A CHARACTERIZATION OF THE EXPONENTIAL FUNCTION BY PRODUCT II

By Shigeru Kimura

§1. Introduction. In our previous paper [2] we proved the following result.

THEOREM A. Suppose that f(z) is an entire function of order q=2p+1 having only negative zeros. Setting $\phi(z^2)=f(z)f(-z)$, $g(z)=\phi(-z)/\phi(0)$, we assume that g(z) is a canonical product. Further we assume that there is an arbitrarily small $\beta>0$ such that if $|g(r)| \ge 1$,

$$\log |g(re^{i\beta})| \le (\cos \beta q/2) \log |g(r)|$$

for all sufficiently large r and if $|g(r)| \leq 1$,

$$\log|g(re^{i\beta})| \ge (\cos\beta q/2) \log|g(r)|$$

for all sufficiently large r. Then $f(z)=e^{P(z)}$ where P(z) is a polynomial of degree q, or else

$$\lim_{r\to\infty}\frac{\log M(r, f)}{r^q}=+\infty.$$

The purpose of this paper is to improve Theorem A and prove the following.

THEOREM. Suppose that f(z) is an entire function of order q=2p+1 having only negative zeros. Setting $\phi(z^2)=f(z)f(-z)$, $g(z)=\phi(-z)/\phi(0)$, we assume that there is an arbitrarily small $\beta>0$ such that if $|g(r)| \ge 1$ for all sufficiently large r,

(1)
$$\log|g(re^{i\beta})g(re^{-i\beta})| \leq 2(\cos\beta q/2)\log|g(r)|$$

for all sufficiently large r and if $|g(r)| \le 1$ for all sufficiently large r,

(2)
$$\log|g(re^{i\beta})g(re^{-i\beta})| \ge 2(\cos\beta q/2)\log|g(r)|$$

for all sufficiently large r. Then $f(z)=e^{P(z)}$ where P(z) is a polynomial of degree q, or else

(3)
$$\lim_{r \to \infty} \frac{\log M(r, f)}{r^q} = +\infty.$$

Received December 6, 1983.

In order to prove our theorem we need the following two lemmas.

LEMMA 1. [2]. Suppose that $g(z)=e^{Q(z)}g_1(z)$ is an entire function of finite order having only negative zeros, where Q(z) is a polynomial and $g_1(z)$ is a canonical product. Then the sign of $\log|g(r)|$ is definite for $r \ge r_0$ where r_0 is a positive number, unless

(4)
$$\deg(\operatorname{Re} Q(r)) = 0 \quad and \quad g_1(z) = 1.$$

LEMMA 2. Let $0 < t_1 < t_2 < \infty$. Let B(t) be a nondecreasing convex function of $\log t$ on each interval of $(0, t_1)$, (t_1, t_2) , (t_2, ∞) with B(0) = B(0+) = 0 and $B(t) = 0 (t^{\rho})$ $(t \to \infty)$ for some $\rho \in (0, 1)$. Let $b(re^{i\theta})$ be the function which is harmonic in the slit plane $|\theta| < \pi$, is zero on the positive axis and tends to B(r) as $\theta \to \pi -$ with the possible exception of $r = t_1$, t_2 . Then we have

(5)
$$b(r) = \int_{0}^{\infty} [b_{\theta}(t) + b_{\theta}(-t)] Q(r, t) dt$$

where

$$Q(r, t) = \frac{2r \log r/t}{\pi^2(r^2 - t^2)}.$$

This is a slight generalization of Proposition 5 in Baernstein [1] and the proof is similar to the one in [1]. Hence we omit the proof of Lemma 2.

§ 2. **Proof of Theorem.** Let f(z) be an entire function satisfying the hypotheses in Theorem. We suppose that (3) is false, i.e.,

$$\liminf_{r\to\infty}\frac{\log M(r, f)}{r^q}<+\infty.$$

Since $\phi(z^2)=f(z)f(-z)$, $g(z)=\phi(-z)/\phi(0)$ and $\log M(r^2, \phi) \le 2 \log M(r, f)$, there exists a sequence $\{r_n\}=r$ which tends to $+\infty$, such that

(6)
$$\frac{\log M(r, g)}{r^{q/2}} = 0(1).$$

We see from Lemma 1 that the sign of $\log |g(r)|$ is definite for all sufficiently large r, with the exception of case (4) in which case we have the required function $f(z)=e^{P(z)}$, $\deg P(z)=q$. In the sequel we confine ourselves to the case that the sign of $\log |g(r)|$ is positive for all sufficiently large r, because the remaining case can be dealt with in the same way as in § 4 of [2].

