GROUPS OF MOTIONS AND MINIMAL IMMERSIONS OF SPHERES INTO SPHERES

Dedicated to Professor Kentaro Yano on his 75th birthday

By Yosio Mutō

I. Introduction.

Let f be an isometric minimal immersion: $S^{m}(1) \rightarrow S^{n-1}(r)$ and let g be a rotation: $S^{m}(1) \rightarrow S^{m}(1)$. Then $f \circ g: S^{m}(1) \rightarrow S^{n-1}(r)$ is also an isometric minimal immersion. Though the point set $f \circ g\left(S^{m}(1)\right)$ is equal to the point set $f\left(S^{m}(1)\right)$, $f \circ g$ is not in general the same with f. If $f \circ g$ is equivalent to f in the sense of do Carmo and Wallach [1], then we say that f is a g-invariant immersion. In general there exist isometric minimal immersions which are not g-invariant if $m \geqq 3$.

Let K be a skew $(m+1) \times(m+1)$ matrix of R^{m+1} in which $S^{m}(1)$ is embedded as the unit hypersphere and k be the one-parameter subgroup of $\mathrm{SO}(m+1)$ generated by K, so that $k(t)=e^{K t}$. If, for every $t, f \circ k(t)$ is equivalent to f, we say that f is K-invariant or k-invariant. The element C of W_{2} (see [2], [3]) associated with f is then said to be K-invariant or k-invariant.

This notion can be extended as follows.
Let K_{1}, \cdots, K_{p} be skew $(m+1) \times(m+1)$ matrices and k be the subgroup of $\mathrm{SO}(m+1)$ generated by K_{1}, \cdots, K_{p}. If C is invariant by K_{1}, \cdots, K_{p}, C is said to be (K_{1}, \cdots, K_{p})-invariant or k-invariant.

Then there arise, for example, the following problems.
(α) Find all continuous subgroups k of $\mathrm{SO}(m+1)$ such that there exist nontrivial k-invariant elements of W_{2}.
(β) Find the set $\left(5\right.$ of elements C of W_{2} such that, if C is an element of \mathfrak{c}, then there exists a non-trivial continuous subgroup of $\mathrm{SO}(m+1)$ which leaves C invariant.
(γ) When a subgroup k of $\mathrm{SO}(m+1)$ is given, find all k-invariant elements C of W_{2}.
(δ) When an element C of W_{2} is given, find all subgroups k of $\mathrm{SO}(m+1)$ such that C is k-invariant.

The purpose of the present paper is, on the one hand, to study such problems in some easier cases. On the other hand the paper contains some theorems on geodesics. Geodesics in minimal immersions were studied by some authors.

For example, it has been reported by K. Tsukada that a standard minimal immersion, namely an isometric minimal immersion such that the corresponding C vanishes, is a helical immersion [5], [6], that is, an immersion such that every geodesic has constant curvatures which do not depend on the choice of the geodesic. In general a geodesic in a non-standard isometric minimal immersion has curvatures which are not constant and depend on the choice of the geodesic. But, in some isometric minimal immersions all geodesics have constant curvatures and there exists some set of geodesics such that each member of the set has constant curvatures which are independent of the choice of the member.

First we recollect the general theory of isometric minimal immersions such as was given in [1], [2], [3], [4]. In $\S 2 K$-invariant elements C of W_{2} are defined and their property is studied. In $\S 3 k$-invariant isometric minimal immersions are studied. $\S 4$ is devoted to isometric minimal immersions of S^{3} into S^{24}. First, some results in [3] are recollected and then invariant elements of $W_{2}(3,4)$ are studied. In $\S 5$ some special elements of W_{2} with $m=3, s>4$ are studied. We define there contraction of elements of W_{2} and the effect of contraction is studied. $\S 6$ is devoted to the property of geodesics in the case $S^{3} \rightarrow S^{24}$.

Isometric minimal immersions f of spheres into spheres in general cases were studied by M. P. do Carmo and N. R. Wallach [1]. Guided by this study the present author also studied the same subject in the form $f: S^{m}(1) \rightarrow S^{n-1}(r)$ using a different method and found that there exists a linear space $D_{s, s}^{m}$ of some bi-symmetric harmonic tensors of bi-degree (s, s) [2], [4]. As this space is essentially the space W_{2} of do Carmo and Wallach, we prefer the notation $W_{2}(m, s)$ to $D_{s, s}^{m}$.

We consider isometric minimal immersions f of the form $S^{m}(1) \rightarrow S^{n-1}(r)$ where

$$
n=(2 s+m-1)(s+m-2)!/(s!(m-1)!)
$$

and the radius r satisfies

$$
r^{2}=m /(s(s+m-1)) .
$$

As the number s plays an important role, the immersion may be denoted by f_{s}. $S^{m}(1)$ is considered as the unit hypersphere of R^{m+1} where an orthonormal basis $\left\{e_{1}, \cdots, e_{m+1}\right\}$ is fixed and $S^{n-1}(r)$ is considered as a hypersphere with center at the origin of R^{n} where an orthonormal basis $\left\{\tilde{e}_{1}, \cdots, \tilde{e}_{n}\right\}$ is fixed. Thus f_{s} is given by n homogeneous harmonic polynomials $f^{A}(A=1, \cdots, n)$ of degree s, so that, if x is a point of $S^{m}(1)$ and $u(x)=u^{2}(x) e_{2}$ is the position vector in R^{m+1} of x, then we have $i \circ f_{s}(x)=f^{A}(u(x)) \tilde{e}_{A}$, where i is the isometric embedding $i: S^{n-1}(r) \rightarrow R^{n}$.

From the polynomials f^{A} we get symmetric tensors F^{A} of degree s in R^{m+1} satisfying $f^{A}(u)=F^{A}(u, \cdots, u)$ and

$$
\Sigma_{\imath} F^{A}\left(e_{\imath}, e_{\imath}, v, \cdots, v\right)=0
$$

where Σ_{\imath} stands for $\sum_{i=1}^{m+1}$ and v is an arbitrary vector of $R^{m+1} . F^{A}$ are called tensors of degree s associated with f_{s}.

