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ON THE SELF-HOMOTOPY EQUIVALENCES OF THE
WEDGE OF CERTAIN COMPLEXES

By KOHHEI YAMAGUCHI

§1. Introduction.

The set of homotopy classes of self-homotopy equivalences of a based space
X, which is denoted by Eq(X), is a group with the multiplication defined by
the composition of maps. This group Eq(X) has now been studied by many
authors since the paper of W.D. Barcus and M.G. Barratt ([2]) appeared in 1958.
However, generally speaking, we have not yet obtained an effective method for
calculating it except classical ones, and the structure of it also has not been
clarified sufficiently.

In this paper, we study the group Eq(K) for a CW-complex K such as

(1.1 K= h& Ky, Ky=S™\Jer* b+ (n=3, k=1)
=1 ap

under the condition that the attaching class a,<Er,.:(S™) is a double suspension,
ar,=FE%}, and both a, and a,=Faj have the same order m;, for 1=h=<7r.
However, the case »=1 has already been treated by S. Oka in [6], so we will
consider the case r=2. ‘

For each based topological space X and Y, we denote by [ X, Y] the homo-
topy set of all based maps from X to Y, and also by [8, 7] Whitehead product
of B and y for fer,(X) and y=n,(X). Furthermore, we denote by Z{u} the
infinite cyclic group generated by v. For example, 7, (S™)=Z {tn}.

In our case, it is well-known that the homotopy set [ K, K] becomes a (non-
commutative) ring if n=k+3, and we are mainly concerned with studyig the
ring structure of it because the group Eq(K) is the group consisting of all in-
vertible elements of the ring [K, K.

On the other hand, from the view-point of applications, we consider the
homotopy type classification of highly-connected manifolds, in particular, the
connected sums of sphere bundles over a sphere.

In fact, since such a manifold M has a cell-decomposition with the form
K\Jge®**1 for BE myq+:(K) up to homotopy, it is very important to investigate
the group Eq(K) for this purpose.

Then the results of this paper are as follows:
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First, the additive group structure of [K, K] is given by

THEOREM A.
[K, K1= & Z{3, 1) DC=2Z8G,
where
G= & iCr= D G,
h=1 h=1
and

Gr=phtstn sV S/ PE(D Jotwtnetnrin(S™H) .
In particular, we have

COROLLARY B. If n=k+3, then there exists an isomorphism
[K, K]=Mat(r, Z)PMat (r, Z)PMat (», G;) .

Secondly, we investigate the multiplicative structure of [/, K] defined by
the composition of maps, and we have

THEOREM C. Let @ and O’ be any elements of [K, K] of the form (See
Theorem A):

(4.20) 0=

h,

(ahso—'hs‘l_bhszhs)"l—g ’

1

£ nl
[t

@/: ;: (a;zs&hs+b§zszhs)+g/ »

h 1
r , T T -
g=2 81 g =2 81eG= D kG,
P e
gn=rk(p¥ix(8r), ghi=r¥pf@)entCy,

Ans, bns, Qhs, OhsEZ for 1=h, s=r.

Then the multiplication of [K, K] s gwen by the formula:

(.21) 0:0'= 3 (AnsdnetBudn)+ Sl
where
(4.22) Ahs:qg (@ha@astsatas/tsn)

Bhs: El {a;;qdqsashthqtqs—thstsqtqh)/(nlstsq)

Fahgbgstngt (bhqestigtys/1s) +bhgbgsima}
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and

(4.23) Ih= z (@hatngtbhamny) px(gy)

+ ?At: {a ;anqus*(r% s) +b;zqaqs].s*(.8%s)}

q 1

‘?'P’z'f(q SZ=)1 Agstsq)stse(Th))o B .

In the general situation, the above multiplication does not necessarily satisfy
the left distributive law

(@a+PB)er=acr+Br (a8, relK, K]).

However, if n=k-+3, this one holds. So the homotopy set [K, K] becomes a
(non-commutative) ring.
Its ring structure is described by the following :

THEOREM D. Let n=k+3, and for each element @ and O’ [ K, K] we can
put

(5.5) O=(0rs)EMat (r, [Kn, K;J)
and

0'=(0rs)=Mat (v, [Ky, KJ),
where
(56) 0hs:ahsahs+bhsxhs+ghse[Khy Ks] »

a;zsza;tsahs""b;zs/zhs'{‘g;zse I:Khy Ks] ’

ghs:p?:is*(ghs)e Ghs )
g;zs:pﬁl.s'(g;zs)e Ghrs,

Aps, a;wy bhs, b;zsez fO?’ léh, Sé}’,

Then the multiplicative structure of [K, K] 1s given by the formula:

(6.7 0-0'=(07,)e[K, K]=Mat(r, [K,, K],
where

(5.8) 04s=Ansons+ Brsins+ L1 [ Kn, K],
(5.9) Aps and Bps are defined by (4.22),

and
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T
(5.10) Iys= q;} {(ahqtngtbhgme) phrs(Egs)

+aqstsqp;sis‘(g;zq)'*"b;zqaqsﬁ%s'lLa;zqaqsr%s}
for 1=h, s=r.
Now we suppose that a,=a; for 1=h=<r. Then the above result can be
simplified as follows:
THEOREM E. Let n=k-+3, and we suppose that

ap=a; for 1I=h=r.
Then
[K, K1=M(@; my, Gy) as a ring,
where
the integer my 1s the order of ay, and

G1=T a4 141(S™) /1t k+1(Sn+k):ﬂ'n+ r+1(S™)/ Eafrg,(S™).

We denote by Inv (M) the group of all multiplicative invertible elements of a
ring M.
Then the above theorem implies

COROLLARY F. Under the same assumptions as above, we have an isomorphism

Eq(K)=Inv (M(r; my, Gy)).

For example, we can determine the group Eq(\T/(S"\/S"“’”)) for n=m+2,

and Eq(\ E™CP?) for m=2.

Finally, as an application we study the homotopy classification of connected
sums of sphere bundles over a sphere which admit cross-sections.

