+ Σ U ή ( i * ( 2 ) * ( ! 2 + 3 )

By (2.10), we get F(R)-*0, and by (2.8), (2.12) we have

}Ae12
Ae2 . . . }Aeι+e2+e3

(2.13) Cn j f c(ii)-» 7 1 / ; 2 . Xf1+g2+g3 . as
Λ e i \ Λ e 2 l ••• / l e i + e 2 + e 3 !

It is easy to see that
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and by (2.4), (3.13), we have

(2.14) Λn»(Λ)-> > , ? , : i + < 1 + t > , as *

The relations (2.6) and (2.14) finish the proof of theorem 1.

3. Conditions necessary for Poisson approximation.

The converse assertion of theorem 1 is also valid, but the proof is quite
different. Let us show it by the following theorem.

THEOREM 2. // the condition (2.5) {for the sums of independent Bernoulli
vectors which may not be identically distributed) is satisfied, then we have (2.3)
and (2.4).

In order to prove theorem 2, we are going to show lemma 1 and lemma 2.

LEMMA 1. // the condition (2.5) is satisfied, then we have

(3.1) max [P,(i)//y0)]->0 as £->oo, for every

and

(3.2) ΈPAi)/PM-+λΛ as &->oo, for every i
. 7 - 1

Proof. We shall prove lemma 1 by the following four steps which can be
obtained from (2.5) and using (2.2) for given s.

(step 1) Put 8=0 in the relation (2.5), it is obvious to obtain

(3.3) Π P , ( O ) - > 0 - < ' I+J 2+ +J I+ 2+«8> as &->oo.
g=l

(step 2) Put s=et and s—lβi in (2.5) and using (3.3), we obtain

(3.2.1) ΈPtti(et)/Ptei(0)^λeφ, ί = l , 2 , 3 as £->oo,

because the solution of [C] is

[A A (iΦe )"] / s e e e ? a m Pte 2 which \
\ €i ' ι \ for s—eτ explains the getting way
L λ u J \for the solution. /

(3.2.1) means (3.2) being valid for i=et (/=1, 2, 3), and



POISSON APPROXIMATION 377

because the solution of [C] is

for s—2ex.

By (3.2.1) and (3.4), we get

Σ lPtei(eι)/PM0)']2-+0 as £->oo,

which implies that

(3.1.1) max [P£jt(βt)/Ptei(0)]-*0 (* = 1, 2, 3) as

(3.1.1) means (3.1) being valid for i=et (* = 1, 2, 3).
(step 3) Put s—et+βj ( l^z<y^3) in (2.5), we obtain

(3.5) Σ

+ Σ PίjtW/ΛjtCO) Σ Ptp(ej)/PteM

because the solution of [C] is

Ae. Λe A€i+e At (iΦet, eJf t j
1 1J 0 0 for s^ei
0 0 1 0 J

Since

Σ Pt'i(e%)/Ptli

->0 (by (3.1.1), (3.2.1)),

then by (3.2.1), we can obtain the second term of the left side of (3.5) tends to
λei-λep and by (3.5), we have

(3.2.2) Σ Ptii^j{ei+e3)/Ptei^jφ)-,χ (l^i<j^3) as k->™

(3.2.2) means (3.2) being valid for i=€i+ej (£=1, 2, 3). Similarly put 8=2(e<+eJ)
( l ^ i<yS3) in the relation (2.5), we get
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Σ TίPφMPφ) Σ

+ Σ Pφt)/Pφ) Σ Ptij(ej)/Ptp(O) Σ
ίf*=i «f;=i ίf i + e ;

+ Σ Π /ty
ίfi+eJ<ί|i+eJ r = 1

because the solution of [C] is

2
1
0

Ae3

2
1

0

Aet+i
0
1
2

*, A.
0
0
0

(iΦet, e3> βi+βj)"

for 8=

Let us consider the first term of the left side of (3.6). By (3.1.1), (3.2.1) and
having the similar consideration deriving (2.10), we can obtain

R (e,)= Σ Π Ptp(e,)/PsM- Σ Π Λ /to)//W'
^i /̂ z tei<ftei r = =l tei<?tei r = = ^
1 2 v ΛJ

 <^.ί> nJ M 2

1 «ίi<ty '

+Λίi(βί)/P,ίi(O)#Σ#Λy(

+Ptίi(e,)/P(ί<(0) Σ PφifijVPφ)
t\i<t\i

+Pt.ί(eί)/P«.i(O) ^Σ Pφi)IPt M

+Pt t(ej)/Pt t(.O) • Λ iίê /PίjiCO)

->0 (by (3.1.1), (3.2.1)),

and by (3.4) we have

Σ UPt tM/Pφ) Σ ήPt

The second term of the left side of (3.6) may be represented by
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Σ Ptit(et)/Pt'i(fi) Σ Pφ,)/Pφ) Σ

- Σ Λft+ jίβi+β^/Λji+ XO) Σ ΛjifoVΛ td)) Σ Pty(ej)/PtV(O).