From the tensors F^{A} we defined in [2] a tensor $f_{s, s}$ of degree $2 s$ by

$$
\begin{equation*}
f_{s, s}=\Sigma_{A} F^{A} \otimes F^{A} \tag{1.1}
\end{equation*}
$$

where Σ_{A} stands for $\sum_{A=1}^{n}$.
As a special case we have a standard minimal immersion h_{s}. In this special case F^{A} is denoted by H^{4} and $f_{s, s}$ by $h_{s, s}$, hence

$$
\begin{equation*}
h_{s, s}=\Sigma_{A} H^{A} \otimes H^{A} \tag{1.2}
\end{equation*}
$$

The tensors F^{A} and H^{A} depend on the choice of the orthonormal basis $\left\{\tilde{e}_{1}, \cdots, \tilde{e}_{n}\right\}$, but $f_{s, s}$ and $h_{s, s}$ do not. Moreover, if f_{s} and f_{s}^{\prime} belong to the same equivalence class in the sense of do Carmo and Wallach, then $f_{s, s}=f_{s, s}^{\prime}$ [2]. Hence there exists only one $h_{s, s}$.

In [2] the role of the tensor C defined by

$$
\begin{equation*}
C=f_{s, s}-h_{s, s} \tag{1.3}
\end{equation*}
$$

is given. If we take all isometric minimal immersions f_{s} and all numbers $t \in R$, then $t\left(f_{s, s}-h_{s, s}\right)$ fill a linear space now denoted by $W_{2}(m, s)$. As there exists only one $h_{s, s}$, the tensor C is called the element of $W_{2}(m, s)$ associated with the given immersion f_{s}. When an element C of $W_{2}(m, s)$ is taken arbitrarily, it may happen that there exist no f_{s} satisfying (1.3). But taking a number t suitably, we have f_{s} satisfying $t C=f_{s, s}-h_{s, s}$. Any such f_{s} is called an immersion subject to C.

A necessary and sufficient condition for a bi-symmetric tensor C of bi-degree (s, s) to be an element of $W_{2}(m, s)$ is that C satisfies for any vectors a, b of R^{m+1}

$$
\begin{gathered}
\Sigma_{i} C\left(e_{2}, e_{2}, a, \cdots, a ; b, \cdots, b\right)=0 \\
C(a, a, b, \cdots, b ; b, \cdots, b)=0
\end{gathered}
$$

Definition 1.1. When C is an element of $W_{2}(m, s)$ we define $C(p, q)$ as the function $C(p, q): R^{m+1} \times R^{m+1} \rightarrow R$ such that

$$
a \times b \mapsto C(a, \cdots, a, b, \cdots, b ; a, \cdots, a, b, \cdots, b)
$$

where in the right hand side a appears p times before the semicolon and q times after the semicolon.

As C is bi-symmetric C is determined when the function $C(s, 0)$ is given, namely, if C_{1} and C_{2} are elements of $W_{2}(m, s)$ such that $C_{1}(a, \cdots, a ; b, \cdots, b)$ $=C_{2}(a, \cdots, a ; b, \cdots, b)$ for arbitrary vectors a, b, then $C_{1}=C_{2}$.

Definition 1.2. Let C be an element of $W_{2}(m, s)$ and g be an element of $\mathrm{SO}(m+1)$. Then a bi-symmetric tensor A is determined by

$$
A(a, \cdots, a ; b, \cdots, b)=C\left(g^{-1} a, \cdots, g^{-1} a ; g^{-1} b, \cdots, g^{-1} b\right)
$$

and, as it is easy to verify, A belongs to $W_{2}(m, s) . A$ is called the transform of C by g and is denoted by $g C$.

Let \langle,$\rangle be the ordinary inner product of vectors or of tensors of the same$ degree. If C_{1} and C_{2} are elements of $W_{2}(m, s)$, then we have $\left\langle g C_{1}, g C_{2}\right\rangle$ $=\left\langle C_{1}, C_{2}\right\rangle[3]$.

Definition 1.3. If $g C=C$ we say that C is g-invariant.

2. K-invariant elements of $W_{2}(m, s)$.

Let K be a skew $(m+1) \times(m+1)$ matrix, namely, an element of the Lie algebra of $\mathrm{SO}(m+1), k$ be the one-parameter subgroup of $\mathrm{SO}(m+1)$ generated by K and put $k(t)=e^{K t}$.

Definition 2.1. If $C \in W_{2}(m, s)$ is k-invariant, that is, $k(t)$-invariant for every t, we say that C is K-invariant.

Theorem 2.1. An element C of $W_{2}(m, s)$ is K-invariant if and only if C satisfies, for every vectors a, b of R^{m+1},

$$
\begin{equation*}
C(K a, a, \cdots, a ; b, \cdots, b)+C(a, \cdots, a ; K b, b, \cdots, b)=0 . \tag{2.1}
\end{equation*}
$$

Proof. If C is K-invariant, we have

$$
\begin{equation*}
C\left(e^{K t} a, \cdots, e^{K t} a ; e^{K t} b, \cdots, e^{K t} b\right)=C(a, \cdots, a ; b, \cdots, b) . \tag{2.2}
\end{equation*}
$$

Differentiating with respect to t and putting $t=0$, we get (2.1). If (2.1) is satisfied for arbitrary vectors a, b, we have, replacing a and b with $e^{K t} a$ and $e^{K t} b$,

$$
\begin{aligned}
& C\left(K e^{K t} a, e^{K t} a, \cdots, e^{K t} a ; e^{K t} b, \cdots, e^{K t} b\right) \\
& \quad+C\left(e^{K t} a, \cdots, e^{K t} a ; K e^{K t} b, e^{K t} b, \cdots, e^{K t} b\right)=0,
\end{aligned}
$$

hence

$$
(d / d t) C\left(e^{K t} a, \cdots, e^{K t} a ; e^{K t} b, \cdots, e^{K t} b\right)=0
$$

Thus we get (2.2).
As we have $g k g^{-1} g C=g k C=g C$ if C is k-invariant, we have the following theorem.

Theorem 2.2. Let C be a k-invariant element of $W_{2}(m, s)$ and g be an element of $\mathrm{SO}(m+1)$. Then the transform $g C$ is gkg^{-1}-invariant.

The following theorem gives a way of constructing a K-invariant element of $W_{2}(m, s)$ in some cases.