If the sign of $\log |g(r)|$ is positive for all sufficiently large r, then (6) yields

$$\liminf_{r\to\infty}\frac{\log|g(r)|}{r^{q/2}}<+\infty.$$

We set $g(z)=e^{Q(z)}g_1(z)$ where Q(z) is a polynomial and $g_1(z)$ is a canonical product and we denote the genus of $g_1(z)$ by k and the degree of Re(Q(r)) by l.

Case (1). $k \ge l$. Proceeding as in case (1) of § 4 of [2], we have

(7)
$$\int_{\tau}^{s} \frac{H_{\theta}^{*}(te^{i\beta}) - (\cos\beta q/2)H_{\theta}^{*}(t)}{t^{1+q/2}} dt$$

$$\geq C_{1} \frac{\log|g(r)|}{r^{q/2}} - C_{2} \frac{\log M_{\beta}(2s, g) + \log M_{\beta}(\sqrt{2}s, g)}{s^{q/2}}, \quad (s < R)$$

where $H^*(z)$ is the harmonic function in $\{z:0<|z|< R,\ 0<\arg z<\beta\}$, which has the following boundary values: $H^*(r)=0$, $H^*(re^{i\beta})=B^*(r^{1/7})$ (B^* is a nondecreasing convex function of $\log t$ on $(0,\infty)$ with B(0)=B(0+)=0 and $\gamma=\beta/\pi$ and C_1 , C_2 depend only on β and q and $M_{\beta}(2s,g)=\sup_{\|\theta\|<\beta}\|g(2se^{i\theta})\|$. Further we have

(8)
$$H_{\theta}^{*}(te^{\imath\beta}) \leq \log|g(te^{\imath\beta})g(te^{-\imath\beta})|,$$

$$H_{\theta}^{*}(t) \geq 2\log|g(t)|.$$

Now we consider subcases.

Case (1.1).
$$A = \limsup_{r \to \infty} \frac{\log |g(r)|}{r^{q/2}} = +\infty$$
.

We can find arbitrarily large values of r and s, with r < s, such that the right-hand side of (7) is positive from (6). Hence (8) implies that the inequality

$$\log |g(te^{i\beta})g(te^{-i\beta})| - 2(\cos \beta q/2) \log |g(t)| > 0$$

holds for some t > r and this contradicts our assumption (1).

Case (1.2). A=0. There exists a sufficiently large number r_0 such that $(\log |g(r)|)/r^{q/2}>0$ for $r\geq r_0$. Thus for each fixed $r(\geq r_0)$ the right-hand side of (7) is positive for all sufficiently large s, and we have again a contradiction.

Case (1.3). $0 < A < +\infty$. We define the function H(z) in $D = \{z : 0 < \arg z < \beta\}$ by

$$H(re^{i\theta}) = \int_{-\theta}^{\theta} \log|g(re^{i\phi})| d\phi$$
.

Since $g(z)=e^{Q(z)}g_1(z)$ we have

$$H(re^{i\theta}) = \frac{2}{l} |a_t| r^t \sin l\theta \cos \theta_l + \dots + 2|a_1| r \sin \theta \cos \theta_1$$
$$+2 \int_0^{\theta} \log |g_1(re^{i\phi})| d\phi,$$

where $Q(z)=a_{k'}z^{k'}+\cdots+a_1z$, deg $(\operatorname{Re} Q(r))=l$ $(\leq k')$ and $\operatorname{arg} a_j=\theta_j$ $(j=1,\cdots,k')$. Since g(z) has only negative zeros, $H(re^{i\theta})$ is harmonic in D. Further we proved in [2] that $H(re^{i\beta})$ is an increasing convex function of $\log r$ for all sufficiently large r, if β is sufficiently small.

