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A METHOD TO A PROBLEM OF R. NEVANLINNA, II
By MITSURU OzAwWA

§1. Introduction. This paper is a continuation of our earlier paper [3].
In this paper we shall prove the following theorems.

THEOREM 1. Let f(z) be a meromorphic function of regular growth of order
0. Then

4

K(f)=L(p) lircn%ienf S, E)/TG, f).

THEOREM 2. Let f(z) be a meromorphic function defined by a quotient of two
canonical products of genus g

f@=T1E(;~ 9)/TLE(- q).

Suppose that the orvder A and the lower order p of f(z) satisfies ¢=p<A<g+1.
Let 8 be a number satisfying u<f<A. Them for any E

Sup. L(p) lim inf S, E)/T(, fHI=K(f).

Theorem 2 was already stated without proof in [3].

In order to prove Theorem 1 we make use of the notion of proximate order
of T(t, f). The proximate order ((¢) is defined by the following conditions :

(i) @) is real continuous and piecewise differentiable for ¢>1,,

(ii) (t)—p as t—oo,

(iii) 2’'(?) log t—0 as t—co,

. . T,
(iv) lm}ﬂiup t(‘ mf ) =1.

Let us put
[l(t)zt‘o—l(”,

then p(f) is a slowly varying function in the sense of Karamata, that is, u(t)
satisfies p(ct)/p(t)—1 as t—co for any positive ¢. It is known that the above
convergence is uniform in the wider sense in (0, c0). See Seneta [5]. Then it
is easy to prove that

[T, pr-odi=e
0
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for any finite #,. Further it is also easy to prove the following result: Let p(¢)
be slowly varying for 0<¢<co and let ¢(s) be absolutely integrable over (0, o)
and such that

[$(s)|=O(s"") 7>0 (s—0),

[4(s)|=0(s7%1)  a>0 (s—x).
Then

I, 5 #as=[ o o0

for t—co. Hence for an arbitrary ¢,>0 there exists an s, such that for any
$=5,

= plst) xee (e xtet
So ut) x+e it X_So xtei? dx+m(s)
with

[m(s)| <e;.

Here ¢g=[p]<p<g+1, ¢>0. Further for any &,>0

[t'@) logt] <es, 0<|p—I(t)| <e,
for t=s,.
In order to prove Theorem 2 we need the following Lemma, which was
stated in Edrei and Fuchs [2] and Edrei [1].

LEMMA A. Let f(2) be defined as in Theorem 2. Then for |z|<R
V4 V4
log| f(2)| =, Emk’glE(Z’ 7)| =, Z,q08 | E( 0)| 56, R,

where
|S(z, R)|<14(r/2R)*™"T4R, f), r=]|z|
for g=1.

§2. Proof of Theorem 1. Let us put
f(Z):AZpep(Z)Hl/Hz ’
where
z z
HI_IIE<G—M, 9), HZ—HE(b—n, 9)
and P(z) is a polynomial of degree at most ¢ and p is an integer, A a constant.
Put

g(z)=AzPe?® [I¥/IT%,
where

HT:‘“ESOE(ain, (]), Hak:lb%soE(f;’ (]).

Here s, is a constant defined in §1. Let F(z) be f(z)/g(z). We shall consider
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[og| Pty 1-r0-eat.

Here [(t) is a proximate order of T(¢, f) and e is an arbitrary positive constant.
It is convenient to consider the following integral

“ . t 1(0-pp) -1-1(t)-¢
SologE( ae gt dt

nl

(—1)tgt@-om “ 1-q4 = fete-e d
=(—1)% “‘ang sT1-e sg———— t.
lapl o ttse v l-ew

The inner integral of the above is equal to
1a-0-¢ q-p-¢

® LS PR et o q-p-¢
Soﬂ(t) t_l_se—z(ﬂ—gon) dt Soy(sx) x+e—t(0—¢n) dxs

. e[ p(sx) xa-p-¢
_#(s)sq e SO #(S) 'x_{_e-z(ﬁ—gan)

dx

) q-p-¢
—seto-o((TE0E s
- 0 x+e—z(0—¢n)

:_Sq—zm—s(n. eXP(,.O‘FS'“(])Z(H_SDn) —I—m(s)),
sin n(g—p—¢)
where |m(s)|<e,; for s=s, as in §1. Hence

% ¢ . dt
So log E(— [a,] et fem, l]) PEIOES

T

~sin n(pte)

oo ds oo
1(p+e) (B-pp) -
e r Slanl 31+l(s)+.-: +CS

ds
M\S) G+~
lanl ( ) S1+l(s)+;