Theorem 2.3. Let C be any element of $W_{2}(m, s)$ and K be such that the one-parameter subgroup k generated by K has τ as a period so that $e^{K \tau}=1$. Then C_{K} defined by

$$
\begin{equation*}
\tau C_{K}(a, \cdots, a ; b, \cdots, b)=\int_{0}^{\tau} C\left(e^{K t} a, \cdots, e^{K t} a ; e^{K t} b, \cdots, e^{K t} b\right) d t \tag{2.3}
\end{equation*}
$$

is a K-invariant element of $W_{2}(m, s)$.
Proof. The integrand is $\left(e^{-K t} C\right)(a, \cdots, a ; b, \cdots, b)$ where $e^{-K t} C$ belongs to $W_{2}(m, s)$. Hence C_{K} belongs to $W_{2}(m, s)$. On the other hand we have, for any number u,

$$
\begin{aligned}
& \tau e^{K u} C_{K}(a, \cdots, a ; b, \cdots, b) \\
= & \boldsymbol{\tau} C_{K}\left(e^{-K u} a, \cdots, e^{-K u} a ; e^{-K u} b, \cdots, e^{-K u} b\right) \\
= & \int_{0}^{\tau} C\left(e^{K(t-u)} a, \cdots, e^{K(t-u)} a ; e^{K(t-u)} b, \cdots, e^{K(t-u)} b\right) d t \\
= & \int_{0}^{\tau} C\left(e^{K t} a, \cdots, e^{K t} a ; e^{K t} b, \cdots, e^{K t} b\right) d t
\end{aligned}
$$

as $e^{K t}$ has period τ.
It may happen that C_{K} vanishes.

3. Invariant minimal immersions.

Any element B of the space $B_{s, s}$ of bi-symmetric harmonic tensors of bi-degree (s, s) is determined when the function $B(s, 0): R^{m+1} \times R^{m+1} \rightarrow R$ such that $B(s, 0): a \times b \mapsto B(a, \cdots, a ; b, \cdots, b)$ is given. The element U of $B_{s, s}$ defined by

$$
\begin{align*}
& U(a, \cdots, a ; b, \cdots, b) \tag{3.1}\\
= & \langle a, b\rangle^{s}+a_{1}\langle a, b\rangle^{s-2}\langle a, a\rangle\langle b, b\rangle+\cdots+a_{\sigma}\langle a, b\rangle^{s-2 \sigma}\langle a, a\rangle^{\sigma}\langle b, b\rangle^{\sigma}
\end{align*}
$$

where $\sigma=[s / 2]$ is the largest integer satisfying $s-2 \sigma \geqq 0$ and $a_{1}, \cdots, a_{\sigma}$ satisfy $a_{0}=1$ and

$$
(s-2 p+2)(s-2 p+1) a_{p-1}+2 p(2 s+m-2 p-1) a_{p}=0 \quad p=1, \cdots, \sigma
$$

acts as the unit element in $B_{s, s}$ [2]. U is expressed in terms of H^{A} by

$$
\begin{equation*}
U=(1 / \bar{c}) \Sigma_{A} H^{A} \otimes H^{A} \tag{3.2}
\end{equation*}
$$

where $c^{\prime}=r^{2} /\left(1+a_{1}+\cdots+a_{\sigma}\right)$.
In view of (3.1) and

$$
\left\langle e^{K t} a, e^{K t} b\right\rangle=\langle a, b\rangle
$$

which is valid for any vectors a, b of R^{m+1}, we have

$$
U\left(e^{K t} a, \cdots, e^{K t} a ; e^{K t} b, \cdots, e^{K t} b\right)=U(a, \cdots, a ; b, \cdots, b)
$$

This shows the invariant property of U, which in fact follows naturally from the uniqueness of the unit element.

Let f_{s} be a full isometric minimal immersion and C be the element of $W_{2}(m, s)$ given by (1.3), namely, $C=\Sigma_{A} F^{A} \otimes F^{A}-\Sigma_{A} H^{A} \otimes H^{A}$ where F^{A} are tensors associated with f_{s}. When a is given let us denote $k(t) a$ by $a(t)$, hence $a=a(0)$. As we let the vector a move freely on $S^{m}(1)$, each of $F^{4}(a(t), \cdots, a(t))$ determines a tensor $F^{4}(t)$ such that $F^{A}(a(t), \cdots, a(t))=F^{4}(t)(a, \cdots, a)$ and $F^{4}=$ $F^{A}(0)$. As $k(t)$ is an orthogonal matrix, $F^{A}(t)$ are harmonic and are the tensors associated with an isometric minimal immersion $f_{s}(t): S^{m}(1) \rightarrow S^{n-1}(r)$ such that $f_{s}(t): x \mapsto f_{s}(k(t) u(x))$, which we can write $f_{s}(t)=f_{s}(0) \circ k(t)$. As U is K-invariant, $\Sigma_{A} H^{A} \otimes H^{A}$ is also K-invariant, and we have

$$
\begin{aligned}
& \Sigma_{A} F^{A}(t) \otimes F^{A}(t)-\Sigma_{A} H^{A} \otimes H^{A} \\
= & \Sigma_{A} F^{A}(t) \otimes F^{A}(t)-\Sigma_{A} H^{A}(t) \otimes H^{A}(t) \\
= & k(-t) C .
\end{aligned}
$$

Though the image of $S^{m}(1)$ by $i \circ f_{s}(t)$ is, as a point set, the same with the image of $S^{m}(1)$ by $i \circ f_{s}(0), f_{s}(t)$ is not in general the same with $f_{s}(0)$. But, if C is K-invariant, namely $k(t) C=C$, then $f_{s}(t)$ is equivalent to $f_{s}(0)$ in the sense of do Carmo and Wallach. In this case there exists one and only one isometry $T(t)$ of $S^{n-1}(r)$ such that $f_{s}(t)=T(t) f_{s}(0)$ as f_{s} is full. As we have $f_{s}\left(t_{1}+t_{2}\right)$ $=f_{s}(0) k\left(t_{1}+t_{2}\right)=f_{s}(0) k\left(t_{1}\right) k\left(t_{2}\right)=f_{s}\left(t_{1}\right) k\left(t_{2}\right)$, we get

$$
T\left(t_{1}+t_{2}\right) f_{s}(0)=T\left(t_{1}\right) f_{s}\left(t_{2}\right)=T\left(t_{1}\right) T\left(t_{2}\right) f_{s}(0) .
$$

Thus we can put $T(t)=e^{T t}$ and get

$$
f_{s}\left(t_{1}\right) \exp \left(K t_{2}\right)=\exp \left(T t_{2}\right) f_{s}\left(t_{1}\right)
$$

If f is an immersion subject to C and \hat{R} is an element of $\mathrm{SO}(n)$, then $\hat{R} f=f^{\prime}$ is also an immersion subject to C. If C is K-invariant and f is full, f^{\prime} is also full. Then there exist only one T and only one T^{\prime} satisfying $f \circ e^{K t}$ $=e^{T t} \circ f, f^{\prime} \circ e^{K t}=e^{T{ }^{\prime} t} \circ f^{\prime}$, hence

$$
e^{T^{\prime \prime} t}=\hat{R} e^{T t} \hat{R}^{-1} .
$$

Thus we have the following theorem.
Theorem 3.1. Let K be a skew $(m+1) \times(m+1)$ matrix and C be a K-invariant element of $W_{2}(m, s)$. Then for each full isometric minimal immersion f subject to C there exists a skew $n \times n$ matrix $T(f)$ satisfying

$$
f \circ e^{K t}=e^{T(f) t} \circ f
$$

and

$$
\hat{R} \exp (T(f) t) \hat{R}^{-1}=\exp (T(\hat{R} f) t)
$$

where \hat{R} is any element of $\mathrm{SO}(n)$.

