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A CHARACTERIZATION OF THE EXPONENTIAL FUNCTION

BY PRODUCT II

BY SHIGERU KIMURA

§ 1. Introduction, ϊn our previous paper [2] we proved the following
result.

THEOREM A. Suppose that f(z) is an entire function of order q—2p+l hav-
ing only negative zeros. Setting φ(z2)—f{z)f(—z), g(z)=φ(—z)/φ(Q)t we assume
that g(z) is a canonical product. Further we assume that there ts an arbitrarily
small β>0 such that if \g(r)\^l,

log I g(re%?) I S(cos βq/2) log | g(r) \

for all sufficiently large r and if \g(r)\^l,

log I g(reχP) I ^(cos βq/2) log | g(r) \

for all sufficiently large r. Then f(z)=ePlz) where P(z) is a polynomial of degree
q, or else

The purpose of this paper is to improve Theorem A and prove the following.

THEOREM. Suppose that f{z) is an entire function of order q—2p+l having
only negative zeros. Setting φ{z2)~f{z)f{—z)y g(z)=φ(—z)/φ(0), we assume that
there is an arbitrarily small β>0 such that if \g(r)\ ̂ 1 for all sufficiently large r,

(1) \og\g(re^)g(re-^) | ^2(cos βq/2) \og\g(r) |

for all sufficiently large r and if \ g(r) | ̂  1 for all sufficiently large r,

(2) log\g(re^)g(re-^)\^2(cos βq/2) \og\g(r)\

for all sufficiently large r. Then f(z)=eP(z) where P(z) is a polynomial of degree
qy or else

(3) l

Received December 6, 1983.

317



318 SHIGERU KIMURA

In order to prove our theorem we need the following two lemmas.

LEMMA 1. [2]. Suppose that g{z)—eQ{z)gλ{z) is an entire function of finite
order having only negative zeros, where Q{z) is a polynomial and gι{z) is a canon-
ical product. Then the sign of \og\g(r)\ is definite for r^r0 where r0 is a
positive number, unless

(4) deg(Re<2(r))=0 and g i (*)=l .

LEMMA 2. Let 0 < ί i < ί 2 < ° ° . Let B(t) be a nondecreasing convex function of
log t on each interval of (0, tλ), (tu Q, (ί2, oo) with £(0)=£(0+)=0 and S(f)=O(f')
(ί-»oo) for some ρ^(0, 1). Let b(reiθ) be the function which is harmonic in the
slit plane \ θ\ <π, is zero on the positive axis and tends to B(r) as θ—>π— with the
possible exception of r=tlf t2. Then we have

(5) &(r)=Γ[6,(0+&,(-0]<?(r, t)dt
Jo

where

This is a slight generalization of Proposition 5 in Baernstein [1] and the
proof is similar to the one in [1]. Hence we omit the proof of Lemma 2.

§ 2. Proof of Theorem. Let f(z) be an entire function satisfying the hy-

potheses in Theorem. We suppose that (3) is false, i.e.,

r . \ogM(r, f)
hm mf —-—^-^-'- < + oo .

Since φ(z2)=f(z)f(-z), g(z)=φ(-z)/φ(0) and logM(r2, ψ)^2 log M(r, /), there ex-
ists a sequence {rn}—r which tends to +oo} such that

(6) ^

We see from Lemma 1 that the sign of \og\g(r)\ is definite for all sufficiently
large r, with the exception of case (4) in which case we have the required
function f(z)—eP(z\ άegP(z)=q. In the sequel we confine ourselves to the case
that the sign of log\g(r)\ is positive for all sufficiently large r, because the
remaining case can be dealt with in the same way as in §4 of [2].

If the sign of log | g(r) | is positive for all sufficiently large r, then (6) yields

' < + «,.

We set g(z)=eQ(z)g1(z) where Q(z) is a polynomial and gλ{z) is a canonical
product and we denote the genus of gλ(z) by k and the degree of Re((?(r)) by /.
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Case (1). k^l. Proceeding as in case (1) of §4 of [2], we have

log\g(r)\ r \QgMβ(2s, g)+logMβ(^'2s9g)

where H*(z) is the harmonic function in {z:0<\z\<R, 0<argz<β}, which has
the following boundary values: #*(r)=0, //*(rβ ί / 3)=£*(r1 / r) ( 5 * is a nondecreas-
ing convex function of logt on (0, oo) with |J3(0)=B(0+)=0 and γ^β/π) and
d, C2 depend only on β and q and Λίg(2s, g)=sup |g(2sβί<9)|. Further we have

(8)

Now we consider subcases.