Now we construct the harmonic function $U(re^{i\theta})$ in D which majorizes $H(re^{i\theta})$ in D and has the boundary values U(r)=0 and $U(re^{i\beta})=B(r^{1/i})$ where B

is a function satisfying all the hypotheses of the B in Lemma 2 and $\gamma = \beta/\pi$. Since

$$H(re^{i\beta}) = G(re^{i\beta}) + c_i'r^j + \cdots + c_l'r^l \qquad (j \ge 1),$$

where

$$\begin{split} G(re^{i\beta}) &= 2 \int_0^\beta \log |g_1(re^{i\phi})| \, d\phi \\ &= 2 r^{k+1} \int_0^\infty \Bigl(\int_0^\beta \frac{n(x)}{x^{k+1}} \, \frac{x \cos{(k+1)} \phi + r \cos{k\phi}}{x^2 + r^2 + 2 r x \cos{\phi}} \, d\phi \Bigr) dx \; , \end{split}$$

we have

$$H(re^{i\beta}) = c_m r^m + c_{m+1} r^{m+1} + \cdots (m \ge 1, c_m \ne 0)$$
.

If $c_m < 0$, then $H(re^{i\beta})$ is a decreasing function of r for all sufficiently small r. If $c_m > 0$, then

$$\frac{\partial^2 H}{\partial (\log r)^2} = m^2 c_m r^m + (m+1)^2 c_{m+1} r^{m+1} + \cdots$$
,

implies that $H(re^{i\beta})$ is an increasing convex function of $\log r$ for all sufficiently small r.

Thus, firstly, we define the function B(t) by

(9)
$$B(t) = \begin{cases} 0, & \text{if } c_m < 0 \\ H(t^r e^{i\beta}), & \text{if } c_m > 0 \end{cases} \quad \text{for } 0 \leq t \leq t_1,$$

(10)
$$B(t) = at \quad (a > 0) \quad \text{for} \quad t_1 < t < t_2$$

and

(11)
$$B(t) = H(t^{\gamma}e^{i\beta}) \quad \text{for} \quad t_2 \le t < +\infty$$

where t_1 is a sufficiently small positive number and t_2 is a sufficiently large positive number, which are defined as follows. Since B(t) satisfies all the hypotheses of the B in Lemma 2 with $\rho = \gamma q/2$, the Poisson integral

(12)
$$b(re^{i\theta}) = \frac{1}{\pi} \int_0^\infty B(t) \frac{r \sin \theta}{t^2 + r^2 + 2 \operatorname{tr} \cos \theta} dt$$

satisfies all the hypotheses of the b in Lemma 2. Then we have

$$b_{\theta}(-r) = \int_0^{\infty} \log \left| 1 - \frac{r}{t} \right| dB_1(t)$$

where $B_1(t)=tB'(t)$. For any $\varepsilon>0$ and any $t_2>0$, if t_1 is sufficiently small, then we have

$$\int_0^{t_1} \log \left| 1 - \frac{r}{t} \right| dB_1(t) < \varepsilon \quad \text{for} \quad t_1 < r < t_2.$$

Thus, observing that

$$\int_{t_0}^{\infty} \log \left| 1 - \frac{r}{t} \right| dB_1(t) < 0 \quad \text{for} \quad t_1 < r < t_2,$$

we see that

$$b_{\theta}(-r) < \varepsilon + \int_{t_1}^{t_2} \log \left| 1 - \frac{r}{t} \right| dB_1(t)$$
 for $t_1 < r < t_2$.

Hence we have for $r \in (t_1, t_2)$, using (10),

$$b(-r) < \varepsilon + at_1 \log t_1 - at_2 \log t_2 + a(r - t_1) \log (r - t_1) + a(t_2 - r) \log (t_2 - r)$$
.