4. Isometric minimal immersions of S^{3} into S^{24}.

We recollect some results from [3]. Let us fix an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ in R^{4}. On the other hand, we take a rectangular coordinate system in R^{3} and express a point p of R^{3} by $p=(x, y, z)$. If we take linear transformations $J_{p}=x J_{1}+y J_{2}+z J_{3}$ defined by

$$
\begin{aligned}
& J_{p} e_{1}=-x e_{2}+y e_{3}-z e_{4}, \\
& J_{p} e_{2}=x e_{1}-y e_{4}-z e_{3}, \\
& J_{p} e_{3}=-x e_{4}-y e_{1}+z e_{2}, \\
& J_{p} e_{4}=x e_{3}+y e_{2}+z e_{1},
\end{aligned}
$$

then J_{p} is an orthogonal transformation when p is a point of the unit sphere $S^{2}(1)$ of R^{3}. J_{1}, J_{2}, J_{3} satisfy the well-known formula, $J_{2} J_{3}=-J_{3} J_{2}=J_{1}, J_{3} J_{1}=$ $-J_{1} J_{3}=J_{2}, J_{1} J_{2}=-J_{2} J_{1}=J_{3}$.

Similarly, let $I_{p}=x I_{1}+y I_{2}+z I_{3}$ be defined by

$$
\begin{aligned}
& I_{p} e_{1}=-x e_{2}+y e_{3}+z e_{4}, \\
& I_{p} e_{2}=x e_{1}+y e_{4}-z e_{3}, \\
& I_{p} e_{3}=x e_{4}-y e_{1}+z e_{2}, \\
& I_{p} e_{4}=-x e_{3}-y e_{2}-z e_{1} .
\end{aligned}
$$

Then I_{p} is an orthogonal transformation when p is a point of the unit sphere and I_{1}, I_{2}, I_{3} satisfy $I_{2} I_{3}=-I_{3} I_{2}=I_{1}, I_{3} I_{1}=-I_{1} I_{3}=I_{2}, I_{1} I_{2}=-I_{2} I_{1}=I_{3}$. Moreover we have

$$
\begin{gather*}
J_{\kappa} I_{\lambda}=I_{\lambda} J_{\kappa}, \tag{4.1}\\
\sum_{i}\left\langle J_{\kappa} e_{2}, I_{2} e_{2}\right\rangle=0 \tag{4.2}
\end{gather*}
$$

where, here and in the sequel, we use indices $\kappa, \lambda, \mu, \nu=1,2,3$.
Denoting the identity transformation in R^{4} by J_{0} and also by I_{0}, we have

$$
\begin{align*}
& J_{\mu} J_{\lambda}+J_{\lambda} J_{\mu}=-2 \delta_{\mu \lambda} J_{0} \tag{4.3}\\
& I_{\mu} I_{\lambda}+I_{\lambda} I_{\mu}=-2 \delta_{\mu \lambda} I_{0} .
\end{align*}
$$

Thus $\left\{a I_{0}+b I_{1}+c I_{2}+d I_{3}, a^{2}+b^{2}+c^{2}+d^{2}=1\right\}$ is a subgroup of $\mathrm{SO}(4)$ which we write O_{I} and $\left\{a J_{0}+b J_{1}+c J_{2}+d J_{3}, a^{2}+b^{2}+c^{2}+d^{2}=1\right\}$ is a subgroup of $\mathrm{SO}(4)$ which we write $O_{J} . O_{I}$ and O_{J} commute and generate $\mathrm{SO}(4)$.

In what follows we denote the point p by (x^{1}, x^{2}, x^{3}). A homogeneous harmonic polynomial $A(x)$ in R^{3} of degree 4 can be written $A(x)=A_{\kappa \lambda \mu \nu} x^{\kappa} x^{\lambda} x^{\mu} x^{\nu}$ or $A(x)=A^{\kappa \lambda \mu \nu} x^{\kappa} x^{\lambda} x^{\mu} x^{\nu}$. $A_{\kappa \lambda \mu \nu}$ are symmetric and satisfy

$$
\sum_{\kappa} A_{\kappa \kappa \mu \nu}=0 .
$$

Definition 4.1. The bi-symmetric tensor C given by

$$
\begin{equation*}
(C(4,0))(a, b)=A^{\kappa \lambda \mu \nu}\left\langle J_{\kappa} b, a\right\rangle\left\langle J_{\lambda} b, a\right\rangle\left\langle J_{\mu} b, a\right\rangle\left\langle J_{\nu} b, a\right\rangle \tag{4.4}
\end{equation*}
$$

is an element of $W_{2}(3,4)$ and is denoted by $C_{J}^{(A)}$. Similarly the bi-symmetric tensor C given by

$$
\begin{equation*}
(C(4,0))(a, b)=B^{\kappa \lambda \mu \nu}\left\langle I_{\kappa} b, a\right\rangle\left\langle I_{\lambda} b, a\right\rangle\left\langle I_{\mu} b, a\right\rangle\left\langle I_{\nu} b, a\right\rangle \tag{4.5}
\end{equation*}
$$

is an element of $W_{2}(3,4)$ and is denoted by $C_{I}^{(B)}$. The linear subspace of $W_{2}(3,4)$ composed of the elements of the type $C_{J}^{(A)}$ is denoted by W_{J}. The subspace W_{I} is defined similarly.

