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A CHARACTERIZATION OF THE EXPONENTIAL FUNCTION
BY PRODUCT II

By SHIGERU KIMURA

§1. Introduction. In our previous paper [2] we proved the following
result.

THEOREM A. Suppose that f(2) 1s an entire function of order ¢=2p+1 hav-
ing only negative zeros. Setting ¢(2*)=f(2)f(—2), g&)=¢(—2)/¢0), we assume
that g(z) is a canonical product. Further we assume that there 1s an arbitrarily
small B>0 such that if |g(r)i=1,

log| g(re*®)| =(cos Bq/2)log|g(r)]
for all sufficiently large v and if |g(r)| =1,
log| g(re*?)| =(cos Bg/2) log|g(r)|

for all sufficiently large v. Then f(z)=eF® where P(z) is a polynomial of degree
q, or else
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log M(r, f) oo
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The purpose of this paper is to improve Theorem A and prove the following.
THEOREM. Suppose that f(z) is an entire function of order q=2p-+1 having

only negative zeros. Setting $(z*)=f(2)f(—2z), g(z)=¢(—2)/$(0), we assume that
there is an arbitrarily small 8>0 such that if |g(r)|=1 for all sufficiently large 7,

€)) log|g(re*f)g(re~*#)] =2(cos Bq/2)log|g(r)]
for all sufficiently large r and +f |g(r)| =1 for all sufficiently large v,
2) log|g(re*®)g(re™*f)| Z2(cos Pq/2)log|g(r)]

for all sufficiently large r. Then f(z)=eF® where P(z) is a polynomial of degree
q, or else
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In order to prove our theorem we need the following two lemmas.

LEMMA 1. [2]. Suppose that g(z)=e®®g,(z) is an entire function of finite
order having only negative zeros, where Q(z) is a polynomial and g,(z) is a canon-
wcal product. Then the sign of loglg(r)] is definite for r=r, where r, is a
posttive number, unless

) deg (Re Qr))=0 and g,(z)=1.

LEMMA 2. Let 0<t,<t;<oo. Let B(t) be a nondecreasing convex function of
log t on each interval of (0, ty), (i1, ta), (2, o) with B(0)=B(0+)=0 and B{)=0(")
(t—o0) for some p=(0, 1). Let b(re'?) be the function which is harmonic in the
slit plane |G| <m, is zero on the positive axis and tends to B(r) as §—m— with the
possible exception of r=t,, t,. Then we have

®) br)={ " Tha(t)-+ba(—13Q(r, Dt
where
_ 2rlogr/t
Q(?’, t)“ ﬂz(rz__tZ) *

This is a slight generalization of Proposition 5 in Baernstein [1] and the
proof is similar to the one in [1]. Hence we omit the proof of Lemma 2.

§2. Proof of Theorem. Let f(z) be an entire function satisfying the hy-
potheses in Theorem. We suppose that (3) is false, i.e.,
lim inf 128 M7, 1)
o0 ¥4
Since ¢(z5)=f(2)f(—=z), glz)=¢(—2)/H(0) and log M(r?, $)=2log M(r, ), there ex-
ists a sequence {r,}=r which tends to --co, such that

®) log M(r, g) _ .

/2

- L Foo.

We see from Lemma 1 that the sign of log|g(»)| is definite for all sufficiently
large », with the exception of case (4) in which case we have the required
function f(z)=e"®, deg P(z)=¢q. In the sequel we confine ourselves to the case
that the sign of log|g(»)] is positive for all sufficiently large », because the
remaining case can be dealt with in the same way as in §4 of [2].

If the sign of log|g(r)| is positive for all sufficiently large », then (6) yields

log|g(n)|

. \
hm lnf rqlz—' <“]—OO .

100

We set g(z)=e?®g,(z) where Q(z) is a polynomial and gi(z) is a canonical
product and we denote the genus of g,(z) by % and the degree of Re(Q()) by 1.
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Case (1). k=!. Proceeding as in case (1) of §4 of [2], we have

§ « Hy(te'?)—(cos Bg/DHF()

t1+q/2

(7

r

logig(r)| G, log Ms(2s, g)-+log Ms(v/ 25, g) (s<R)

>

>
=G ya/2 §2/2

where H*(z) is the harmonic function in {z:0<|z| <R, 0<argz< g}, which has

the following boundary values: H*(»)=0, H*(re'f)=B*@#!") (B* is a nondecreas-

ing convex function of logt on (0, o) with |B(0)=B(0+)=0 and y=p/=) and

C,, C, depend only on 8 and ¢ and M;(2s, g):gups |g(2s¢*?)|, Further we have
101<

®) Hif(ter’)<log|g(te'")g(te*?)]
H} (=2 log|g®)] .

Now we consider subcases.

