A GENERALIZATION OF A THEOREM OF LANDAU

By Yoshihisa Kubota

1. C^n will denote the complex vector space with the ordinary norm $||z||^2 = \sum_{j=1}^{n} |z_j|^2$ and B_n will denote the unit ball $\{z \in C^n : ||z|| < 1\}$.

Let $F=(f_1, \dots, f_m)$ be a holomorphic mapping from B_n into B_m . Let $A_F(z)$ denote the Jacobian matrix of F at z:

$$A_F(z) = (a_{ij}), \quad a_{ij} = \frac{\partial f_i}{\partial z_j}(z) \quad (1 \leq i \leq m, 1 \leq j \leq n),$$

and let $\lambda_F(z)$ be the nonnegative square root of the smallest eigenvalue of $A_F(z)^*A_F(z)$.

Let λ be a real number with $0 < \lambda < 1$. Let $\mathcal{F}(n, m, \lambda)$ denote the class of holomorphic mappings F from B_n into B_m satisfying: F(0)=0, $\lambda_F(0)=\lambda$. In the case when n=m we write $\mathcal{F}(n, \lambda)$ instead of $\mathcal{F}(n, n, \lambda)$. For each $F \in \mathcal{F}(n, \lambda)$, we introduce

 $r(F) = \sup\{r > 0: \text{ there exists a domain } \mathcal{Q}, 0 \in \mathcal{Q} \subset B_n, \text{ such that } F \text{ maps } \mathcal{Q} \text{ univalently onto } rB_n\},$

where $rB_n = \{rz : z \in B_n\}$, and let

$$L(n, \lambda) = \inf\{r(F) : F \in \mathcal{F}(n, \lambda)\}.$$

In one variable, the classical theorem of Landau [3] states that $L(1, \lambda) \ge c \lambda^2$, where c is an absolute constant. It is known that

$$L(1, \lambda) = \left(\frac{\lambda}{1 + \sqrt{1 - \lambda^2}}\right)^2$$

(see [2], p. 38). Hahn [1] proved that $L(n, \lambda) \ge \sqrt{3} \lambda^2/18$ for $n \ge 1$. In this note we prove that

$$L(n, \lambda) = \left(\frac{\lambda}{1+\sqrt{1-\lambda^2}}\right)^2 \quad (n \ge 1).$$

In our proof we follow the idea of Heins [2].

2. Firstly we prove the following:

Received October 28, 1985

YOSHIHISA KUBOTA

LEMMA. Let $n \leq m$. If $F \in \mathcal{F}(n, m, \lambda)$, then

$$||F(z)|| \ge \frac{||z||(\lambda - ||z||)}{1 - \lambda ||z||} \quad (z \in B_n).$$

Proof. Let $F \in \mathcal{F}(n, m, \lambda)$. Since there are unitary matrices U and V such that

$$UA_{F}(0)V = \begin{bmatrix} \Lambda \\ 0 \end{bmatrix}, \qquad \Lambda = \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}, \qquad \lambda_{j} \ge 0 \ (1 \le j \le n),$$

we may assume that

$$A_F(0) = \begin{bmatrix} \Lambda \\ 0 \end{bmatrix},$$

where $\lambda_1^2, \dots, \lambda_n^2$ are the eigenvalues of $A_F(0)^*A_F(0)$. Furthermore we may assume that $\lambda_1 = \dots = \lambda_n = \lambda$ (we may consider $F = (\lambda \lambda_1^{-1} f_1, \dots, \lambda \lambda_n^{-1} f_n, f_{n+1}, \dots, f_m)$) instead of $F = (f_1, \dots, f_m)$).