Every $C_{J}^{(A)}$ is O_{I}-invariant and every $C_{I}^{(B)}$ is O_{J}-invariant because of (4.1). On the other hand it is written in page 357 of [3] that any element C of $W_{2}(3,4)$ can be written in the form

$$
\begin{equation*}
C=C_{J}^{(A)}+C_{I}^{(B)} \tag{4.6}
\end{equation*}
$$

Thus, for example, C is J_{1}-invariant if and only if $C_{J}^{(A)}$ is J_{1}-invariant.
J_{1} is an element of the Lie algebra of O_{J} and the infinitesimal action of J_{1} on $C_{J}^{(A)}$ is given in page 356 of [3], or can be easily obtained from (4.3) and (4.4), in the form

$$
\begin{align*}
& 4\left[C_{J}^{(A)}\left(J_{1} v, v, v, v ; w, w, w, w\right)+C_{J}^{(A)}\left(v, v, v, v ; J_{1} w, w, w, w\right)\right] \tag{4.7}\\
= & C_{J}^{\left(A^{\prime}\right)}(v, v, v, v ; w, w, w, w)
\end{align*}
$$

where

$$
\begin{align*}
A^{\prime \kappa \lambda \mu \nu}= & 2\left(\delta_{2}^{\kappa} A^{3 \lambda \mu \nu}+\delta_{2}^{\lambda} A^{3 \kappa \mu \nu}+\delta_{2}^{\mu} A^{3 \kappa \lambda \nu}+\delta_{2}^{\nu} A^{3 \kappa \lambda \mu}\right. \tag{4.8}\\
& \left.-\delta_{3}^{\kappa} A^{2 \lambda \mu \nu}-\delta_{3}^{\lambda} A^{2 \kappa \mu \nu}-\delta_{3}^{\mu} A^{2 \kappa \lambda \nu}-\delta_{3}^{\nu} A^{2 \kappa \lambda \rho}\right) .
\end{align*}
$$

Thus C is J_{1}-invariant if and only if $A^{\prime \kappa \lambda \mu \nu}$ vanish, hence

$$
\begin{equation*}
A(x, y, z)=c\left(8 x^{4}-24 x^{2}\left(y^{2}+z^{2}\right)+3\left(y^{2}+z^{2}\right)^{2}\right) \tag{4.9}
\end{equation*}
$$

where c is an arbitrary number [3].
In order to get a J-invariant C where

$$
\begin{equation*}
J=a_{1} J_{1}+a_{2} J_{2}+a_{3} J_{3}, \quad\left(a_{1}\right)^{2}+\left(a_{2}\right)^{2}+\left(a_{3}\right)^{2}=1, \tag{4.10}
\end{equation*}
$$

we take a rotation of R^{3} such that

$$
\begin{align*}
& \prime \\
& \prime=a_{1} x+a_{2} y+a_{3} z, \tag{4.11}\\
& \prime y=m_{1} x+m_{2} y+m_{3} z, \\
& \prime z=n_{1} x+n_{2} y+n_{3} z .
\end{align*}
$$

Then $C_{J}^{(B)}$ is J-invariant if and only if B is given by

$$
\begin{equation*}
B(x, y, z)=c\left[8\left(^{\prime} x\right)^{4}-24\left(^{\prime} x\right)^{2}\left(\left(\left(^{\prime} y\right)^{2}+\left({ }^{\prime} z\right)^{2}\right)+3\left(\left({ }^{\prime} y\right)^{2}+\left(\left(^{\prime} z\right)^{2}\right)^{2}\right],\right.\right. \tag{4.12}
\end{equation*}
$$

where c is an arbitrary number. It is clear that B depends only on a_{1}, a_{2}, a_{3} on account of

$$
\left({ }^{\prime} y\right)^{2}+\left({ }^{\prime} z\right)^{2}=x^{2}+y^{2}+z^{2}-\left(a_{1} x+a_{2} y+a_{3} z\right)^{2} .
$$

Similarly an I-invariant C is obtained if I is given by

$$
\begin{equation*}
I=a_{1} I_{1}+a_{2} I_{2}+a_{3} I_{3}, \quad\left(a_{1}\right)^{2}+\left(a_{2}\right)^{2}+\left(a_{3}\right)^{2}=1 \tag{4.13}
\end{equation*}
$$

in the form $C=C_{I}^{(B)}$ where B is given by (4.12).
Thus we get the following theorems (see [3]).
Theorem 4.1. Let J (resp. I) be given by (4.10) (resp. (4.13)). Then any J-invariant (resp. I-invariant) element C of $W_{2}(m, s)$ is given by

$$
C=C_{I}^{(A)}+C_{J}^{(B)} \quad \text { resp. } C=C_{J}^{(A)}+C_{I}^{(B)}
$$

where A is an arbitrary homogeneous harmonic polynomial in R^{3} of degree 4 and B is given by (4.11) and (4.12).

Theorem 4.2. Let us take J and I such that

$$
\begin{align*}
& J=a_{1} J_{1}+a_{2} J_{2}+a_{3} J_{3}, \quad\left(a_{1}\right)^{2}+\left(a_{2}\right)^{2}+\left(a_{3}\right)^{2}=1, \tag{4.14}\\
& I=b_{1} I_{1}+b_{2} I_{2}+b_{3} I_{3}, \quad\left(b_{1}\right)^{2}+\left(b_{2}\right)^{2}+\left(b_{3}\right)^{2}=1 \tag{4.15}
\end{align*}
$$

and consider the subgroup G of $\mathrm{SO}(4)$ generated by J and I. Then any G-2nvariant C is given by

$$
C=a C_{J}^{(A)}+b C_{B}^{(B)}
$$

where a and b are arbitrary numbers and

$$
\begin{align*}
A(x, y, z)= & 8\left(a_{1} x+a_{2} y+a_{3} z\right)^{4}-24\left(a_{1} x+a_{2} y+a_{3} z\right)^{2} \tag{4.16}\\
& \times\left(x^{2}+y^{2}+z^{2}-\left(a_{1} x+a_{2} y+a_{3} z\right)^{2}\right) \\
+ & 3\left(x^{2}+y^{2}+z^{2}-\left(a_{1} x+a_{2} y+a_{3} z\right)^{2}\right)^{2}, \\
B(x, y, z)= & 8\left(b_{1} x+b_{2} y+b_{3} z\right)^{4}-24\left(b_{1} x+b_{2} y+b_{3} z\right)^{2} \tag{4.17}\\
& \times\left(x^{2}+y^{2}+z^{2}-\left(b_{1} x+b_{2} y+b_{3} z\right)^{2}\right) \\
+ & 3\left(x^{2}+y^{2}+z^{2}-\left(b_{1} x+b_{2} y+b_{3} z\right)^{2}\right)^{2} .
\end{align*}
$$

Definition 4.2. A one-parameter subgroup of O_{J} is called a J-type subgroup of SO(4). Similarly an I-type subgroup is defined. A one-parameter subgroup of $\mathrm{SO}(4)$ which is not J-type nor I-type is called a mixed type subgroup.