Thus we can choose a sufficiently small number t_1 and a sufficiently large number t_2 such that

$$(13) b_{\theta}(-r) < 0: t_1 < r < t_2.$$

Now we define

$$(14) U(z) = b(z^{1/7})$$

in $D = \{z : 0 < \arg z < \beta\}$. Choosing a sufficiently large number a in (10), we can see that if $\beta q/2 < \pi$

(15)
$$H(z) \leq U(z) \quad \text{in } D.$$

In fact, H and U are harmonic in D and $H(z) \leq U(z)$ on the boundary with the possible exception of $z=t_1e^{i\beta}$, $t_2e^{i\beta}$ from (9)~(12) and (14). Further we see that H(z) is $O(|z|^{q/2})$ in D by the definition of H and that U(z) is $O(|z|^{q/2})$ in D by (12) and (14). Therefore we can conclude that $H(z) \leq U(z)$ inside the angle if $\beta q/2 < \pi$.

If (1) holds for all r>0, then we claim that the following inequality holds

(16)
$$\varphi(r^{\gamma}) \leq \int_{0}^{\infty} \varphi(t^{\gamma}) \left(1 + \cos \frac{\beta q}{2}\right) Q(r, t) dt$$

where

(17)
$$\varphi(t^r) = \begin{cases} U_{\theta}(t^r) & \text{for } 0 \leq t < t_2 \\ 2\log|g(t^r)| & \text{for } t \geq t_2 \end{cases}$$

if $c_m < 0$ and

(18)
$$\varphi(t^{\gamma}) = \begin{cases} U_{\theta}(t^{\gamma}) & \text{for } t_{1} < t < t_{2} \\ 2\log|g(t^{\gamma})| & \text{for } 0 \le t \le t_{1}, \ t \ge t_{2}. \end{cases}$$

if $c_m > 0$.

From Lemma 2, we have

(19)
$$U_{\theta}(r^{r}) = \int_{0}^{\infty} (U_{\theta}(t^{r}) + U_{\theta}(t^{r}e^{i\beta}))Q(r, t)dt.$$

At first, we consider the case $c_m < 0$. Since U(z) > 0 in the angle $D = \{z : 0 < \arg z\}$

 $<\beta$ and B(t)=0 for $0 \le t \le t_1$ from (9), we have

(20)
$$U_{\theta}(t^{\gamma}e^{i\beta}) \leq 0, \quad U_{\theta}(t^{\gamma}) \geq 0 \quad (0 \leq t \leq t_1).$$

Hence we have

$$(21) U_{\theta}(t^r) - U_{\theta}(t^r e^{t,5}) \leq \left(1 + \cos\frac{\beta q}{2}\right) U_{\theta}(t^r), (0 \leq t \leq t_1).$$

For $t_1 < t < t_2$, since $b_{\theta}(-t) = U_{\theta}(t^{\gamma}e^{t\beta})$ we have (20) from (13) and also (21) again. Thus we set in $0 \le t < t_2$

(22)
$$\varphi(t^{r}) = U_{\theta}(t^{r}).$$

Next we consider the case $t \ge t_2$. From H(r) = U(r) = 0 and (15), we have $H_{\theta}(t^r) \le U_{\theta}(t^r)$. Hence, from the definition of H, we have

$$(23) 2\log|g(t^{\gamma})| \leq U_{\theta}(t^{\gamma}).$$

Now we define two functions $H_1(z)$ and $H_2(z)$ in the angle $D_1 = \{z : 0 < \arg z < \beta/2\}$, which are harmonic and subharmonic respectively, as follows:

$$egin{aligned} &H_1(re^{i\, heta}) = U(re^{i\,(eta/2+ heta)}) - U(re^{i\,(eta/2- heta)}) \;, \ &H_2(re^{i\, heta}) = \int_{-eta/2- heta}^{-eta/2+ heta} \log|g(re^{i\, heta})| \,d\phi + \int_{eta/2- heta}^{eta/2+ heta} \log|g(re^{i\, heta})| \,d\phi \;. \end{aligned}$$

Then we have $H_1(r) = H_2(r) = 0$ and

$$H_{2}(re^{i,5/2}) = \int_{-\beta}^{\beta} \log |g(re^{i\phi})| d\phi = H(re^{i,5})$$

$$\leq U(re^{i,5}) = H_{1}(re^{i,5/2}).$$

Since H_1 and H_2 are both $O(r^{q/2})$ in D_1 as $r\to\infty$, and since $\beta q/4 < \pi$, we can conclude that $H_2(z) \leq H_1(z)$ inside D_1 . Further we have $H_2(re^{i\beta/2}) = H_1(re^{i\beta/2})$ for $r \geq t_2^r$ and hence we obtain