THEOREM G (H. Ishimoto, [3]). Let n=Fk+3 and k=1. Let X, and X; be
n-sphere bundles over a (n-+k-+1)-sphere which admit cross-sections, for 1=<h=<vr.

Then the connected sums £5,_,X, and ¥5-,X; are of the same homotopy type
if and only if there exists an unimodular (r Xv)-matvix A€GL(r, Z) such that

AX0) (X))
(6.8) —A. ,
X)) AX)

where the abelian group Jm,.(SOn))/Praye+1(S™) 1s considered as a left Z-
module.
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The above result has been already established by H. Ishimoto ([3]) and he
also considered the more general cases. However, his method is quite different
from ours, and he used essentially the technique of the handlebody theory to
prove it. On the contrary, we use simply the elementary homotopy theory, so
our technique is applicable to the case of the connected sum of spherical fibra-
tions over a sphere with a cross-section which do not always have the homotopy
types of closed smooth manifolds, and we will treat it in the subsequent paper.

This paper is organized as follows: In §2 we construct several homotopy
classes of maps needed to determine the structure of [K,, K] and [K, K], and
in §3 we determine the additive structure of them. Similarly, in §4 and §5,
we determine the multiplicative structute of them. In § 6 we classify the homotopy
type of connected sums of sphere bundles over a sphere which admit cross-

sections.
In the final of this section, the author would like to take this opportunity to

thank Professor S. Sasao for his sincere many valuable suggestions and encour-
agements.

§2. The construction of elements of [K,, K,].

For each 1=h=<r, let K, denote a CW complex

2.1 Kp=S8m"J em+#+t, n=3, k=1,
an

such that the attaching class a,<m,+:(S™) satisfying the following condition :

(2.2) There is an element afE ma+r-2(S™ %) such that a, is a double suspension
of af, ar=FE%a}, and both a,=FEaj and «a, have the same order m,.

Then it is easy to see that the integer m, is finite and a,=0 for n=3.
Now let us define two complexes K; and K7 as follows:

2.3) Ki=$""\Je™* and Ki=S""*Jemtt .

ah (Xh
Then for each 1=h=r, there is a cofibre sequence

n” S ” ’
3 Ih h (2433
(24) Sn+k-2 > Sn—z > K;{ > Sn+k-1 > Sn-l

4 ’
In Y23 ap in bn
S K,{ > Sﬂ+k > STL > Kh > Sn+k+1'

Since a,=Fa) and a,=Faj, we may canonically identify
(2.5) K,=EK; and K,=EK].

Furthermore the following relations are clear.
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(2.6) iw=~Eiy, in=Eif,
prn=—FEph, pr=—Epf,
wdy=FEud}, dy=E:d},

where idy, id}, and :dj; denote the homotopy classes of the identity maps ¢dy,,
td, and id ., respectively.
Here, for our purpose, we quote the well-known

LEMMA 2.7 (H. Toda, [12]).
(@) There is an element &,Swp (K1) such that prx&h)=mntner and the
element &}, is determined up to ipxmn+:(S™ ™). The element &}, 1s called the coex-

tension map of Mulose-1.
(b) There s an element Brs[Ky;, S*'] such that Bhoin=mut,-1, and the

element By is determaned up to pr*mw,n(S*"). The element B} 1s called the ex-
tension map of Muln-1.

For each 1=<h<r, we define two elements &, and 8, by
(2.8) En=—EéLEmnian(Ky),

and
Br=EBL&[ Ky S™].

Then it follows from Lemma 2.7 and (2.8) that we have
LEMMA 2.9. The above elements satisfy the following relations:

@) prbr=mnlnsrsr
(b) ,3h°in:mhfh-

Similarly, we define two elements A3 and pys for 1=h, s<r by
(2.10) Ans=&sph, and pps=isfn  in [Ky, KiJ.
In particular, for h=s, we put
(2.11) An=2hn, and ph=pfths .
Furthermore, we define two elements 4, and p,s for 1=<h, s<r by
(2.12) Ans=Ehs, and pps=Epns  in [K,, K].
For h=s, we put
(2.13) An=2nn, and pp={ftnn .

Then we have easily
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LEMMA 2.14.
(a) Zhs:5$°ph-

(b) ﬂhs:is"ﬂh .

Let us consider the relation between the attaching classes of Kj, are
Empsr-1(S"Y), for 1I=h=<r. For each f&m,:+;-:(S*"?), we denote by (j) the
cyclic group generated by 8. Then there is an element y&m,4,-1(S™™?) satisfy-
ing (ar)N\(as)=(). Thus, there is an uniquely determined pair of positive integers
(tas, tsn) such that, if aj,+#aj, then

(2.15) () twsas=tsmar=r, and
1) 1=Zths<m,, 1Zt,Smy,.

In particular, if a,=a;, we put

(2.16) ths=tsn=L.

LEMMA 2.17. There is an element o[ Ky, Ki] satisfying the conditions
Ohsoth=tsnis and psochs=tnsph. In particular, if ahr=as;, then we can choose

Ohs=1dh.

Proof. Since [Kj, S***]=r,.,(S***), the proof can be easily obtained.
Q.E.D.

Now we define the element o,;=[K,, K] by
(2.18) ons=Ea}s.
Then the following is obvious.
(2.19) onsetn=tspts, and pseons=tnspn -

Since K;=EKY, the homotopy set [Kj, K;] becomes a group with the track

addition.
Here we note that the integer myt;, is divisible by 7, and we obtain

PROPOSITION 2.20. For each tripple of elements (o4s, Ehs, Brs)s the following
relation holds in (K}, Ki]:

ths'uzs"I_(mstsh/mh)#;stmsU;ls (mod G#s) ,
where Ghs=pr*isxTas 1 (S™7Y).
In particular, if a,=a;, then we can choose ¢;,,=:d}, so we have

COROLLARY 2.21 (S. Oka, [6]). For each coextension &}, (resp. extension Bj).
there exists an extension Bj (resp. a coextension &) such that
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htph=mndy, i LKy, Kil.