As the dimension of the space of homogeneous harmonic polynomials in R^{3}
of degree 4 is 9 , we have the following theorem.
ThEOREM 4.3. Let k be a one-parameter subgroup of SO(4). Then there exist k-invariant elements of $W_{2}(3,4)$. If k is of mixed type, then the set of k-invariant elements is a two-dimensional linear subspace of $W_{2}(3,4)$ spanned by a one-dimensional linear subspace of W_{J} and a one-dimensional linear subspace of W_{I}. If k is of J-type or of I-type, then the set of k-invariant elements is a ten-dimensional linear subspace of $W_{2}(3,4)$ containing W_{I} or W_{J}.

Now let us take two mixed type one-parameter subgroups k_{1}, k_{2} of $\mathrm{SO}(4)$ and let G be the subgroup generated by k_{1}, k_{2}. The Lie algebra of G is denoted by g . Taking a suitable coordinate system of R^{3} we can consider that \mathfrak{g} is generated by one of the following pairs of elements of \mathfrak{g}
(i) $J_{1}+a_{1} I_{1}+a_{2} I_{2}+a_{3} I_{3}, \quad b_{1} I_{1}+b_{2} I_{2}+b_{3} I_{3}$,
(ii) $J_{1}+a_{1} I_{1}+a_{2} I_{2}+a_{3} I_{3}, \quad J_{2}+b_{1} I_{1}+b_{2} I_{2}+b_{3} I_{3}$,
(iii) $I_{1}+a_{1} J_{1}+a_{2} J_{2}+a_{3} J_{3}, \quad b_{1} J_{1}+b_{2} J_{2}+b_{3} J_{3}$,
(iv) $I_{1}+a_{1} J_{1}+a_{2} J_{2}+a_{3} J_{3}, \quad I_{2}+b_{1} J_{1}+b_{2} J_{2}+b_{3} J_{3}$.

But, in order to find the property of G, we need to consider only (i) and (ii).
We take vectors a and b of R^{3} with components (a_{1}, a_{2}, a_{3}) and (b_{1}, b_{2}, b_{3}) respectively. We consider also that I_{1}, I_{2}, I_{3} are the components of an imaginary vector I. Then we can write (i) and (ii) tersely in the form
(i) $\quad K_{1}=J_{1}+(a, I), \quad K_{2}=(b, I) \quad(a, b \neq 0)$,
(ii) $\quad K_{1}=J_{1}+(a, I), \quad K_{2}=J_{2}+(b, I) \quad(a \neq 0)$
where (,) is the inner product in R^{3}. Let us use notations [a, b] and $[a, b, c]$ used in vector algebra of R^{3}.

If we have (i)', then g contains (c, I) where

$$
c=[a, b] .
$$

The simplest case occurs when the vectors a and b are not linearly independent. Then g is spanned by J_{1} and (a, I). If a and b are linearly independent, we have $K_{3}=(c, I) \in g$ and

$$
\begin{aligned}
& \frac{1}{2}\left(K_{1} K_{3}-K_{3} K_{1}\right)=([a, c], I)=(a, b)(a, I)-(a, a)(b, I) \in \mathfrak{g} \\
& \frac{1}{2}\left(K_{2} K_{3}-K_{3} K_{2}\right)=([b, c], I)=(b, b)(a, I)-(a, b)(b, I) \in \mathfrak{g} .
\end{aligned}
$$

As we have $(a, a)(b, b)>(a, b)^{2}$ by assumption, we get $(a, I) \in \mathfrak{g},(b, I) \in \mathfrak{g}$, hence \mathfrak{g} contains I_{1}, I_{2}, I_{3}.

If we have (ii)', we define K_{3} by

$$
K_{3}=\frac{1}{2}\left(K_{1} K_{2}-K_{2} K_{1}\right)=J_{3}+(c, I), \quad c=[a, b] .
$$

Then we have

$$
\begin{aligned}
& K_{1}-\frac{1}{2}\left(K_{2} K_{3}-K_{3} K_{2}\right)=(a, I)-[b, c, I], \\
& K_{2}-\frac{1}{2}\left(K_{3} K_{1}-K_{1} K_{3}\right)=(b, I)-[c, a, I],
\end{aligned}
$$

hence y contains

$$
\begin{aligned}
& K_{4}=(1-(b, b))(a, I)+(a, b)(b, I), \\
& K_{5}=(a, b)(a, I)+(1-(a, a))(b, I) .
\end{aligned}
$$

If a and b are not linearly independent, then $c=0$. Hence g contains J_{3} and consequently J_{1} and J_{2}. Thus g is spanned by J_{1}, J_{2}, J_{3} and (a, I).

Assume a and b are linearly independent. As we have

$$
\begin{aligned}
& K_{1} K_{4}-K_{4} K_{1}=2(a, b)(c, I), \\
& K_{1} K_{5}-K_{5}^{\prime} K_{1}=2(1-(a, a))(c, I),
\end{aligned}
$$

we get $(c, I) \in \mathfrak{g}$ except the case $(a, b)=0,(a, a)=1$. Similarly, from $K_{4} K_{2}-K_{2} K_{4}$ $=2(1-(b, b))(c, I)$ we get $(c, I) \in \mathfrak{g}$ if $(b, b) \neq 1$. If $(c, I) \in \mathfrak{g}$, then \mathfrak{g} contains (a, I) and (b, I) and is spanned by $J_{1}, J_{2}, J_{3}, I_{1}, I_{2}, I_{3}$.

If

$$
\begin{equation*}
(a, b)=0, \quad(a, a)=1, \quad(b, b)=1 \tag{4.18}
\end{equation*}
$$

is satisfied, then K_{4} and K_{5} vanish. In this case \mathfrak{g} is spanned by $J_{1}+(a, I)$, $J_{2}+(b, I), J_{3}+(c, I)$ where $[a, b]=c,[b, c]=a,[c, a]=b$.

To sum up we have the following cases.
(i.1) a and b are not linearly independent. Then g is spanned by J_{1} and (a, I).
(i. 2) a and b are linearly independent. Then g is spanned by $J_{1}, I_{1}, I_{2}, I_{3}$.
(ii. 1) a and b are not linearly independent. Then g is spanned by J_{1}, J_{2}, J_{3}, (a, I).
(ii. 2) a and b are linearly independent and (4.18) is satisfied. Then g is spanned by $J_{1}+(a, I), J_{2}+(b, I), J_{3}+(c, I)$.
(ii. 3) a and b are linearly independent and (4.18) is not satisfied. Then g is spanned by $J_{1}, J_{2}, J_{3}, I_{1}, I_{2}, I_{3}$.

