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AN ESTIMATE FOR THE MEAN CURVATURE OF
COMPLETE SUBMANIFOLDS IN A TUBE

By YosHIHISA KITAGAWA

1. Introduction.

Let f: M—E™ be an isometric immersion of a compact Riemannian manifold
M into the Euclidean space E™. If f(M) is contained in a ball of radius 4, then
the mean curvature vector field H of the immersion f satisfies the following
inequality :
sup|H|=1/2.

Recently, generalizing the above inequality, Jorge and Xavier [4], and Jorge
and Koutroufiotis [2] proved the following theorem.

THEOREM A. Let M be a complete Riemanman manifold whose scalar curva-
ture is bounded below and let Bj; be a closed normal ball of radius 2 in a
Riemannian manifold N. Set b for the supremum of the sectional curvature of
Nin B;. Let f:M—B;CN be an isometric immersion. Then the mean curvature
vector field H of the immersion [ satisfies the following:

(1) sup|H|=+"b /tan(Av b ), if b>0 and 2<x/2v b,

(2) sup|H|=1/2, if b=0,

(3) sup|H|=~/=b/tanh(Av/—b), if b<0.

In this paper we show a natural extension of the inequalities in Theorem A
considering a tube instead of a ball.

2. Statement of results.

Let f: M—N be an isometric immersion of an m-dimensional complete
Riemannian manifold M whose scalar curvature is bounded below into an
n-dimensional Riemannian manifold N whose sectional curvature K satisfies
—oco<inf Ky and Ky=b. For n>p=1, let P be a p-dimensional embedded
submanifold in N and let TP* be the normal bundle of P. We denote z(P, 1)
the tube of radius A about P in N (e {{TP*:|E|<2} is mapped diffeo-
morphically onto z(P, 1) through the exponential map). We define x by
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p=sup{u(&): §&€TP*, |§]=1},

where () denotes the maximum eigenvalue of the shape operator A;. Then
our main result is the following.

THEOREM B. In the notations above suppose that f(M) is contained n a tube
about P. Let A be the infimum of the radius of tubes about P which contain f(M).
If p<m, and 0<A, then the mean curvature vector field H of the immersion f
satisfies the following

pNV b +btanaV' b))\  m—ps b
(1) sup|H|z— m (_Vb Zptan(Av D) ) m < tan(l«/_b_)> ’

if b>0, 2<x/2v/ b and p<~/b /tanQV'b),

@ Sup]H!_Z—%(Tfﬁ)-%- mep (i) of b=0 and p<1/2,

b-+-b-tanh(AvV —b b)> m— p( )
b— - tanh(Av/—b) tanh(l«/ ~5

if b<0 and p<~/—b/tanh(Av —b).

(3) sup|H|=— p(”‘/

Applying Theorem B to minimal immersions, we have immediately :

THEOREM C. Let f: M—N be an isometric immersion of an m-dimensional
complete Riemannian manifold M whose scalar curvature is bounded below into an
n-dimensional Riemannian manifold N whose sectional curvature Ky satisfies
—oco<inf Ky and Ky=<b. For n>p=1, let P be a p-dimensional embedded sub-
manifold in N and let ©(P, 2) be the tube of radius A about P. Suppose that f is
mintmal and P is totally geodesic. Then the following holds:

(1) fIM)aw(P, d), if b>0, A<z/24/ b and p{l+tan*AV b)} <m,

(2) fWM)axz(P, 2), if b=0 and p<m,

3) fM)CP, if b<0, p=m and f(M)Cz(P, A).

Remark. Let P be a linear subspace of E®. It is interesting to study com-
plete minimal surfaces in a tube z(P, ). For dim P<1, Theorems A and C
imply that z(P, 2) contains no complete minimal surface whose Gaussian curvature
is bounded. For dim P=2, Jorge and Xavier [3] proved that there exists a
complete non-flat minimal surface in (P, A).