Proof of Proposition 2.20. We put x=ty;, y=mtsn/m,, and z=m, First,
consider the exact sequence
’ p;)’* ! 7 ;l* !’
Tnep(K5) —> [K;, Kl — mo1(K5) .
Since
I (X s+ Y prhs— 20 k) = xE5e phoin)+ y(ise frein) —2(ahsoihs)
=(yma)is—(2tsn)is
=0,
there is an element yEr,.,(K}) satisfying
X/Uzs"i_y,u;zs‘—za;zs:pgz*(r) .

Secondly, consider the isomorphism

pr¥r e s(SPHE) — [Ky, SPTFD.
Since

Pr¥(bser)=psx(pn*()
=pes(X sty pths—200s)
=x(pse&sepr)+y(psetse fr)—s(pseohs
=(xms)pr—(2tns) i
=0,

we have pi(y)=0. If we consider the exact sequence
5% .;>s
T 1(S™7Y) —> o b (K9 —> 77n+k(Sn+k) ,

then we obtain
x2hstyphs—20hs=pr*()=0 (mod Ghs) .

Thus the proof is completed. Q.E.D.

Now, by applying the suspension functor homomorphism, Proposition 2.20 can
be transformed into

PROPOSITION 2.22. For each triple of elements (0ns, En, Bn), the following
relation holds in [ K, Ki]:

Ershns T (Mt snMa) rs=Ms0 g5 (mod Gs),

where the group G, ts defined in (2.26).
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COROLLARY 2.23 (S. Oka, [6]). For each extension B, (resp. coextension &),
there 15 a coextension &, (resp. an extension B) such that

Zn"l‘/«ln:mnldn i [Kn, Kil.

Since K,=F?K/, the track addition defines an abelian group structure on
the homotopy set [K,, K] for 1=<h, s<r. Now we determine the additive
structure of [K,, K.

First, we need the following two lemmas.

LEMMA 2.24.
T 1K) =2 {Es} DroxTns 1+1(S™) .

Proof. Let pr: (K, S™)—(S™***+! s,) be a natural projection map. Then it
follows from the homotopy excision theorem that the induced homomorphism

~

P Taswna(Koy S™) —> Tapasa(S™H4H)

isTan isomorphism. Hence we have the exact sequence

Tt r41(S™) —_> Tt pr(Ky) ———> 7Tn+k+1(sn+k+l) __> 7l'n+k(5 )

Toerar(Il, S)

Let @,: (D*H*+1 S»*+#)—(K,, S™) be the characteristic map of the (n-+k-41)-cell
e™*+1 in K,. Then it is clear that 7,4 s41(Ks, SM=Z{@s}, and pr«(@s)=ttn4r41.
Since 0(@;)=a, and the order of a;, is m,; we obtain Im (psx)= {Msthsrsi} =Z.
Hence it follows (2.9) that we have

Tt k1K) =Z €} Dtsxtnr 241(S™) . Q.E.D.
LEMMA 2.25. Let Ea¥ denote the induced homomorphism
Ea¥: wpi(Ko) —> Ty pa(KS) .

Then Im (Ea¥)=isus@nsTns 21(S"H )= {is°ah°7]n+k}; where wmei(S™)= {7]m} =Z/2Z
=27, for m=3.

Proof. 1f n=3, then a,=0 and the statement is trivial. Otherwise, the
proof easily follows from the Barratt-Hilton formula. Q.E.D.

Then we have the following

PROPOSITION 2.26. For each 1<h, s=<r,
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LKr, K1=Z {01 DZ {20 DCrs=ZDZDGCus
where

Grs=p¥15xTns 5+1(S™)/ Phtsse@nsTns g+:1(S™TF) .
In particular, if a,=a,, we obtain

COROLLARY 2.27 (S. Oka, [6]). For each 1<h=<r, [K;, Ki1=Z {1d,} BZ {20}
@GILSZEBZ@Gh, where Gr=D¥nsTner41(S™.

Proof of Proposition 2.26. Consider the exact sequence

k %
Ea{h

bx iy
Tns1(Ks) —> Tpspr(Ko) —> [Kn, K] —> ﬂn(Ks>:Z{ls}-

Applying (2.24) and (2.25) to the above sequence, we have the exact sequence
. DE ok af
O I Z{&}EBGQS —> [Khy Ks] I Z{Zs} _—> 7l'n+k([(s) ;
where é;zs:ls*ﬂn+k+1(S")/Zs*an*TL'n+k+1(5n+k).

On the other hand, since t;na, =105 and Ker (aF)= {t;n2;} = Z, the following
sequence is exact.

0 —> Z £} DG ﬁ LK, K] i {tsnzsy =2 — 0.
Then the proof is completed by (2.19). Q.E.D.
Here we remark the following result which is useful for the applications.
PROPOSITION 2.28. Let Gs be the abelian group

.b;'{:ls*ﬂ'n+ k+1(Sn)/p;‘z<ls*ah>k7Tn+ k+1(Sn+k) .

Then
Ghsgﬂn+k+1(5")/lhs »

where
Tns=ansTns pe1(S™ ) F AT a1 (SHF)
AnxTns141(S*H) =Eafm,1(S™),

and

s Tnsert(S* ) =Eafma(S™) .
In particular, for the case a,=as, we have
Gr=Gnn=Tnt1+1(S™)/ QnseTns k+1(S™HF)
=4S/ EQfmni(S™) .

Proof. Consider the exact sequence
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a* *

7 br
1K) —> i (K) —> [Kn, K]
It follows from the Barratt-Hilton formula that the induced homomorphism
Pﬁ Dl e1(S™) 1o @ p T s a1 (STHE) —> [Kn, K]

is monic. Hence we have Gns =1 Tns 541(S™) /155 UnsTns r+1(S™ *).  Next, consider
the exact sequence

0 g
Tt kpalfsy S*) ———> Tnyps(S™) 47 Tt b1 (B

pr *l%'

Tt k+2(S"+k+])
a's.
ET;
Tn+ k+1(Sn+k)

Then we have 7o Tnsps1(S™) = Tnype1(S™)/AssTryr+1(S™H#), and the statement can
be easily obtained. Q.E.D.