Thus we have the following theorem.
Theorem 4.4. Let G be the subgroup of $\mathrm{SO}(4)$ generated by two one-parameter subgroups k_{1}, k_{2} of mixed type. Then there exist the following four cases.
(α) G is generated by a J-type one-parameter subgroup and an I-type oneparameter subgroup.
(β) G is generated by a J-type one-parameter subgroup and O_{I}, or by an

I-type one-parameter subgroup and O_{J}.
(γ) G is generated by $J_{1}+(a, I), J_{2}+(b, I), J_{3}+(c, I)$ where a and b satısfy (4.18) and $c=[a, b]$.
($\delta) \quad G=\mathrm{SO}(4)$.
If $(\boldsymbol{\gamma})$ or $(\boldsymbol{\delta})$ is the case, then no G-invariant elements of $W_{2}(3,4)$ exist except the trivial element 0 . If (α) is the case, G-invariant elements are obtained by Theorem 4.2. If (β) is the case, the set of G-invariant elements is a onedimensional linear subspace of W_{J} or of W_{I} and can be obtained with the use of Theorem 4.1.

5. Some invariant elements of $W_{2}(m, s)$.

Let K be an element of $W_{2}(m, 4)$. Then $K(3,0)=0$ [2], [4]. The bi-symmetric tensor given by

$$
\begin{equation*}
(C(s, 0))(a, b)=\sum_{p=0}^{\sigma-2} c_{p}\langle a, a\rangle^{p}\langle b, b\rangle^{p}\langle a, b\rangle^{s-2 p-4}(K(4,0))(a, b), \tag{5.1}
\end{equation*}
$$

where $\sigma=[s / 2]$ and $c_{0}, c_{1}, \cdots, c_{\sigma-2}$ satisfy

$$
\begin{equation*}
2 p(m+2 s-2 p-1) c_{p}+(s-2 p-2)(s-2 p-3) c_{p-1}=0 \tag{5.2}
\end{equation*}
$$

is an element of $W_{2}(m, s)$. We have the following theorem.
Theorem 5.1. Let k be a subgroup of $\mathrm{SO}(m+1)$ and K be k-invariant. Then C is also k-invariant.

Proof is easy as $\langle g a, g b\rangle=\langle a, b\rangle$ for $g \in \mathrm{SO}(m+1)$.
Remark. It is also easy to prove that C belongs to $W_{2}(m, s) . C$ is bi-symmetric and satisfies $C(2,0)=0$. That C is harmonic is assured by (5.2).

Definition 5.1. Let C be an element of $W_{2}(m, s)$. The bi-symmetric tensor C^{1} of bi-degree ($s-1, s-1$) given by

$$
C^{1}(s-1,0)=\sum_{i} C\left(a, \cdots, a, e_{2} ; b, \cdots, b, e_{2}\right)
$$

is called the first contraction of C.
Lemma 5.2. C^{1} is an element of $W_{2}(m, s-1)$.
Proof. As C is harmonic, C^{1} is also harmonic. On the other hand, from $C(a, a, b, \cdots, b ; b, \cdots, b)=0$, we get

$$
\Sigma_{i} C\left(a, a, b, \cdots, b, e_{2} ; b, \cdots, b, e_{2}\right)=0
$$

hence $C^{1}(a, a, b, \cdots, b ; b, \cdots, b)=0$.

Theorem 5.3. Let k be a subgroup of $\mathrm{SO}(m+1)$ and C be a k-invariant element of $W_{2}(m, s)$. Then C^{1} is also k-invariant.

Proof is easy as $\left\{g e_{1}, \cdots, g e_{m+1}\right\}$, where $g \in \mathrm{SO}(m+1)$, is also an orthonormal basis.

6. Geodesics.

We consider geodesics in isometric minimal immersions $f: S^{3}(1) \rightarrow S^{24}(r)$, $r^{2}=1 / 8$, namely the case $m=3, s=4$. A geodesic γ in $S^{3}(1)$ can be written

$$
\begin{equation*}
u(t)=a \cos t+b \sin t \tag{6.1}
\end{equation*}
$$

where a and b are orthonormal vectors in R^{4} and t is a parameter such that $u^{\prime}=d u / d t$ is a unit vector. $\Gamma=i \circ f(\gamma)$ is a geodesic in the image $i \circ f\left(S^{3}(1)\right)$ and the unit tangent vector of Γ is $i_{1}^{A} \tilde{e}_{A}$ where $\imath_{1}^{A}=d F^{A}(u, u, u, u) / d t=4 F^{A}\left(u, u, u, u^{\prime}\right)$.

Let us define $F_{p}^{A}(p=0,1,2,3,4)$ by $F_{p}^{A}=F^{A}\left(u, \cdots, u^{\prime}\right)$ where p of u in $F^{A}(u, u, u, u)$ are replaced with u^{\prime}. Then, as we have $u^{\prime \prime}=-u$, we get

$$
\begin{equation*}
d\left(F_{p}^{A}\right) / d t=-p F_{p-1}^{A}+(4-p) F_{p+1}^{A}, \tag{6.2}
\end{equation*}
$$

hence

$$
\begin{aligned}
& \left(F_{0}^{A}\right)^{\prime \prime}=-4 F_{0}^{A}+12 F_{2}^{A}, \\
& \left(F_{0}^{A}\right)^{(3)}=-40 F_{1}^{A}+24 F_{3}^{A}, \\
& \left(F_{0}^{A}\right)^{(4)}=40 F_{0}^{A}-192 F_{2}^{A}+24 F_{4}^{A}, \\
& \left(F_{0}^{A}\right)^{(5)}=544 F_{1}^{A}-480 F_{3}^{A}=-64\left(F_{0}^{A}\right)^{\prime}+20\left(F_{0}^{A}\right)^{(3)} .
\end{aligned}
$$

Let us define $C_{p, q}$ and $U_{p, q}$, which are obtained from $C(u, u, u, u ; u, u, u, u)$ and $U(u, u, u, u ; u, u, u, u)$ when some of u are replaced with u^{\prime}, by

$$
\begin{aligned}
& C_{p, q}\left(u, u^{\prime}\right)=C\left(u, \cdots, u^{\prime} ; u, \cdots, u^{\prime}\right) \\
& U_{p, q}\left(u, u^{\prime}\right)=U\left(u, \cdots, u^{\prime} ; u, \cdots, u^{\prime}\right)
\end{aligned}
$$

where in the right hand side of each formula u^{\prime} appears p times before the semicolon and q times after the semicolon. As it is written in page 347 of [3], C satisfies

$$
C_{4,0}=-4 C_{3,1}=6 C_{2,2}
$$

and $C_{p, q}=0$ if $p+q \neq 4$, and this leads to $d C_{p, q} / d t=0$. On the other hand, as U is given by (3.1), $U_{p, q}$ is a constant depending only on p and q, and especially $U_{p, q}=0$ if $p+q$ is an odd number.