Case (L1). A=limsup Iogl‘fz(?:))":—}—oo

We can find arbitrarily large values of r and s, with »<s, such that the right-
hand side of (7) is positive from (6). Hence (8) implies that the inequality

log | g(te*#)g(te~#)| —2(cos Bq/2) log | g(t)| >0

holds for some ¢># and this contradicts our assumption (1).

Case (1.2). A=0. There exists a sufficiently large number 7, such that
(loglg()})/*¥?>0 for r=r, Thus for each fixed r(=r,) the right-hand side of
(7) is positive for all sufficiently large s, and we have again a contradiction.

Case (1.3). 0<A<+co. We define the function H(z) in D= {z:0<argz<g}
by

4
H(re“’):g_o loglg(re*?)|dg .
Since g(z)=e%“ g,(z) we have

H(re“’):% la;|r'sin 16 cos 0, --- +2]a,|rsinfcos d,

0 ,
4.—2S0 log| g.(re'¥)|dg ,

where Q(2)=a, z* -+ -+ +asz, deg(ReQ(r))=((=k’) and arga,=0, (3=1, -, k).
Since g(2) has only negative zeros, H(re'?) is harmonic in D. Further we proved
in [2] that H(re’f) is an increasing convex function of log» for all sufficiently
large », if 8 is sufficiently small.

Now we construct the harmonic function U(re’) in D which majorizes
H(ret?y in D and has the boundary values U(+)=0 and U(re*d)== B(+*/")} where B
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is a function satisfying all the hypotheses of the B in Lemma 2 and y=p/=.

Since
Hpe®)=GCG@e*f)+cp’+ - +cirt  (5=1),
where
B
G(relﬂ>:2§0 log | g:(re#) | dg
oafer(# nlx) xcos(k+1)g-+rcos kg
=2r So(go xFH o x®4r242rx cos @ d¢)dx,
we have

Hre ) =cnr™+Cps#™ - - mz1, cn#0).

If ¢,<0, then H(r¢*?) is a decreasing function of » for all sufficiently small 7.
If ¢,>0, then
0*H

ogry ™ " z m+1 [N
a(log ) miapr™+(m-+1)2¢ a7 + ,

implies that H(re'f) is an increasing convex function of log» for all sufficiently
small r.
Thus, firstly, we define the function B(t) by

0, if ¢, <0

9) Bt)= for 0=1=t,,
Hie*?y, if ¢p,>0

(10) Bt)=at (a>0) for t,<t<t,,

and

(1D B@t)=H(t"e*F) for 2,=t<+oco

where ¢, is a sufficiently small positive number and ¢, is a sufficiently large
positive number, which are defined as follows. Since B(¢) satisfies all the hy-
potheses of the B in Lemma 2 with p=yg/2, the Poisson integral

rsin 8

1w
160y — [
a2) blre')=— S B ot eos g &

satisfies all the hypotheses of the & in Lemma 2. Then we have
« I'd
bg(—m:SO 10g’1—7}dB1(t)

where B,(t)=tB’(¢). For any ¢>0 and any ¢,>0, if ¢, is sufficiently small, then
we have

S”log]l»ﬂdBlaKe for f<r<t,.
0

Thus, observing that
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S:’ 1og}1—§]d31(z)<0 for t<r<t,,
2
we see that

bo(—r)<s+§z21ogi1——;—|d31<t> for 1,<r<t,.
1

Hence we have for r=(ty, t,), using (10),
b(—r)<e+tat,log t;—at, log t,+a(r—t,) log (r—t1)+alt,—r) log (t.—7r).

Thus we can choose a sufficiently small number ¢, and a sufficiently large number
t, such that

(13) bo(—1<0 1, <r<t,.
Now we define
(14) Uz)=b(z"'7)
in D={z:0<argz<p}. Choosing a sufficiently large number a in (10), we can
see that if B¢/2<xw
(15) Hz)=U(z) inD.

In fact, H and U are harmonic in D and H(z)<U(z) on the boundary with the
possible exception of z=t,e%, t,e'? from (9)~(12) and (14). Further we see that
H(z) is O(]z]¥?) in D by the definition of H and that U(z) is O(]z]¥%) in D by
(12) and (14). Therefore we can conclude that H(z)< U(z) inside the angle if

Bag/2<x.
If (1) holds for all >0, then we claim that the following inequality holds

© Bq
(16) o= | g (1-+cos £LL)Qtr, nat
where
Us(th) for 0=1<t,
an )=
2loglgth) for tzt,
if ¢, <0 and
Ug(t?) for 1, <t<t,
(18) o)==
2loglgn| for 0=Zi=Zty, t=4,.
if ¢, >0.

From Lemma 2, we have
19 Usrny={ (Use)+ Ustare ), 1t

At first, we consider the case ¢, <0. Since U(z)>0 in the angle D={z:0<argz
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(20) Uyter)=0, UptNz0  (0=t=1).
Hence we have

2D Ug(t-- C'u(t"ei'a)é(l—%cos %)Uo(t’), O=1=t).