Let $z \in B_n - \{0\}$ and consider the holomorphic mapping $G = (g_1, \dots, g_m)$ from $\{\zeta \in C : |\zeta| < 1\}$ into B_m defined by

$$G(\zeta) = F(\zeta t), \qquad t = \frac{z}{\|z\|}.$$

Since G(0)=0, there are functions h_1, \dots, h_m holomorphic in $|\zeta| < 1$ such that

 $g_j(\zeta) = \zeta h_j(\zeta) \quad (|\zeta| < 1)$

$$h_j(0) = c_j, \quad c_j = \lambda t_j \quad (1 \leq j \leq n), \quad c_j = 0 \quad (n+1 \leq j \leq m)$$

where $t=(t_1, \dots, t_n)$. Set $H=(h_1, \dots, h_m)$: then $G(\zeta)=\zeta H(\zeta)$. Since $||H||^2$ is sub-harmonic in $|\zeta|<1$ and since

$$\limsup_{|\zeta| \to 1} \|H(\zeta)\|^{2} = \limsup_{|\zeta| \to 1} \frac{\|G(\zeta)\|^{2}}{|\zeta|^{2}} \leq 1,$$

we have

and

$$||H(\zeta)|| \leq 1$$
 (| ζ |<1).

Set $c=(c_1, \dots, c_m)$: then $||c||=\lambda ||t||=\lambda$. Let Φ_c be an automorphism of B_m with $\Phi_c(0)=c$ and set $\Psi=\Phi_c^{-1}\circ H$. Since Ψ is a holomorphic mapping from $\{\zeta \in C : |\zeta| < 1\}$ into B_m with $\Psi(0)=0$, we have also that $\Psi(\zeta)=\zeta \Psi_1(\zeta)$ where $||\Psi_1(\zeta)|| \leq 1$, hence

$$\|\Psi(\boldsymbol{\zeta})\| \leq |\boldsymbol{\zeta}| \qquad (|\boldsymbol{\zeta}| < 1).$$

Now using the equality

$$\|\boldsymbol{\Phi}_{c}(w)\|^{2} = 1 - \frac{(1 - \|c\|^{2})(1 - \|w\|^{2})}{|1 - \langle w, c \rangle|^{2}} \qquad (w \in B_{m})$$

242

(see [4], p. 26), we have, for $|\zeta| < \lambda$,

$$\begin{split} \|G(\zeta)\|^{2} &= |\zeta|^{2} \Big[1 - \frac{(1 - \|c\|^{2})(1 - \|\Psi(\zeta)\|^{2})}{|1 - \langle \Psi(\zeta), c \rangle|^{2}} \Big] \\ &\geq |\zeta|^{2} \Big[1 - \frac{(1 - \lambda^{2})(1 - |\zeta|^{2})}{(1 - \lambda|\zeta|)^{2}} \Big] = \frac{|\zeta|^{2} (\lambda - |\zeta|)^{2}}{(1 - \lambda|\zeta|)^{2}} \end{split}$$

Thus we obtain

$$||F(z)|| = ||G(||z||)|| \ge \frac{||z||(\lambda - ||z||)}{1 - \lambda ||z||}.$$

3. Let

$$\tau(r) = \frac{r(\lambda - r)}{1 - \lambda r} \, .$$

Then τ is strictly increasing in $0 < r < \rho_{\lambda}$, and $\tau(\rho_{\lambda}) = \rho_{\lambda}^2$ is the maximum value of τ in 0 < r < 1, where

$$\rho_{\lambda} = \frac{\lambda}{1 + \sqrt{1 - \lambda^2}}.$$

Now we prove our main theorem.

THEOREM A. Let $F \in \mathcal{F}(n, \lambda)$ and $0 < r \leq \rho_{\lambda}$. Then there exists a domain Ω satisfying:

- (i) $0 \in \Omega \subset rB_n$,
- (ii) Ω is mapped by F univalently onto $\tau(r)B_n$.

Proof. Let Ω be the component of $F^{-1}(\tau(r)B_n)$ containing the origin 0. Since $r < \lambda$, it follows from the lemma that $\Omega \subset rB_n$ and $F \mid \Omega$, the restriction of F to Ω , is a proper mapping from Ω onto $\tau(r)B_n$.