The relation between $C_{p, q}, U_{p, q}$ and F_{p}^{A}, F_{q}^{A} is, as it is obtained from (1.3) and (3.2),

$$
\begin{equation*}
\Sigma_{A} F_{p}^{A} F_{q}^{A}=C_{p, q}\left(u, u^{\prime}\right)+c^{\prime} U_{p, q}\left(u, u^{\prime}\right) . \tag{6.3}
\end{equation*}
$$

This proves that $\Sigma_{A} F_{p}^{A} F_{q}^{A}$ does not depend on t, but depends only on p, q and $C(a, a, a, a ; b, b, b, b)$.

The Frenet formula of Γ is written in the form

$$
\begin{aligned}
& i_{1}^{A}=\left(F_{0}^{A}\right)^{\prime}, \\
& \left(i_{1}^{A}\right)^{\prime}=k_{1} i_{2}^{A}, \\
& \left(i_{2}^{A}\right)^{\prime}=-k_{1} 1_{1}^{A}+k_{2} i_{3}^{A}, \\
& \left(i_{3}^{A}\right)^{\prime}=-k_{2} i_{2}^{A}+k_{3} i_{4}^{A}, \\
& \left(i_{4}^{A}\right)^{\prime}=-k_{3} i_{3}^{i} .
\end{aligned}
$$

First, we have

$$
\begin{align*}
\left(k_{1}\right)^{2} & =\Sigma_{A}\left(\left(F_{0}^{A}\right)^{\prime \prime}\right)^{2} \tag{6.4}\\
& =16 \Sigma_{A}\left(F_{0}^{A}\right)^{2}-96 \Sigma_{A} F_{0}^{A} F_{2}^{A}+144 \Sigma_{A}\left(F_{2}^{A}\right)^{2}
\end{align*}
$$

and this proves that $\left(k_{1}\right)^{\prime}=0$. Next we get

$$
\left(F_{0}^{A}\right)^{(3)}=\left(i_{1}^{A}\right)^{\prime \prime}=k_{1}\left(i_{2}^{A}\right)^{\prime}=-\left(k_{1}\right)^{2} i_{1}^{A}+k_{1} k_{2} i_{3}^{A}
$$

hence

$$
\left(k_{1} k_{2}\right)^{2}+\left(k_{1}\right)^{4}=\sum_{A}\left(\left(F_{0}^{A}\right)^{(3)}\right)^{2},
$$

which proves $\left(k_{2}\right)^{\prime}=0$. In this way we also get $\left(k_{3}\right)^{\prime}=0$, hence the following theorem.

Theorem 6.1. Every geodesic Γ in the image $i \circ f\left(S^{3}(1)\right)$ has constant curvatures k_{1}, k_{2}, k_{3} which depend on the choice of the geodesic.

We can compute straightforwardly the curvatures k_{1}, k_{2}, k_{3} from the Frenet formula, (6.2) and (6.3) in detail and get as a result the following theorem.

Theorem 6.2. The curvatures k_{1}, k_{2}, k_{3} of any geodesic $\Gamma=i \circ f(\gamma)$ are constants which depend only on $C(a, a, a, a ; b, b, b, b)$ if γ is given by (6.1) and C is the element of $W_{2}(3,4)$ associated with f.

Let g be an element of $\mathrm{SO}(4)$ and take another geodesic $\hat{\gamma}=g \gamma$, where we have $\hat{u}(t)=g a \cos t+g b \sin t$. Then, as a result of Theorem 6.2, we find that the curvatures $\hat{k}_{1}, \hat{k}_{2}, \hat{k}_{3}$ satisfy $\hat{k}_{1}=k_{1}, \hat{k}_{2}=k_{2}, \hat{k}_{3}=k_{3}$ if $g^{-1} C=C$.

Thus we have the following theorem.
Theorem 6.3. Let f be an isometric minimal immersion $S^{3}(1) \rightarrow S^{24}(r), r^{2}=1 / 8$, such that the element C associated with f is g-invariant where g is an element of $\mathrm{SO}(4)$. Then, for any geodesic γ of $S^{3}(1)$, the geodesics $i \circ f(\gamma)$ and $i \circ f(g \gamma)$ have the same set of curvatures k_{1}, k_{2}, k_{3}.

As the trivial element 0 of $W_{2}(3,4)$ is $\mathrm{SO}(4)$-invariant, this theorem also
proves that a standard minimal immersion is a helical immersion [5], [6].
Let J be given by (4.14). When P is a point of $S^{3}(1)$ we say that the locus $\left\{e^{J t} P, t \in R\right\}$ is a J-orbit. As any J-orbit is a geodesic and carried into a J-orbit by any element of O_{I}, we get the following theorem.

Theorem 6.4. Let J be given by (4.14), f be an isometric minimal immersion $S^{3}(1) \rightarrow S^{24}(r), r^{2}=1 / 8$, subject to $C_{J}^{(A)}$ where A is given by (4.16) and let k_{1}, k_{2}, k_{3} be the curvatures of the geodesic $\Gamma=i \circ f(\gamma)$ of $i \circ f\left(S^{3}(1)\right)$ where r is the J-orbit passing a point a of $S^{3}(1)$. Then each of these curvatures is independent of the choice of the point a.

The theorem is valid when we take I instead of J.

References

[1] M. Do Carmo and N. Wallach, Minimal immersions of spheres into spheres, Ann. of Math., (2) 93 (1971), 43-62.
[2] Y. Mutō, Some properties of isometric minimal immersions of spheres into spheres, Kodai Math. J., 6 (1983), 308-332.
[3] Y. Mutō, The space W_{2} of isometric minimal immersions of the three-dimensional sphere into spheres, Tokyo J. of Math., 7 (1984), 337-358.
[4] Y. Mutō, Isometric minimal immersions of spheres into spheres isotropic up to some order, Yokohama Math. J., 32 (1984), 159-180.
[5] K. Sakamoto, Helical immersions into a unit sphere, Math. Ann., 261 (1982), 63-80.
[6] K. Tsukada, Isotropic minimal immersions of spheres into spheres, J. Math. Soc. Japan, 35 (1983), 355-379.

34-6-904, 5-Сноме,
Koishikawa, Bunkyo-ku, Tokyo 112, Japan