§3. The additive structure.
Let K, K’ and K” denote the CW-complexes (See (2.3))

@.1) K=V Ky,
h=1
K'=\ K,
h=1
and

K=\ K7.
h=1
Then it is easy to see that
(3.2) K=FEK =E®K”, and K'=EK”".

The aim of this section is to determine the additive structure of [K, K],
which is defined by the track addition.
Let « (resp. a’) denote the map

3.3) @i\ ST > \/ S*
(resp. a’: \T/ Srkel s\ So1)

where the A-th factor of a (resp. «’) is the map «, (resp. a;). Since the com-
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plex K (resp. K’) is considered as the mapping cone of « (resp. a’), there is a

cofibre sequence

’ ’ ’

174 ]

T T p r
(34) \/ Sr+k-1___5 \/ Sl s K s v Sn+k

a 4 7 r a .
—> \/ §% —> K —> \/ Sntrtl 5 \/ Gnil

For each 1=<h=r, let j, denote the natural inclusion map to the /i-th factor
(3.5) ini Ky —> K=\ K, .
§=1

Then from Zosi(K)=1x7nsi(V S and 7oei(V SM= D 7,.,(S"), we obtain the
following two lemmas.

LEMMA 3.6, e ers(K) =257 1 (V SUD(ED Z (aba)).

LEMMA 3.7. Let Ea} denote the induced homomorphism
EC(’)':: 7rn+1<K) > Tn+ k+l(K) .

Then,
Im(Ea¥)= s@h]s*ls*ah*ﬂ'm pra(STHE) L

Thus, by replacing K instead of K, in the proof of (2.26), we can obtain
PROPOSITION 3.8. For each 1=h=<r,

[Kn, K== D Z{1000ms, 15020 ©CL=2rZBG,
where

Gr=pFxmnirr(V S")/Pﬁ(s@Js*ls*ah*ﬂn+k+1(5"+k)) .

Let m,: K= \T/IKS—>K;1 be the natural projection map to the h-th factor.
o2

Then for each 1=<h, s<r, we define two elements of [K, K], d,; and A.; by
the following:

3.9 Grs=Jso0nsomsn and Ans=JsoAnsoTn .
Then, from [K, K]= ﬁél 74Ky, K] and (3.8), we have

THEOREM A.
[K, K1= & Z{on, 1} DC=2r"28G,
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where

and

Ch:PF'fl*ﬂ'nmﬂ(\T/ Sn)/p;'f(sg% Jsklsx@nxT a4 er1(S™HF)) .

Now, for each 1=<h, s<r, let A,; be an abelian group. Then we define the
matrix group of degree », Mat(r, A,;), by

(3.10) Mat (7, Ahs): {A=(ans): ahseAhs};

where the (h, s)-entry of A goes through A,,. In particular, if 4,,=/4 for any
(h, s), then Mat(r, A,;) is the usual matrix group of degree » with the coefficient
A, Mat(r, A).

Let ; denote the inclusion map

m-x

3.11) 1 K=\ Ky —> I1 K» .
h=1 h=1

il

PROPOSITION 3.12 (A.]. Sieradski, [10]). There 1s a split exact sequence

VE]
0 —> H—>[K, K]—> Mat(r, [K,, K]J)—0,
where

H denotes the group hEE[CKh, Ky : sliIIKs, K].

Proof. This follows from the exponential law and K=FEK’. See in detail
[101. Q.E.D.

In general, it is difficult to compute the group H. However, if n=k+3, H
is trivial by the dimensional reason and we have

PROPOSITION 3.13. Let n=k-+3, then the induced homomorphism

v [K, K] —> Mat(r, [K», K.J)

1S an 1somorphism.

Let n=k+3. Then it follows from (3.13) that, for ®=[K, K], there is an
element A=(0,,) Mat(r, [K,, K;]) satisfying

(3.14) 1x(0)=(61s)

and this expression is uniquely determined. Since @,; is an element of [K,, K],
by Proposition 2.26, there exists uniquely determined triple (@ns, brs, gns) such
that,
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(3.15) 0hs:ahsahs+bhslhs+ghs:

where
Aps, brs€Z and gnsEGhs.

We may consider (ans), (bns) and (gns) as an element of Mat(r, Z), Mat(r, Z)
and Mat (r, G,;), respectively, and Proposition 3.13 can be restated as

COROLLARY B. [f n=k+3, then we have a group isomorphism

7% [K, K] —> Mat(», Z)PMat (r, Z)PMat (r, Gys) -

§4. The multiplicative structure.

The purpose of this section is to investigate the multiplicative structure of
[K, K] which is defined by the composition of maps. In particular, for the case
n=k+3, [K, K] (=Mat(r, [Ks, K,])) becomes a (non-commutative) ring and we
will study its ring structure.

First, for each 1=<h, s, m=r, we consider the multiplication

4.1) LKh, KX [Kn, Kn] —> [Kn, K]

which is also defined by the composition of maps. It is well-known that the left
distributive law

Be(r+08)=Bey+p-0

holds in (4.1). But, in general, the right one does not hold. However, as is well
known, we have

4.2) (y+0)-Ef=r-EB+d-Ed  for f=[X, Y] and 7, 6<[EY, Z].
In particular,
4.3 ar=re(aGdyx)), aEy’=(a(dgy)) E7’
for 7, y’<[X, Y] and any integer a.
Now, for each integer a, we define a homomorphism
(4.4) @a : [Kn, K] —> [Ka, K]

by
#5(0)=(a(id,)+0  for O[K,, K,].