By (3.1.1), (3.2.1) and having the similar consideration deriving (2.10), we can
obtain

->0, (by (3.1.1))

and

g2max[P,(βt)/P,(0)]

->0, (by (3.1.1))

and by (3.2.1), (3.2.2), we have

Σ Ptii(el)/Pte1i(0) Σ Pφs)IPφ) Σ Λίi

From the discussion above and by (3.6), we have

tei+ej<tei + ej r=l r r J

tei+ej<tei + ej r=l

and by (3.2.2), (3.7), we get

Σ CPtίt+ Xβi+e^/Λ i+ XO)]8 -> 0,

which implies that
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(3.1.2)

(3.1.2) means (3.1) being valid for i = e , + e , ( l ^ z < ; ^ 3 ) .
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i+ XOJl-^O, (l^z <j ^ 3 ) , as ϋ?->oo.

The solution of [C] for fixed s will be given in the following example.
Example 2. For s=2(e1

Jr€2)=(2f 2, 0) we have

1 ~Γ-^110 i ^ 1

lT~^101 i Λ

The solution of [C] is given by the table.

2 2 0 0
1 1 1 0
0 0 2 0

(step 4) In the same way as step 3, put s=e1+e2+eB in (2.5) we obtain

(3.8) Σ Ptei+e2+es(e1+e2

Jre3)/Pte1+e2+e3(0)
t e i + β 2 + β 3 = 1

 X X

+ Σ Λ iCβiVPi iCO) Σ Λ «+ 8(β8+ββ)/Pt 2+ 8(0)

+ Σ Pφ(et)/Ptp(0) Σ / V
tj2=l ίfl+e3=i

+ Σ Pί 8(e,)/Pί.s(0) Σ Ptji

+ Σ PMeJ/Pt'iiO) Σ P&
ίfl=l ίfί=l

because the solution of [C] is

ί«(0) Σ Ptes(e3)/Ptes(0)
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0
1
0
0
1

0
0
1
0
1

0
0
0
1
1

0
0
0
1
0

0
0
1
0
0

0
1
0
0
0

1
0
0
0
0

Since

Σ

, for s =

Σ Pt
t f i i

0, (by (3.1.2), (3.2.1)),

and similarly we have

and

and

Σ

• 0, (by (3.1.2), (3.2.1)),

ΣΛi.(e )/Λί.(0) Ptί.(e1+e,)/Ptί,(0)
t f 3 l

Σ P t »(e,)/fW0)

(by (3.1.2), (3.2.1)),

Σ Λfiίβ^/Λfi

+ Σ P,ίi(«i)

Σ Λί.(β )/Λj.(0)
t f 3 l

Σ Ptft(β,)/Ptp(0) Plίi(e,)/P(ji(0)

Σ P*fi(βi)/Pιίi(0) Σ Ptv
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->0, (by (3.1.1), (3.2.1)),

then by (3.2.1) and (3.2.2) we can obtain the last four terms of the left side of
(3.8) tend to (λei'λe2+ez)+^e2'λei+es)~{-(λe3 λei+e2)-{-(^λe2'λe3) and by (3.8) we
obtain the first term of the left side of (3.8) tend to λe1-\-e2-\-ez\ that is,

(3.2.3)
e +e +e

(3.2.3) means (3.2) being valid for i=e1+e2+e9. Similarly, put 8=2(e1+e2+es)
and having the same considering of step 3, we get

(3.9)
te1+e2+ez<teί+e2+e

because the solution of [C] is

o o '
1
1
0
0
2
2
2
0
0
0
0
1
1
1
1

1
0
0
1
0
1
2
0
2
0
1
1
2
0
1

0
1
0
1
0
0
1
2
2
0
0
1
0
1
1
2

0
0
0
1
0
0
0
0
2
0
1
1
0
0
1
1

Aei+

0
0
0
0
1
0
0
0
0
2
1
1
1
1
0
0

0
0
1
0
0
2
1
0
0
0
1
0
1
0
1
0

2
1
1
1
1
0
0
0
0
0
0
0
0
0
0

o , for s=2(ex+e2+e3)}

and by (3.2.3), (3.9), we can obtain

Σ e2 W O ) ] 2 -> 0 ,

which implies that

(3.1.3)

(3.1.3) means (3.1) being valid for i— The conclusions of our four
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steps finish lemma 1.

LEMMA 2. // the conditions (3.1) and (3.2) are satisfied, then we have (2.3)
and (2.4).

Proof. Because max[iy/)/iyθ)]->O, for all izΞE, we have for all ε>0,

g i&E

=max{[l-Pg(0)l/Pg(0)}

1

i

min Pg(0)

0 (where l^g^

min

and we can prove

(2.4)

Since

mini 3

g

nk

nk

and by (3.2), (2.4), we can obtain

nk

(2.3) as

as &->oo

, for every i<

and we finish the proof lemma 2. The conclusions of lemma 1 and lemma 2
complete the proof of theorem 2.

4. Conclusion.

In this paper, we have derived the necessary and sufficient conditions of
Poisson approximation for sums of independent trivariate Bernoulli vectors
which may not be identically distributed. The author considers that he has
already extended the trivariate case to multivariate case, however, a little
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problem lies with the way of expressing the general notations and its refine-
ment and hopes to report it in the near future.
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