Let #(w) denote the number of points in the set $(F|\mathcal{Q})^{-1}(w)$. Then there is an integer k such that $\#(w) \leq k$ for $w \in \tau(r)B_n$ and the set $\{w \in \tau(r)B_n : \#(w) = k\}$ is dense in $\tau(r)B_n$ (see [4], Theorem 15.1.9). Since $J_F(0) \neq 0$, there exist neighborhoods Δ and Δ' of the origin 0 such that F maps Δ univalently onto Δ' . Take a small t>0 so that $tB_n \subset \Delta$ and $\tau(t)B_n \subset \Delta'$. Then, for each $w \in \tau(t)B_n$, $F^{-1}(w)$ has precisely one point in Δ . On the other hand, if $z \in \mathcal{Q} \setminus \Delta$, then $t \leq ||z|| \leq r \leq \rho_{\lambda}$ and hence the lemma shows that $||F(z)|| \geq \tau(||z||) \geq \tau(t)$. Thus #(w) = 1for $w \in \tau(t)B_n$ and so k=1. Consequently the theorem follows.

COROLLARY B.

$$L(n, \lambda) = \left(\frac{\lambda}{1+\sqrt{1-\lambda^2}}\right)^2.$$

Proof. It follows from Theorem A that $L(n, \lambda) \ge \tau(\rho_{\lambda}) = \rho_{\lambda}^2$. Consider the mapping

$$F(z) = (f(z_1), z_2, \cdots, z_n), \qquad f(\zeta) = \frac{\zeta(\lambda - \zeta)}{(1 - \lambda \zeta)}.$$

243

Then, since $|f(\zeta)| < |\zeta|$ for $|\zeta| < 1$, $F \in \mathcal{F}(n, \lambda)$. Set $w^* = (\rho_{\lambda}^2, 0, \dots, 0)$. The set $F^{-1}(w^*)$ consists of the point $z^* = (\rho_{\lambda}, 0, \dots, 0)$ alone and $J_F(z^*) = 0$. Hence $L(n, \lambda) \le \rho_{\lambda}^2$. Thus $L(n, \lambda) = \rho_{\lambda}^2$.

COROLLARY C. Let $F \in \mathcal{F}(n, m, \lambda)$ (n < m) and $0 < r \leq \rho_{\lambda}$. Then there exists a domain Ω satisfying:

- (i) $0 \in \mathcal{Q} \subset rB_n$,
- (ii) $F \mid \Omega$, the restriction of F to Ω , is a univalent proper mapping from Ω into $\tau(r)B_m$.

Proof. Let $F = (f_1, \dots, f_m)$. We may assume that

$$A_F(0) = \begin{bmatrix} \Lambda \\ 0 \end{bmatrix}, \qquad \Lambda = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \qquad \lambda_j \ge \lambda.$$

We consider the mapping $F^* = (f_1, \dots, f_n)$. Then $F^* \in \mathcal{F}(n, \lambda)$. Hence Theorem A shows that there exists a domain Ω^* satisfying:

- (1) $0 \in \Omega^* \subset rB_n$,
- (2) Ω^* is mapped by F^* univalently onto $\tau(r)B_n$.

Now F is univalent in Ω^* . Let Ω be the component of $F^{-1}(\tau(r)B_m)$ containing the origin O. Since $||F(z)|| \ge ||F^*(z)|| = \tau(r)$ for $z \in \partial \Omega^*$, we conclude that $\Omega \subset \Omega^*$. The corollary follows.

References

- [1] HAHN, K.T., Quantitative Bloch's theorem for certain classes of holomorphic mappings of the ball into $P_n(C)$, J. reine angew. Math. 283 (1976), 99-109.
- [2] HEINS, M., Selected Topics in the Classical Theory of Functions of a Complex Variable, Holt, New York, 1962.
- [3] LANDAU, E., Über die Blochsche Konstante und zwei verwandte Weltkonstanten, Math. Z. 30 (1929), 608-634.
- [4] RUDIN, W., Function Theory in the Unit Ball of Cⁿ, Die Grundlehren der Math. Wissenschaften, Bd. 241, Springer-Verlag, Berlin, 1980.

DEPARTMENT OF MATHEMATICS Tokyo Gakugei University Koganei-shi, Tokyo 184, Japan