Similarly, we define a homomorphism
(4.5) Dot Taspe1(S™) —> Taypa(S™)
by
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Sba(g>:(a!n)°g for geﬂn+k+l(sn)-

Then, from the formula (4.2) we have

LEMMA 4.6.
@) Peepiheise=phetosods.
(b) ¢5(0)=al for 6=E0'e[K,, K].
© ¢dalg)=ag  for g=Eg'€mpns4:(S").
Since ors=FEohs and A,s=FE2R},;, we have
4.7) @(ons)=aors and @5(Ans)=0ans.

In particular, the above lemma shows that the subgroup G is closed with
respect to ¢%, and that ¢%|G,s is determined by ¢a.

PROPOSITION 4.8. Let
g=Dp¥isx(g)EGrs and  g'=phinx(g1)ECmn
for g€ mnsr41(S™)/@nsTns 41(S™H*) and
1E T4 141(S™)/ AmscT s pa(S™HF)
then the following relations hold :
1) AnseAmrn=mnlms.
() ZnsoOmn=tmnlms.
(3) Ansog’=0.
@) goAmn=mu(phisx(g1).
©5)  onso g’ =i (Phis(g)-
€) geonn=tmn(phisx(g:)).
7 g-g"=0.
Proof.
D) ArsoAnn=(Esepn)°(En°Pm)
=&se(pro€n)opm
=&so(Mutnaps)°pm by (2.9)
=mn(§s°pm)

thlms .
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@) Znseomn=(Es°Pr)°Omn
=%s2(pro0mn)
=& (tmnpm) (by (2.19))
=tmn(§soPm)
=tmpdms.
(3) Since prein=0, Ans°g'=(Esepr)o@nogie pm)=0.
@) goAnn=Csegropn)=Enopm)
=15281°(Pn°n)° Pm
=is°g1°(Mutnsps)pm (DY (2.9))
=mu(phis(g1).

The rest of the proof can be obtained by the similar argument. Q.E.D.

PROPOSITION 4.9.

(@) onsohmn=(Mptps/Ms)Ams mod G ps.

(0) orseOmn={tsmtmnlns—tmstsntnm)/Mstsm}t Amst Esntnm/tsm)O ms mod G 5.

Proof. Tt follows from Proposition 2.26 that we may assume
OnsAmn=0Ans+00 s+ g for a, beZ

and g=pkiu(g)ECGns-
Since
Z.;';L(O'hsc'zmh):0hs°2mh°im:0113°€IL°pnt°im:0
we have
O:Z.#n‘t(alzms“'bo'ms"}‘g)

=(ahms+bomst8)oin
=0(Ansoim) tb(Omsotn)+goin (by in==FEin)
=alEso pmoim) FDtemis) (e g’ pmoin)  (by (2.19))
=(btsm)is - (by pmein=0)
Hence b=0. Similarly, from (2.9) and (2.19) we have
Dsx(Ons Ann)=(PsoOns)e Amn=Cnspr)eEnepom)=(Mntns) pm -
On the other hand, by using p,7;=0,
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Dsx(0ns* Amn) = Pox(aAmstg)
=pso(a§spm)
=(amg)pm . (by (2.9))

Hence
(aﬁzs)pm:(”lhths)pm in [Kmy Sn+k“]:Z{pm},
and so
a=mptps/Ms .
Therefore,

O-hs°/zmh:(nlhths/nls)}‘ms mod Ghs -

Thus the statement (a) is established and (b) also can be shown by the similar
argument. Q.E.D.

The above proposition implies that, for each 1<m, h, s<r, there exists ele-
ments B%; and 7%,=G,, satisfying two conditions

(4.10) Uhs°/zmh:(77lhths/nls)]ms+,3fns
and
(4.11) Ons®Omp= {(tsmtmhths*tmstshthm)/”lstsm} Ams

'{“(tshthm/tsm)oms’!_rgns .
In particular, we note that

(4.12) Bhs= if ar=as
and
(4.13) =0 if ap=a; or ap=ay.

THEOREM 4.14. The multiplication (4.1) 1s gen by the formula:

0-0"=(aa'tsntwm/tsm) 0 ms
+{aa’(tsmtmnlns—tmstsntnm)/(Mstom)+(ab mutsns/ms)
+a’btnn+bb'mn} Ams
F(@ tmn+0'mu) phirs(g0+ Glrgy(Phisk(gD)
+aa'rhstab fus,

for O@=aocys+bins+ges[Ky, K1 and

O'=a'0untb' dnntg €[Kn, Kil,
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where a, a’, b, b’ Z,

g=pH1:+(g.)EGus,
and

g (g EGmn .
In particular, for the case Ah=s=m, we also have

COROLLARY 4.15 (S. Oka, [6]). The multiplication of [ Ky, Kn] 1s given by
the formula:

O-0'=aa’1d+(ab’ +a’b+mpbb’)An+(a’+b'my) g+ ok(g")

for O=aidy+bAn+g<[ Ky, Kil
and
@’:a’zdh+b’2h+g'€[Kh, Kh:l ’

where a, a’, b, b’eZ and g, g’ =Gh.
Proof of (4.14). It follows from the right distributive law that
0-0'=0¢(a"0nu+b'Anntg")
=000 mn+b'0cAnn+0-g".
Since opr=~FEogp,, we have
@'0c0,,=00"05°0mn+ A DAns° O mr+a’(g°0 mn)
=(aa tsntim/tsm)Oms+ a0 s
F{aa' Esmtmntns—tmstsntnm)/Mslsm} Ams
(@ bt Ams (@ ) Phrsn(g2) -
=(aa’tsptnm/tsm)Omst (@0 G smlmntns—tmstsnlnm)/
(Mgtsm)ta bt mn} Ams(a tnn) pliss(g)+aa’rhs.
Similarly, by using An,=FE2,, we have
'O dmn={(ab'mutns/ms)+bb'my} Amst(mpb") phse(g)+ab’ Bl
Moreover, by using i,=FEi}, we have
02’ =(aons+bAnstg)etrogiepm)
=(aonsointbAnsointgorn)(giopm)
=(atsnts)e(gi°pm)
= @ltn(Dnisx(g1) -
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Thus the proof is completed. Q.E.D.
Let ©}, denote the natural projection map to the A-th factor,

(4.16) Th: \/ 8" —> 5"

Furthermore we put

(4.17) A=kl and  Phi=mn*red s
Now, we proceed to investigate the multiplication

(4.18) [K, KIX[K, K1—[K, K]

which is defined by the composition of maps.