For t,<t<t,, since by(--1)=Uy(t"e*’) we have (20) from (13) and also (21) again.
Thus we set in 0=St<¢,

(22) et =Us(t") .

Next we consider the case t=t,. From H(r)=U@)=0 and (15), we have
Hy(t)ZUy(t"). Hence. from the definition of H, we have

(23) 2loglgn=Us(t").

Now we define two functions H,(z) and H,(z) in the angle D;={z:0<argz
< f8/2}, which are harmonic and subharmonic respectively, as follows:

Hl(.}.giﬁ) . U(rez(,3/2+0))_U<rez(3/2~0)> ,

. Sla+0 . 8/e+0 ) .
Hire =\ """ toglgtred)ldg+ | " logigre?)idg.

Then we have Hy(r::==H,(r)=0 and
Hires)=|" loglg(re®®)|dp=Hire')

<Ulre'®)=H,(re'?'?) .

Since H; and H, are both O(%*) in D, as r-—co, and since fg¢/4<x, we can con-
clude that H,(z)=<H,(z) inside D, Further we have H,(r¢'®#®)=H,(r¢'®'?) for
r=t} and hence we obtain

— Hy(re*?”®)—Hy(re')

24)  Jim 3/2-6 L Z(H)o(re?)=Us(re’?)FUgr),  (r=th).

From the definition of H,, we have

. 3/2-0 )
H,rots *"——Hz(re"”):g i " loglg(rer)|dg

C5 20 . 3 .
"‘\»; s 10g|§(”¢"’)|d¢+ggml) log|g(re*)|do,
and thus we have
eIt I
Jim 3720 sloglg(re™*#)|-+2loglg(r)|

+loglg(re”)|,  (r=th).
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Combining this with (24) and (1) we obtain
(25) Ue(t?”)%—Uo(t3'ei-3)§2(1+cos %q_) log|g(thi for >4,

Therefore setting ¢(t")=2log|g(t")| for t=t,, from (19), (23) and (25), we have
(16) for the function ¢{t*) defined by (17) in view of (22).
If ¢,>0, then we can also prove (16) for the function ¢(t") defined by (18).
Proceeding as in §5 of [2] from (16), we arrive at

. logig(r)]
lim - e =A>0.

Hence, by Valiron’s Tauberian Theorem [3], we have
A
. ~ ]2
nir, 0, g) - raz,
and so
A
~ =yl
nr, 0, f) - ¥,

Therefore we have 6(0, f)=1. Proceeding as in the proof of Theorem 2 of [2],
we have A=0, which is impossible.

Next we suppose that (1) holds for all »=¢,>0. Then there exists a positive
C such that h(z)=g(z)/C satisfies (1) for all »>0. In fact, set

e(t)=log | g(te*?)g(te=*#)| —2(cos Bg/2)log g(t)] .
max o{t)=M(>0)

and
C=exp(M/2(1—cos Bq/2)).

Then it is easily seen that A(z) satisfies (1) for all r.
We show an inequality corresponding to (16), using /iz). Setting

b(ret?)=b(ret?)—26 log C
where b is the Poisson integral of (12) constructed by g{z). we can see
26) bor)={. Got+bo(— )@, e
where Q(r, t)=02r log r/t)/z%(»*—¢*). In fact, by contour integration
[ 0w, ar=172

and so we have (2~6) from (5).
If we define U(z)=b(z"") in D={z:0<argz<p}, then we have from (26)
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041 =" Do+ Uswe Qe it

where Uy(riet?)=Usy(r7e?)—21og C. N
Now we define two functions H,(z) and H.(z) in the angle D,={z:0<argz
<B/2} as follows:

Hi(re'0)=0(re+$2+0)— [ (rer872-07) |
T N ~-53/2+8 " Ble+d y '
Hre >—§_3/2~010gth(re )’d¢+gﬁ/2_6 log|h(re*?)|dg .

Then we have ﬁl(r>:ﬁ2<r):o and
Hyret®y=H(re*?)—28 log C<U(re*¥)=H,(re**7) .
Hence we have ﬁz(z)gﬁl(z) in D,. Proceeding as in the previous case, we have
the following inequality :
¢on= | pen(1+cos & PN, nat
where
Uyt for 0=t<t,
()=
2loglh(t")| for i=t,,

if ¢, <0 and
{ﬁo(m for t,<t<t,
= t:‘ —_

2loglh@)|  for 0=t=t, t=t,,
if ¢,>0. Thus we have a contradiction again.
Case (2). k<. Since g,(z) is a canonical product of g(z), we have

, = d
toglg )| =r+ef X

n{x) = nlx)
=7 SO k+1 dx +r * IS xRt dx

and so we have ilogigr)||=0ReQ()). Thus in this case we have

loglg)| _g

A=Ilim sup are

700

Hence proceeding as in the proof of case (1.2), we have a contradiction.
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