3. Preliminaries.

For n>p=1, let N be an n-dimensional Riemannian manifold and let P be
a p-dimensional embedded submanifold in N. The Riemannian metric, Riemannian
connection and curvature tensor of N are denoted by {, >, V and R respectively.
Let o: [0, 2J—N be a geodesic parametrized by arclength such that ¢(0)eP and
c(0)eT s P*, where T, P* denotes the normal space to P at ¢(0).
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Let L(P, o) denote the vector space of all piecewise smooth vector fields
along ¢ whose initial value is tangent to P. The index form for the pair (P, o)
is a symmetric bilinear form I: L(P, ¢)X L(P, ¢)—R defined by

1V, W)=—CAscoVO), WO+ KTV, Tal>+CR(s, VYo, Wk,

where Ao, denotes the shape operator for ¢(0). A Jacobi field je L(P, o) is
called a P-Jacobi field if it satisfies the following condition :

As oy JO+N N0 ET 5 P-.

For 0<t,£2, o(t,) is called a focal point of the pair (P, o) if there exists a
nonzero P-Jacobi field J along ¢ such that j(¢,)=0.

LEMMA 3.1 ([1, p. 228]). Suppose that there is no focal point of the parr
(P, 6). Then for each V< L(P, o) there exists a unique P-Jacobi field [ along o
such that JQA)=V (). Furthermore I(J, )SI(V, V) and equality holds only if
J=V.

For (b, p, t)e R®, we define gi(b, ¢, t) as follows:

g(l(b7 [«ey t):t;

cos(tvV b )—p-sintvV' b ) /v b it 6>0,
gib, p, )=y 1—put it 5=0,
cosh(tv/ —b)—p-sinh(tv/—b)/v/—b  if 5<0,
sin(tv b)/v' b it 5>0,
galb, p, )=4 t it 6=0,
sinh(tv—b)/v—b if 5<0.

Let {E,, E,, -, E,-1} be a parallel orthonormal frame field along ¢ such
that E,=¢ and E;0) is tangent to P for 1=;7=<p. Then we have the following.

LEMMA 3.2. Let J be a P-Jacobi field along o and let f,=<]J, E,>. Suppose
that N has constant sectional curvature b and the shape operator A, has a
unique eigenvalue p. Then f, satisfies the following

fo0)golb, g, t) if j=0,
fi=1 f{0)gib, p, t) if 1=7=p,
fi0)gulb, g, t)  if pH1=j<n—L1.

LEmMA 3.3. Suppose that N has constant sectional curvature b and the shape
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operator Azwy has a unique eigenvalue p. Then there is no focal point of the
pair (P, o) if one of the following holds:

(3.1) b>0, 2<7/24 b and p<~'b /tan(AV'b),

(3.2) b=0 and p<1/3,

(3.3) b<0 and p<+/—b/tanh(2v/—b).

Remark. Lemma 3.2 implies Lemma 3.3. In Lemma 3.3, if =0, then the
nonexistence of focal points of the pair (P, ¢) implies one of (3.1)-(3.3).
For (b, p, 2) which satisfies one of (3.1)-(3.3), we define h,(b, y, 2) as follows:

h()(by #7 2):1//2 ’

_ pV b +b-tan(AV'b)
Vb —p-tan(2v b))

if (3.1) holds,

hy(b, g, D= _T—#W if (3.2) holds,

_ pV/—b+b-tanh(2v/—b)
v/ —b—p-tanh(Av/ —b)

if (3.3) holds,

b /tan(AV' b)) if (3.1) holds,
ho(b, p, =1 1/2 if (3.2) holds,
v/ —b/tanh(Av/—b) if (3.3) holds.

For the pair (P, o), let VYP, o) be the subspace of T,;, N defined by
VP, o)=span{E,A)},
VP, o)=span{E\(2), -, Ep(A)},
VAP, o)=span{E,,(4), -, En-2()}.

LEMMA 3.4. Under the same assumptions as in Lemma 3.3, suppose that one
of (3.1)-(3.3) holds. Let J be a P-Jacob: field along o. Then

1, J)= i h(b, g, D|VHP, o)-component of JA)|*.

Proof. Let f,=<J, Ep. Then I(J, N=C(T:), Jad="S, fiAf 2. By

Lemma 3.2 we have
JolDho(b, g, 2) it j=0,
JiA=1 [, p, 1) i 1=y=p,
FiAhb, p, ) if pFIS;=n—1.
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P
Hence I(J, J)=hob, g, Df5(A)+hi(b, g, Z)J; [5A)+hy(b, o, Z)Ein(l). g.e.d.