PROPOSITION 4.19. Let g=] i gnand g'—= Zi} gn be any elements in G= é} Gy,

where gh“ﬂ'n(phl*(gn)) and gZ:m(Pnz*(gh) »ﬂhGh for &n, gheﬂ'rJrk-!—l(\/S ),
1=h=r.
Then the following relations hold :

— - 77111,17713 Zf /’l:(]
(1) AnsoA mq — {
otherwise.
if h=q
2)
otherwise.
77lhths/7ns)lm§+‘8ms lf h:(]

otherwise.

{Csmtmatns—tmstsntnm )/mst sm}lms_i_
(tshthm/tsm)oms+7ms if h:q

otherwise.

(4)

(3) Ulls"'zmq {

5)  Tnseg'=0.

6)  goTne=momh(Phin(8s)

(D) G1eeg =t (S TEastesm b 5 (R
8)  g°Tne=tmih(Ph1s(8).

©) geg'=0.

Proof. Since mye7,=04,4d,, the proof follows from (4.18), (4.10) and (4.11),
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where 0,, denotes the Kronecker delta. Q.E.D.
Now, the multiplication of [K, K] is stated as follows:
THEOREM C. Let @ and O’ be any elements of [K, K] of the forms

(4.20) 0= 3 (andntbadidtg,
@/:hil(a;zsa'hs_}'b;zszhs)"_g/ »

r T T —_—
g=2gn &=2gieG=daiC,

h=1 h=1 h=1
gn=nt(phrx(8r), gi=nkph@M)entCn,
Qns, bus, Qhs, bisEZ for 1<h, s<r.

Then the multiplication of [K, K] 1s giwen by the formula:

(4.21) 0:0'= 3 (AudnrtBuda)+ X wilh),
where
(422) Ahs:qé (a;zqaqstsqtqh/tsh) ’

,
Bhs: qg)l {a;lqaqs(tshthqth_thstsqtqh)/(nlstsq)

+ @ hobost gt (Phq@astgts/ M) +Fbhobesig},
and

(423) Fh:qg (a;thqu“{'b;lqnlq)ptl*(gA'q)

+ 2 {aizqaqx]s*(r%s)’i“b;zqaqs]s*(ﬁ%s)}

g, 5=1
.
-I—P?'f(q é‘l aqstsq]s*ls*(ﬂ;z))"g;{ .

Proof. 1t follows from the right distributive law that

0:0'= 3 04 Ocimt 5 Oodng+0-g’ .
»q=

r
m,q=1 m 1

Since omg=FE0on, by using (4.2)

.
Ocgp= X
8=

T -
n ahsa'hs"a'mq"l_h Zlbhsxhs"omq’!“g"(fmq
, 8=

1
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T _ T .
:5:21 aqs(tsqtqm/tsm)gmx"‘s;l aqsﬂ;';t]s*(r?ns)

+S=E] Ags {(tsmtmqtqs“"tmstsqtqm)/mstsm} jms

+s=il bqstmqims‘,'ﬂ%(tmqpti*(gq))

r
s=21 (aqstsqtqm/tsm)a ms

+s§1 {aqs(tsmtmqtqs_tmstsqtqm)/(mstsm)+bqstmq} zms
+7f>'1:1(tmqp*7hz*(gq)+ é aqx].s*(r%ls)) .

Similarly,
bhszhs"imq""g"zmq

A 2 a hsahs"jmq"f' Z
8= h,s=1
{(@gsmatas/ms)+bgstig) Ams

+ M b8+ 3 arsor Fhs) -

On the other hand,
@og/:@a(élg%)zéleog;@,

Since (=E7/,
r _ .
@°g;;b:(h ahséhs+h§:1bhszhx+g)°(l°ggz°pm°7zm)

b4

1

(@nsGnsi+bnsAnsoi)+go1) (8o pmoTm) -

1

:(é:

h
Furthermore, it follows from zsei=izex} and prei,=0 that
Gnsel=(Js°Gns°Tn)ot
=500 ns®ln°h
:]s°(tshis)°ﬂ';z:tsh]‘s*ls*(ﬂ;t) ’
}hs"i:(]’s“zhﬁnh)"i

=Jso(€sepn)e(inemh)=0,

and
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r
gol:(hgl gh)"l

Bauer by 1=Ei)

Il
-

L)

(tognopnomnet)
|

:hgl (tognoprotnemh)=0.

Hence
6:g'= 3 (3 anidensoston(mh)o(Ehe pren)
= 5 TR S andntisda(mh)e£h)
Therefore,
0:0'= 3 (Anidnst Budn)t 3780,
where Ap;, By and I}, are defined by (4.22) and (4.23). Q.E.D.

§5. A representation by matrices.

Let A=(64,) and B=(0,;) be any elements of Mat(r, [K,, K,]), where
Ors, 0Ky, K] for 1=<h, s<r. Then the matrix multiplication

(5.1) Mat (r, [Kyn, K1) XMat (r, [Kys, K1) —> Mat (r, [K», K;])
is defined by

(5.2) A-B=C=(0%s),

where

(5.3) fo= 3 OnoOhn  for 1h, s=r.

In general, this matrix-multiplication does not necessarily satisfy the associa-
tive law. However, it is easy to see that the associative law holds if ;4:[K, K]
—Mat (r, [K,, K]) is a multicative homomorphism since jx is surjective. Further-
more, the element E=(d,;0) iS an unit element, where d,, denotes the Kronecker
delta.

Here we quote

PROPOSITION 5.4 (A.]. Sieradski, [10]). If n=Fk-+3, the induced homomor-
phism
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7%: [K, K1—> Mat (r, [Kx, K.