Case (1.1). A=lim sup - ^ ^ — - + oo .

We can find arbitrarily large values of r and s, with r<s, such that the right-
hand side of (7) is positive from (6). Hence (8) implies that the inequality

log\g(te*?)g(te-*P)I -2(cos βq/2) log\g(t)| >0

holds for some t>r and this contradicts our assumption (1).
Case (1.2). ^4=0. There exists a sufficiently large number r0 such that

(log\g(r)\)/rq/2>0 for r^rQ. Thus for each fixed r(^r0) the right-hand side of
(7) is positive for all sufficiently large 5, and we have again a contradiction.

Case (1.3). 0<A< + cv. We define the function H(z) in D= {z :0<argz</9}
by

Since g(z)=^eQωg1(z) we have

H(reiθ)=j I at \ rι sin Iθ cos θ^ +21 ax | r sin 6> cos θ,

where Q(z)=ah,z
k'+ ••• +fl^, deg(ReQ(r))=/ ( ^ ^ ) and a r g α , - ^ 0 = 1, - , k'\

Since g(z) has only negative zeros, H(reiθ) is harmonic in D. Further we proved
in [2] that H(re*P) is an increasing convex function of logr for all sufficiently
large r, if β is sufficiently small.

Now we construct the harmonic function U(reiθ) in D which majorizes
H(reίθ) in D and has the boundary values U(r)^0 and U(reι'S)^-B(rlίr) where B
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is a function satisfying all the hypotheses of the B in Lemma 2 and γ=β/π.
Since

• +c[rι

where

)=2\β \og\gl(re^)\dφ
Jo

we have

If cm<0, then H(reιβ) is a decreasing function of r for all sufficiently small r.
If cm>0, then

2

implies that H(reίβ) is an increasing convex function of logr for all sufficiently
small r.

Thus, firstly, we define the function B(t) by

(9)

(10)

and

(11)

B(t)=\ ^ ^

B(t)=at (α>0)

B(t)=H(treιβ)

if c

if c

for

for

'm<0
for 0^

tλ<t<U,

t2<t< + oo

where tλ is a sufficiently small positive number and t2 is a sufficiently large
positive number, which are defined as follows. Since B(t) satisfies all the hy-
potheses of the B in Lemma 2 with ρ=γq/2, the Poisson integral

(i2) & ( r ^ ) = i r g f f l jπff
π Jo £ 2 +r 2 +2trcos0

satisfies all the hypotheses of the b in Lemma 2. Then we have

Joo γ
log 1 dBλ(t)

o t

where Bι{t)=tBf(t). For any ε>0 and any t2>0, if tx is sufficiently small, then
we have

log dB1(t)<ε for t1<r<t2.

Thus, observing that



A CHARACTERIZATION OF THE EXPONENTIAL FUNCTION 321

'-7
we see that

'-7bθ(-r)<ε+[* log

for ίi<r<ί2,

dBx(t) for t1<r<t2.

Hence we have for re(*i, f2), using (10),

b(—r) <ε+at1 log t1—at2 log t2+a(r—h) log (r-t1)+a(t2-r) log (f2—?).

Thus we can choose a sufficiently small number tx and a sufficiently large number
t2 such that

(13) &

Now we define

(14)

in D = {z:0<arg^</3}. Choosing a sufficiently large number a in (10), we can
see that if βq/2<π

(15) H{z)SU{z) in D .

In fact, H and ί/ are harmonic in D and H{z)^U{z) on the boundary with the
possible exception of z=t1e

iβ, t2e
iβ from (9)~(12) and (14). Further we see that

H(z) is O(|z|«/2) in D by the definition of H and that U(z) is O( |z | a / 2 ) in D by
(12) and (14). Therefore we can conclude that H(z)^U(z) inside the angle if
βq/2<π.