Since [(f)—p for {—oo,

n(t, 0, F)Sjs“‘“”‘sds—@,

N(t, 0, F)t-t®-<-(
for t—co. Hence

Sw S-l—l(s)—edS:Swd n(z‘, 0’ F)Sws—hl(s)-eds
lagn! o t

lapni>sy

= NG, 0, F) .,
=§ %mT)(t 1(8) log t+e+1(0))dt

S0

= N, 0, F) o N, 0, F)
:pSsomdt+Sso7712(t)Wdt N

where |[m,(t)| =|{({t)—p+e+t’(t) log t| <2¢,+¢. Hence we have



28 MITSURU OZAWA

Sjloglp(tew) | 1=t -< 4y

_ T | _  em1-l®r—e
- sin z(p—}-e) lanEDSOCOS(‘DTs)(ﬁ sDn)Slanls dS

> COS(p—[—e)(&—-S[;n)S: Is-l-l(s)—sds

"~ sin w(p+e) 10,1>5
+ 3 Sw Rem@)- -1 ®0-2dt— r R(em)-1-t -4t
lani>sellanl 10l

1bp1>80

Let E be a measurable subset of [—x, n]. Then

wj_ i6 —1-1() -2
So zﬂ_SElog]F(te )d6 t dt

_ 1 P+ES _ 1 S” ~1-1(8)-¢
" sin 7r(p+s) lapi>se 2 Ecos(p—i—s)(ﬁ gon)dﬁ o+e |an|s ds
_— ‘O+ES — LSQ -1-1(8)-¢
sin Z(p+¢) 10q1>s50 2 Ecos(p—}—e)(ﬁ $n)d0 o+e lbnls ds
";"Sly
where
isllélclel[ Z Sw t-l-l(z)—sdt_i_ E Sw t-l—l(t)—edt]
lani>sedlan! 1bp 1>80J 1001
« N(t, 0, F)+N(t, co, F
_S_]clel[(p—{-a—kz.sg)]gso ( t]);}:t)i oo, F) dt.
Let us put
S, E, F):ig log| F(te**)| d0+N(t, oo, F).
2n JE
Hence
|st, B, Pym-io-cas
1 o oo
< -1-1(8)-¢ ~1-1(s)~-¢
= (p+¢e)L(p+e) {mnzr;sojmnls ds+|bnz|;so.8|bnls ds}
+S27
where
— ~ € Al « -1-1(8)-¢
Se=5+ o(p+e) 1b,ﬁ’>s05|bn|s o
Thus

= N, 0, F)+N(@, oo, F)

tl+l($)+£

dit+Ss,

= —1-1(8) -s Jp<Z 1 P
SOS(t, E, F)t dt=L(p+e) p—{-sS

So
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where S, can be estimated as
= T(t, F)

50 t1+l(t) +z

[Ss|§H(Py €, &, 52)( dt .

v

Here H(p, ¢, e, &,;) is a constant satisfying

lim H(p, ¢, ¢, €)=0.
£,€1,€2-0

Since s, is sufficiently large, N(¢, 0, F)+N(t, co, F)S(K(F)+¢;)T(¢, F) for any
t=s,. Hence

dt(l“.‘H(py g, &1 52)>'

K(F)+es p S“’ T, F)
L(p+e) pte

Since T, F)=T(t, f)—ct® for any sufficiently large f,

S:S(t, E, F)t-i-to-sgt<

$o t—l-[(t) -&

S;T(t, F)t -0 -sdt oo
as e—0. Therefore
L(p) lilginf S(t, E, F)/T(t, F)SK(F)+e;+H(p, 0, &1, e2)L(p) .

Here ¢, ¢, €, are arbitrary. Hence we have the desired result for F. It is easy
to prove the following relations:

IT@®, /)—TE F)|SAH,

0<N(t, 0, /)—N(, 0, F)<Alogt,

0=NC(t, oo, f/)—N(, oo, F)=<Alogt,

|S@, E, /)—S(t, E, F)| <At
for any sufficiently large ¢. Therefore K(f)=K(F) and

L(p)lim inf S¢, E, /)/TC, f)=K(f),

which is just our desired result.