15 an additive and multiplicative 1somorphism, where the multiplication of [K, K] s
defined by the composition of maps and one of Mat (r, [Ky, Ks]) is given by the
matrix-multiplication.

If n=k+3, then it follows from the Freudenthal suspension theorem that
nn+k+1(\T/S"):E7rn+k(\75"‘1) and [K, K] may be considered as a (non-commuta-
tive) ring. Then, by using Theorem C and (5.2) we have

THEOREM D. Let n=k+3, and for each elements @ and @' €[K, K] we
can put

(5.5) 0=(0,s)Mat (r, LK, K])
and

0'=(0rs)eMat (r, [Kn, K1),
where
(56) ﬁhs:ahsohs_l'bhszhs’*'ghse[Kh; Ks:l »

hs=QhsOnstOhsAnst ghs €LKn, K],
gns=Phisx(8rs) EGas,
Ghs=phisx(&hs) EGns,

QAnsy Ahsy bas, bhs€Z  for 1=<h, s<r.

Then the multiplicative structure of [K, K] is given by the formula:

(5.7 O-0'=(01)[K, K1=Mat (r, [Ky, K1),
where

(5.8) 04s=Ansons+Brslnst+ L[ Kn, K],
(5.9) Ans and Bys are defined by (4.22),
and

(5.10) L= 5 (@hatngt-Dhamo) phiend s

+aqstsqp?:is*(ér;zq)+b;zqaqsﬁ%s+a;zqaqsrlfzzs} for 1<h, s<r.

Remark 5.11. We suppose that n=£%-+3 and

(5.12) ap=a, for 1=h=r.
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Then it is easy to see that

(5.13) ﬁ%s:T%sZO for 1=h, s, g=r,
ths=1 for 1<h, s=r,
and
My =11, for 1<h=r.

Under the above assumption, by using Corollary B we have
(5.14) [K, K]=Mat (r, Z)SMat (r, Z)YMat (, G,)

as an additive group.

where
G1=Tn4141(S™) /A1t k+1(S"+k)

=Tns21(S")/ Eafma1(S™).

Then, by using Theorem D, the multiplication is given by

(5.15) 0-0'=(A, B, I')-(A’, B’, I")

=(A’A, A’B+B’A-+m,B’B, (A’+m,B)[+1"A)

369

for O=(4, B, I'e[K, K] and 0'=(4", B/, [")=[K, K].

Here we note the formula

A’ 0 0 (A 0 0)
(5.16) 0 A+4+mB I"||0 A+mB Ft
L0 0 A0 0 A
A’A 0 0 )
=10 AA+m(A'B+B'A+mB’B) (A'+mB)[+I"A ' .
0 0 A'A

For each integer m and an abelian group H, let M(»; m, H) denote the

ring of matrices of the form

A 0 0
for A, BeMat (r, Z), and
(5.16) 0 A+mB I’
I'eMat (», H).
0 0 A

Hence it follows from (5.14), (5.15) and (5.16) that we obtain

THEOREM E. Let n>k~+3, and we suppose that



370 KOHHEI YAMAGUCHI

an=a, for 1I=h=r.
Then
[K, K]=M@;m, G,) as a ring,
where
the integer m, is the order of a; and

G1=Tnt241(S™)/ Q15T s k+1(Sn+k):7Tn+k+1(Sn)/EaT7z'n+1(Sn) .

We denote by Inv (M) the group of all multiplicative invertible elements of
a ring M.
Then we also have

COROLLARY F. Under the same assumptions as ebove, we have an isomorphisn
Eq(K)=Inv (M(r; m,, Gy)).

ExaMmPLE 5.17. Let n=m+4. Then

Eq (V (S*VS™*m)=Inv (M(r; 1, 75) ,
where 75 is the m-th stable homotopy group of spheres.

ExAMPLE 5.18. Let m=2 and CP? be the two dimensional complex projec-

tive space.
Then

Eq (\V E"CPY)=Inv (M(r; 2, 0)).
Proof. Let n,=my(S?) be the Hopf map and we put »,=E'?yp, for t=2.
Then it is well-known that EmCP?=S%*" \ J ¢**™ and 7 o(S)={nio s} =Z/2Z

n2+m

=Z, for t=2. Thus the assertion easily follows from Corollary F. Q.E.D.
A similar argument also shows

ExAMPLE 5.19. Let m=4 and HP® be the two dimensional quaternion pro-
jective space.
Then

Eq (\ EMHP?)=Iny (M(r ; 24, 0)).

§6. The applications.

In this section, we will investigate the action of Eq(K) on the homotopy
group mop+ x(K)

(6.1) Eq (K)X a4 1(K) —> Tons1(K)
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which is defined by the composition of maps, and give the another proof of
Ishimoto’s main results given in [3], which classify the connected sum of sphere
bundles over a sphere with cross-sections up to homotopy.

First, we recall several basic results about sphere bundles over a sphere.
(See in detail [4]) Let X be a n-sphere bundle over (n-/%-+1)-sphere which
admits a cross-section, and consider the part of the homotopy exact sequence of
the fibration SO(n)—>SO(n+1)—SO(n-+1)/SO(n)=S"

Tne l(SO(M)) —LE > 7., (SO +1))

7
Tnsk+1(S™) J J
P E
Tan+ #(S") ————> Tan+1+2(S™)
Fig. (6.2)

where J means the classical /-homomorphism and the homomorphism P is defined
by Whitehead product, i.e.

(6.3) PQ)=[C, ta] for {ETpip1(S™).
Furthermore, it is well-known that
(6.4) P=—J-0 and EoJ=—]¢J.

We denote by X(X) the characteristic element of X. Since X has a cross-section,
there exists some element y<m,.,(SO(n)) satisfying

(6.5) XX)=7x(7).