(24)
$$\overline{\lim_{\theta \to \beta/2}} \frac{H_2(re^{i\beta/2}) - H_2(re^{i\theta})}{\beta/2 - \theta} \ge (H_1)_{\theta}(re^{i\beta/2}) = U_{\theta}(re^{i\beta}) + U_{\theta}(r), \quad (r \ge t_2^{r}).$$

From the definition of H_2 , we have

$$\begin{split} H_{2^1}re^{i\frac{\pi}{2}} &\stackrel{\text{\tiny 2}}{=} H_2(re^{i\theta}) = \int_{-\beta}^{-\beta/2-\theta} \log|g(re^{i\phi})| \, d\phi \\ &- \int_{-\frac{\pi}{2}/2-\theta}^{\beta/2-\theta} \log|g(re^{i\phi})| \, d\phi + \int_{\beta/2+\theta}^{\beta} \log|g(re^{i\phi})| \, d\phi \, , \end{split}$$

and thus we have

$$\begin{split} & \overline{\lim}_{\theta \to 5/2} \frac{H_2(re^{i\beta/2}) - H_2(re^{i\theta})}{\beta/2 - \theta} \leq & \log|g(re^{-i\beta})| + 2\log|g(r)| \\ & + \log|g(re^{i\beta})|, \qquad (r \geq t_2^r). \end{split}$$

Combining this with (24) and (1) we obtain

(25)
$$U_{\theta}(t^{r}) + U_{\theta}(t^{r}e^{t\beta}) \leq 2\left(1 + \cos\frac{\beta q}{2}\right) \log|g(t^{r})| \quad \text{for} \quad t > t_{2}.$$

Therefore setting $\varphi(t^r)=2\log|g(t^r)|$ for $t \ge t_2$, from (19), (23) and (25), we have (16) for the function $\varphi(t^r)$ defined by (17) in view of (22).

If $c_m > 0$, then we can also prove (16) for the function $\varphi(t^r)$ defined by (18). Proceeding as in §5 of [2] from (16), we arrive at

$$\lim_{r\to\infty}\frac{\log|g(r^{\gamma})|}{r^{\gamma q/2}}=A>0.$$

Hence, by Valiron's Tauberian Theorem [3], we have

$$n(r, 0, g) \sim \frac{A}{\pi} r^{q/2}$$
,

and so

$$n(r, 0, f) \sim \frac{A}{\pi} r^q$$
.

Therefore we have $\delta(0, f)=1$. Proceeding as in the proof of Theorem 2 of [2], we have A=0, which is impossible.

Next we suppose that (1) holds for all $r \ge t_0 > 0$. Then there exists a positive C such that h(z) = g(z)/C satisfies (1) for all r > 0. In fact, set

$$\varphi(t) = \log |g(te^{i\beta})g(te^{-i\beta})| - 2(\cos \beta a/2) \log |g(t)|.$$

$$\max_{0 \le t \le t_0} \varphi(t) = M(>0)$$

and

$$C = \exp(M/2(1-\cos\beta q/2))$$
.

Then it is easily seen that h(z) satisfies (1) for all r.

We show an inequality corresponding to (16), using h(z). Setting

$$\tilde{b}(re^{i\theta}) = b(re^{i\theta}) - 2\theta \log C$$

where b is the Poisson integral of (12) constructed by g(z), we can see

(26)
$$\tilde{b}_{\theta}(r) = \int_{0}^{\infty} (\tilde{b}_{\theta}(t) + \tilde{b}_{\theta}(-t))Q(r, t)dt$$

where $Q(r, t) = (2r \log r/t)/\pi^2(r^2-t^2)$. In fact, by contour integration

$$\int_0^\infty Q(r, t)dt = 1/2$$

and so we have (26) from (5).