LEMMA 3.5. Suppose that the sectional curvature Ky of N satzsﬁes KN<b
and the maximum eigenvalue of Asy 1S not larger than p. If one of (3.1)-(3.3)
holds for (b, p, 2), then each V& L(P, o) satisfies the following -

1V, V)2 5 hlb, 1, DIVIE, 0)-component of VDI,

Proof. Let N(b) denote the n-dimensional complete simply connected Rieman-
nian manifold of constant sectional curvature b and let z: [0, AJ—N(b) be a
geodesic parametrized by arclength. We construct a p-dimensional embedded
submanifold P in N(b) such that z-(O)efN’ f(O)eTL,(O)ﬁL and the shape operator
A; has a unique eigenvalue 2 Let {Eo, ~o, Eqoy} be a parallel orthonormal
frame field along = such that Ey=% and E ,(0) is tangent to P for 1=;=p. We

define V in L(P ) by V:Z‘,(V E]>E. Since Ky<b and the maximum

eigenvalue of Ay, is not larger than g, we have I(V, V=1V, V), where |
denotes the index form for the pair (P 7). By Lemmas 3.1, 3.3 and 3.4 we have

~No~

IV, 1)z 3 b, 2, D1V(P, o)-component of P(A)2,

This implies Lemma 3.5. g.e.d.

4. Proof of Theorem B.

We may assume sup|H|<co. Let p be the scalar curvature of M and let
B be the second fundamental form of the immersion f: M—N. Then by the
Gauss equation we have

mm—1b=p—m*|H|*+|8]°
sup| Ky |+2sup|B*=| Kyl.

Since p has a lower bound, the above inequalities imply the boundedness of the

sectional curvature K.
Let ¢: z(P, A)—P be the canonical projection and let F: M—R be the smooth
function defined by

F)= (), $70}

where d(, ) is the distance function on N. Since M is a complete Riemannian
manifold whose sectional curvature is bounded, [5, Theorem A’] implies the
existence of a sequence {x,}5>; in M such that

4.1) |grad F{(x:)<1/k,
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4.2) (VPF)(X, X)<1/k for all unit vector XeT. M
(4.3) &im Flx,)=sup F,

where V2F denotes the Hessian of F with respect to the Riemannian metric of
M. We set 1,=d(f(xs), ¢f(x:)). Then (4.3) implies lim Ar=2A. Since 1>0, we

may assume 0<2,=41 for all 2. Leto,:[0, 1,]—>N be the geodesic parametrized
by arclength such that ¢,(0)=¢f(x;) and ¢,(2:)=sf(x:). Then 6,(0) is perpen-
dicular to P. Let {e), -:-, ex} be an orthonormal basis of T, M such that
VP, o,)-component of fye, vanishes for all j>p. We set as follows:

hi(k):hi(by K, e,

c(k)=|V*P, o,)-component of fye;|%
LEMMA 4.1. é %1hi(k)cj-(k)gphl(k)+(nz—p)h2(k)+h(k),
1=0 y=
where h(k)=—{p|ho(k)—h,(R)|+(m—p)|ho(R)—hy(k)|} (kL)%

Proof. For convenience, put h,=h;(k) and ci=ci(k). Since c}=0 (> p),

22) =1 and h,=h,, we see that
2=0
2 m P
; § =J_§ {hoci+hi(1—cj—c)+haclt + Z‘, {hoci+ho(L—cP},

v

»

X {hi A+ (ho—h)e + 2 {h,4-(ho—hy)cl}.

7=1 p<J

Since {grad F, e¢,>=2,{¢+(As), fxe,>, (4.1) implies c}(£)<1/(kA,)*. Hence we have

2 €5 Z p{hi— 1 ho—hi[ /(R24)} +(m—p) {ho— | ho—ho| /(RAR)*}.

"ME

g.e.d.

Let I, be the index form for the pair (P, 6,). Then a calculation shows that

(4.4) %;WF@peﬂ=<ﬂ@,%%aAh»+JAL,L%

where J, is the P-Jacobi field along ¢, such that J(2:)=/xe¢,. Applying Lemma
3.5 to the pair (P, o,), we have

(4.5) 1]y, J)Z B hu(R)ek)

Hence (4.2), (4.4), (4.5) and Lemma 4.1 imply
m/kAr=—msup|H|+phi(k)+(m—p)h,(k)+h(k).
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Since lkim h,(k)=h;(b, p, A) and lkjm h(k)=0, we have

m—
supl 1= L ho, gr, 0+ " Lo, g ).

This completes the proof of Theorem B.
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