Then it follows from (6.2) that the element J(7)E Jr,..(SO(n)) is uniquely deter-
mined up to Pr.s:4:1(S™), and so we define the invariant A(X) by

(6.6) AX)={J)} € Jrnex(SOM))/Prrns51(S™)

By using this invariant, .M. James and J.H.C. Whitehead classified the homo-
topy type of sphere bundles over a sphere with cross-sections as follows :

THEOREM 6.7 (I.M. James and J.H.C. Whitehead, [4]). Let X, and X, be
n-sphere bundles over the (n-+ k-+1)-sphere which admit cross-sections, and n=k+3.
Then X, and X, are of the same homotopy type 1f and only 1f A(Xy)=AX,).

Let X, be a n-sphere bundle over a (n-+k+1)-sphere for 1=<hA=<r. We de-
note #%.,X, the connected sum of the total spaces X,, h=1, 2, ---, ». Let X,
s=1, 2, ---, 7/, be another set of such bundles. Then it is easy to see that, if
#._.X, and #;_,X; are of the same homotopy type, ' must be equal to » by the
homological reason.



372 KOHHEI YAMAGUCHI

Then the aim of this section is to extend the above result to the case of
connected sums of sphere bundles over a sphere which admit cross-sections, and
our result is stated as follows :

THEOREM G (H. Ishimoto, [3]). Let n=k+3 and k=1. Let X, and X, be
n-sphere bundles over (n+ k-+1)-spheres which admit cross-sections, for 1=h=r.

Then the connected sums #5,-,X, and #,-.,X; are of the same homotopy type if
and only 1f there exists an unimodular (v Xr)-matrix A=GL (r, Z) such that

AXY) o)
(6.8) = A )

AX7) A,
where the abelian group Ju,+ (SO(n))/ Pyt r+:1(S™) 18 considered as a left Z-module.

Remark 6.9. We suppose that the attaching class a,=0. Then m,=1 and
Kh:SnvSn+k+1.
Furthermore, we may assume

(6.10) the map p, is a retraction map to the second factor

Pn : Snvsn+k+1 — Sn s
and that

(6.11) the map &, is an inclusion map
éh < Sntk+l 5 Qg Qutk+l
Proof of Theorem G. We put
AX)={J(ra)} and AX)={/Gn}  for 1=h=r,

where 75, 1 €7, :(SO(n)). It is well-known that each complex X, (resp. X;)
has the cell-decomposition

(6.12) Xo=K,\U QR R (resp. Xn=K»\U gmt Rt ,
on '

Pn
where
K,=8m\y Sn+k+t and

en=tnx J T 1) FEn, in] ETans x(Ka) .
(resp. pr=ixJ(71)+[Er, 1l Emansw(Kn).)

Therefore, #%_,X, and #},_,X] have the cell-decompositions
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(6_13) X::Z=1Xh:(h\r/ Kn) U ezn+k+1:KU o2ntk+1
=1 o I
and
X,:#7L=1Xﬂ:(h\r/11{i:) Uezn+k+1:KUe2n+k+l ,
= o' o’
K»__h\i/l K= (Snvsn+k+1) ,
where

0= 2 Jnx(0n) ETansx(K)  and

h=1
p’:hg ]h*(p;L) Eﬂ2n+k(K) .

Since X and X’ are of the same homotopy type it and only if there exists
a homotopy equivalence ©<Eq (K) satisfying @-p==p’, for our purpose, it is
sufficient to investigate the action (6.1).

Let O@=(0,,)€[K, K], where 0n,=ans0ns+bnslns+Gns,

Ans, bns©Z, and  gns=p3isx(ghs) EGhs for 1=h, s=r.
Then we have
6.14) 6:0= 3 1( 3 Onopa)

Here,
0ns°Ph=0ns°ih°f(Tn)+0ns°[:Eh, n]

=(Onsoin)o ] n)+[OnsoEn, Onsoin].
Since 7,=E1}, and ox,=idr=1id,, it holds that
Onsoin=0nsis+bnsAnsointgnsoin
=anststbns(Ese pr)ointisoghsoProin
=Apels. (by prein=0)
Similarly, it follows from &,=F&}, and pno&n=tn4r+: that
Onso&n=an&s+bns(€se pn)o€ntiseghsoPron

:(ahs‘!'bhs)és‘f‘is*(g;zs) .
Hence we have

(615) 0hs°ph:ahsis°](7’h)+ahs(ahx+bhs)[5s; Z.s:['}_l.s*([g;uy 5n]) .
First, we suppose that X and X’ are of the same homotopy type. Then
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there exists a homotopy equivalence ©=(0,,)€Eq(K) satisfying @-p==p’.
Hence it follows from (6.14) and (6.15) that we have

(6.16) JaD=% 3 anJ () mod Prpysn(ST,
and

S anlantbr)==1  for 1=s=r.
=1

On the other hand, since @=(0,,)=Eq (K), by using (5.17) we have A=(*azs) e
GL(r, Z). Hence the unimodular matrix A satisfies the condition (6.8).

Conversely, we suppose that there exists some unimodular matrix A=(ans)
eGL (r, Z) satisfying the condition (6.8). However, considering (6.7), without
loss of generality we may assume

(6.17) JG0=3 an ) for 1=s=r.

We put @=(04,)=(ars01s+brsAns) E[K, K], and B=(b,;)&Mat (r, Z). Then it
follows from (5.17) that

(6.18) OcEq(K) if and only if A+B<GL(, Z).
On the other hand, by using (6.15) and (6.17), we have

r r r
hZ,;‘lﬁhwpn:hg,l ahsz.s*](rh)_}“hgi ahs(ahs+bhs)[55y le:l

=10 J D+ B ans(@nitbadlEs, 2]
Hence it follows from (6.13), (6.14) and (6.15) that
(6.19) O:p=p’ if and only if 3 an(antbu)=1 for 1=s=<7.

Now we put B=(CA)'—AeMat(r, Z). Then we also obtain ‘A(A+B)=E,,
where E, is the identity matrix of degree ». Hence, by using (6.18) and (6.19),
we have

(6.20) OcEq(K) and BO-p=p’.

Therefore X and X’ are of the same homotopy type. This completes the proof.
Q.E.D.
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