If we define $\widetilde{U}(z) = \widetilde{b}(z^{1/7})$ in $D = \{z : 0 < \arg z < \beta\}$, then we have from (26)

$$\widetilde{U}_{\theta}(r^{\gamma}) = \int_{0}^{\infty} (\widetilde{U}_{\theta}(t^{\gamma}) + \widetilde{U}_{\theta}(t^{\gamma}e^{i\beta}))Q(r, t)dt$$

where $\tilde{U}_{\theta}(r^{r}e^{i\theta}) = U_{\theta}(r^{r}e^{i\theta}) - 2 \log C$.

Now we define two functions $\widetilde{H}_1(z)$ and $\widetilde{H}_2(z)$ in the angle $D_1 = \{z : 0 < \arg z < \beta/2\}$ as follows:

$$\begin{split} &\widetilde{H}_{1}(re^{i\theta}) \!=\! \widetilde{U}(re^{\imath(\beta/2+\theta)}) \!-\! \widetilde{U}(re^{\imath(\beta/2-\theta)}) \;, \\ &\widetilde{H}_{2}(re^{i\theta}) \!=\! \int_{-\beta/2-\theta}^{-\beta/2+\theta} \log|h(re^{\imath\phi})| d\phi \!+\! \int_{\beta/2-\theta}^{\beta/2+\theta} \log|h(re^{\imath\phi})| d\phi \;. \end{split}$$

Then we have $\widetilde{H}_1(r) = \widetilde{H}_2(r) = 0$ and

$$\widetilde{H}_2(re^{i\beta/2}) = H(re^{i\beta}) - 2\beta \log C \leq \widetilde{U}(re^{i\beta}) = \widetilde{H}_1(re^{i\beta/2})$$
.

Hence we have $\widetilde{H}_2(z) \leq \widetilde{H}_1(z)$ in D_1 . Proceeding as in the previous case, we have the following inequality:

$$\tilde{\varphi}(r^{\gamma}) \leq \int_{0}^{\infty} \tilde{\varphi}(t^{\gamma}) \left(1 + \cos\frac{\beta q}{2}\right) Q(r, t) dt$$

where

$$ilde{arphi}(t^{ ilde{ au}}) = egin{cases} ilde{U}_{ heta}(t^{ ilde{ au}}) & ext{for} & 0 \leqq t < t_2 \ 2\log|h(t^{ ilde{ au}})| & ext{for} & t \geqq t_2 \ , \end{cases}$$

if $c_m < 0$ and

$$ilde{arphi}(t^{ar{ au}}) = egin{cases} \widetilde{U}_{ heta}(t^{ar{ au}}) & ext{for} \quad t_1 \!<\! t_2 \ 2\log|h(t^{ar{ au}})| & ext{for} \quad 0 \!\leq\! t \!\leq\! t_1, \ t \!\geq\! t_2 \ , \end{cases}$$

if $c_m > 0$. Thus we have a contradiction again.

Case (2). k < l. Since $g_1(z)$ is a canonical product of g(z), we have

$$|\log|g_{1}(r)|| = r^{k+1} \int_{0}^{\infty} \frac{n(x)}{x^{k+1}} \frac{dx}{x+r}$$

$$\leq r^{k} \int_{0}^{r} \frac{n(x)}{x^{k+1}} dx + r^{k+1} \int_{r}^{\infty} \frac{n(x)}{x^{k+1}} dx$$

and so we have $|\log |g_1(r)|| = o(\text{Re }Q(r))$. Thus in this case we have

$$A = \lim_{r \to \infty} \sup \frac{\log |g(r)|}{r^{q/2}} = 0.$$

Hence proceeding as in the proof of case (1.2), we have a contradiction.

REFERENCES

[1] BAERNSTEIN, A., A generalization of the $\cos \pi \rho$ theorem, Trans. Amer. Math. Soc., 193 (1974), 181-197.

- [2] Kimura, S., A characterization of the exponential function by product, Kodai Math. J. 7 (1984), 16-33.
- [3] Valiron, G., Sur les fonctions entières d'ordre fini et d'ordre nul, et en particulier les fonctions à correspondance régulière, Ann. Fac. Sci. Univ. Toulouse (3)5 (1931), 117-257.

DEPARTMENT OF MATHEMATICS UTSUNOMIYA UNIVERSITY MINE-MACHI, UTSUNOMIYA JAPAN