§3. Proof of Theorem 2. Let p, be any positive number satisfying p,=
min(|a,|, [b:]). Let us consider

B 10y 4-1-8 ¢ — _ t 1(0-¢,) dt
[/ 10g1 £ttet%) 11 di= 3, Jog| E(— e e, )|
_ b gy _dt
IbyéleOgiE( |6,] e, q) A
14 TAR)

-5 -5
(Rq+1 p_pg+1 ,5)’

-+

g+1—p 2eiRe+
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where j is a constant satisfying ¢<f<¢-+1. We shall compute
R t

1=S log| E(—
00 € ( la

for R<|a]|=2R or for |a|=R.
As in the proof of Theorem 2 in [3] we have

I=0(R-?)

t-1-fdt

I ez(ﬂ-go)’ q)

for the first case and hence
> I=n@2R)O(R-?%).
Rlals2R
For the second case we need the method of contour integration and have

wcos B(0—¢p) 1

—(—1)¢ . !
] ( 1) ‘BSil’ln(ﬂ——(]) |d|‘8+L1+L2TL8’
where
Ly=0(p§ 7 |a| =),
L,=0O(R#)
and

L,=AR"#(|a|2—R 9+ AR 8- (|a|*"2—R*" 9+ -
+ A1 R#(Jal =R+ AR Flog(R/|al)+AgiR™7?
with positive constants A, -+, Ag+:. Hence

3 | Ll =084 rednt, 0),

laIsR

> |L:|=n(R, 0)0(R"?)

laisR

Q

and
|L,|=0(n(R, 0)R~#)+O(N(R, 0O)R-#)

laisR
+ 3 0(R(” Net, O-2ar).

Similar results hold for poles. Therefore we have

R i _d_tv_—ﬂ-'_ .E?.S_M
Spologlf(te 0)lll+ﬁ~ ﬁsinnﬂ lay, sk [(l,ulﬂ
. cos B(6—¢,)

— *
pBsin B sk |b,]8 +5%
where

S*=0(T(4R)/RP)+ ]il O(Rf-ﬁS’: T(01-2-1d1) +S:(po) .

Here S,(p,)—0 as p,—0. Let E be a measurable subset of [—=x, #]. Then as
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in our earlier paper

-1 8
S sa, B)-%, W o7 mﬁzlsnzj cos 8(0—¢,)d0a,|?
_ 1 B8
T Bsinp IDER{Sln”ﬂ 2§ cos B(6— sl’»)dﬁ}lbl 1S,

where S¥ behaves like S*. Then we can prove that
R R
S S, E)i'l’ﬁdtéL(ﬁ)'lg (N(t, 0)+N(t, co)t=*-8dt4S¥,
0o oo
where S¥ behaves like S¥. The right hand side term can be estimated by
R to
L K+ Tor-sdi+st+00|* Twr-bat.
o 00

Firstly we put p,—0. Let {r,} be a sequence of Pélya peaks of the first kind
and of order B, for T(f). Here we take max(y, ¢)<B,<f<A<¢+1. Further we
put 4R=2A,r, with A,—co as n—co. Existence of such a sequence {r,} is
well-known. Now suppose

S, E)

L(p) 11m1 f 0

éK(f)_*‘El
is false. Then for t=t,=t,
S(t, E)>CT(1),

C>L(B) ' (K(f)+e).
Then

(C— L@ (K()+e} | Tr-Pdi=S1+0Q).
Evidently with n(t)=n(t, 0)+n(t, c0) and N()=N(t, 0)+N(t, o)
[Frwe-sarz o "Now-rar
= 30 P/28 3 |ba174/2f"

—O(n(R)/RF)—O(N(R)/RF).
Further

SfT(t)t'l‘ﬁdt;SZTnT(t)t‘l'ﬁdt

28—

—ﬁg_'ﬁ T(rn>/7n .

>T(r,,)j "1-B gy

If T(?’n)/rg—)OO as n—oo, then
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R

S Tt 1-Fdt—co
0

for R—oo. If T(r,)/r% is bounded for n—oo, then by

TER) _ TGy 1 1 TGy (TG
e = e a e )

and by
S leal 4 3 lbal oo (Roo)

lapIsR

for <2 we have again
R
So Tt -Pdt—sco  (R—co).
We now consider the residual terms. For example
R-8\ T2 dt S R OT oyt 01

:(—ﬁ—:ﬁﬁﬂ T@raraf=0o(T(ra)/rf).
Hence

R R
{C— L(B) (K (f)+e} S T(e)-Pdt=o(D) T()-Pdt

This is clearly a contradiction. Therefore we have the desired result.
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