If (1) holds for all r>0, then we claim that the following inequality holds

(16) p(rO^{β?>(ίr)(l+cos ψ)Q(r, t)dt

where

(Uθ{tr) for 0^
(17) ?>(ίθ=j

I 2 1 | ( 0 l for t^
if c m <0 and

(Uθ(t7) for t1<t<t2

(18) P ( ί0=]
I21og|g(ί0| for O^

if c m >0.
From Lemma 2, we have

(19) Uθ{rr)^{UβΨ)+UeWe^))Q{r, t)dt.
Jo

At first, we consider the case cm<0. Since U(z)>0 in the angle D= {z :0<argz
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<β] and B(t)^O for O ^ ^ z Ί from (9), we have

(20) Uθ(t<eι s)^0, Uθ(tr)^0

Hence we have

(21) Uθ(t')--Uft(t'ei'3)^(l-{-cos^)uθ(tr)9

For tχ<t<t2, since bθ(—t) — Uθ{tretβ) we have (20) from (13) and also (21) again.
Thus we set in 0<>t<t»

(22) φ(tη

Next we consider the case t^t2. From H(r) = U(r)=0 and (15), we have
r)' Hence, from the definition of //, we have

(23)

Now we define cwo functions Hx(z) and H2(z) in the angle Dλ— {z :0<argz
< β/2], which are harmonic and subharmonic respectively, as follows:

Γ-β/2+θ , Γβ/2+θ

IUreu)-=\ \og\g(re^')\dφ+\ ]og\g(re*ό)\dφ.

Then we have //"/?-!—i/2(r)=0 and

-/S

Since ^ and //2 are both O(rq/2) in ^ i as r->oo, and since βq/4<π, we can con-
clude that H^z^H^z) inside D,. Further we have #2(rβ<0/2)=//1(rβ f'3/2) for
r^/ξ and hence we obtain

17 (rpιβf2\

(24) lim ---Vre LJ
θ-*β/2

From the definition of H2, we have

r-β/2-o
H^re" ^-Hι{reiθ)--=\ \og\g(re^)\dφ

j-β

g\g()\φ+\ \og\g(reιυ)\dφ,
J - •> "l-rθ J β /2 + θ

and thus we have

j ! ^ Hi'l'e'^ψrel°λ < log Igire-V) I +2 log I g(r) |
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Combining this with (24) and (1) we obtain

(25) Ueitη+Uβφe^^l+cosψ^loglgWl for ΐ>t2.

Therefore setting φ(fr)=2\og\g(tr)\ for t^t2, from (19), (23) and (25), we have
(16) for the function φ{fi) defined by (17) in view of (22).

If cm>0, then we can also prove (16) for the function φ(tr) defined by (18).
Proceeding as in § 5 of [2] from (16), we arrive at

Hence, by Valiron's Tauberian Theorem [3], we have

n{r, 0,g)'—~r*'t,
π

and so

A_
π

Therefore we have o(0, /)—1. Proceeding as in the proof of Theorem 2 of [2],
we have A—0, which is impossible.

Next we suppose that (1) holds for all r^tQ>0. Then there exists a positive
C such that h{z)—g{z)/C satisfies (1) for all r>0. In fact, set

= log\g(te^)g(te^)I -2(cosβq/2) \og\g(t)| ,

and

C=exρ(M/2(l-cos^/2)) .

Then it is easily seen that h(z) satisfies (1) for all r.
We show an inequality corresponding to (16), using hi?). Setting

B(reiθ)=b(reίθ)-2θ\ogC

where b is the Poisson integral of (12) constructed by giz). we can see

(26) bθ{r) = \~φθ(t)+be{-t))Q{r, t)dt
Jo

where Q(r, t) = {2r\ogr/t)/π2(r2—t2). In fact, by contour integration

(r, t)dt=l/2

and so we have (26) from (5).
If we define U(z)^E{zllr) in D= {z :0<arg^</3}, then we have from (26)
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r, t)dt,

where 0d(rreiθ) = Uθ(rreiθ)-2logC.^
Now we define two functions Hλ(z) and H2(z) in the angle D1={z:0<argz

<β/2} as follows:

og\h(re)\dφ+[2+θ log|h(re1*)\dφ .
-β/2-θ T Jβ/2-θ T

Then we have ffι(r)=fϊ2(r)=0 and

Hence we have H2{^)^H1(z) in Dlm Proceeding as in the previous case, we have
the following inequality:

ί^)(?(r,ί)Λ

where

Ψ for O^t
Φ(tr) = \

l21og|A(/OI for t^t2,

if cm<0 and

[UΘΨ) for U<t<U
φif)=\

l21og|A(fO| for O^t^tlyt^t2,
if cm>0. Thus we have a contradiction again.

Case (2). k<l. Since gλ(z) is a canonical product of g{z), we have

+1 x+r

and so we have \\og\gx{r)\ \~o(ReQ(r)). Thus in this case we have

Hence proceeding as in the proof of case (1.2), we have a contradiction.
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