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ON THE SELF-HOMOTOPY EQUIVALENCES OF THE

WEDGE OF CERTAIN COMPLEXES

BY KOHHEI YAMAGUCHI

§ 1. Introduction.

The set of homotopy classes of self-homotopy equivalences of a based space
X, which is denoted by Eq(X), is a group with the multiplication defined by
the composition of maps. This group Eq(X) has now been studied by many
authors since the paper of W.D. Barcus and M.G. Barratt ([2]) appeared in 1958.
However, generally speaking, we have not yet obtained an effective method for
calculating it except classical ones, and the structure of it also has not been
clarified sufficiently.

In this paper, we study the group Eq(K) for a CW-complex K such as

(1.1) K= V Kh, Kh=Sn U en+k+1 (n^3, k^l)
h = l ah

under the condition that the attaching class ah^πn+k{Sn) is a double suspension,
ah=E2a'h, and both ah and a'h=Eal have the same order mh, for 1^/z^r.
However, the case r=l has already been treated by S. Oka in [6], so we will
consider the case r ^ 2 .

For each based topological space X and Y, we denote by [X, F ] the homo-
topy set of all based maps from X to Y, and also by [/3, γ~] Whitehead product
of β and γ for β^πt{X) and γ^πs(X). Furthermore, we denote by Z{v} the
infinite cyclic group generated by v. For example, πm(Sm) = Z {cm}.

In our case, it is well-known that the homotopy set [_K, K~] becomes a (non-
commutative) ring if n ^ & + 3 , and we are mainly concerned with studyig the
ring structure of it because the group Eq(K) is the group consisting of all in-
vertible elements of the ring [K, K~],

On the other hand, from the view-point of applications, we consider the
homotopy type classification of highly-connected manifolds, in particular, the
connected sums of sphere bundles over a sphere.

In fact, since such a manifold M has a cell-decomposition with the form
K\Jβe

2n+k+1 for β^π2n+k(K) up to homotopy, it is very important to investigate
the group Eq{K) for this purpose.

Then the results of this paper are as follows:
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First, the additive group structure of [_K, K~] is given by

THEOREM A.

IK, K^= 0 Z{σhs, λ
h,s = l

where

and

In particular, we have

COROLLARY B. // n^&+3, then there exists an isomorphism

r, Z)0Mat(r, Z)0Mat(r, Ghs).

Secondly, we investigate the multiplicative structure of [_K, /ί] defined by
the composition of maps, and we have

THEOREM C. Let Θ and Θf be any elements of [K, IC] of the form {See

Theorem A):

(4.20) θ= Σ (ahtdhs+bh8lh,)+g ,

θf=hΣi(a'n,sΛ,+btn,'iΛ.)+g',

g= Σ gu, g'= Σ rfeG- Θ π*hGh ,

ahs,bhs, a'hs, b'hs<ΞiZ for l^h, s^r.

Then the multiplication of [K, K~] is given by the formula :

(4.21) θ°θ'= Σ (Ah,σh,+ Bh.lh.)+ Σ πt(Γh)
h,s=l h=l

where

(4.22) Ahs= Σ (a'hqaqst8qtqs/tsh),

s— Σ {d'hqθ<qs(tsκthqtqs—-tiιsts(ιtqh)/(jnstsq)
q=l

+ a'hqbqstϊiq+(b/

hqaqsmqtqs/?ns)+b'hqbqsmq},
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and

(4.23) Γh = Σ (a'hqthq+b'hqmq)ptt*(gq)
5=1

Σ
S l

+ρf( Σ α ί.ί. ϊjw

In the general situation, the above multiplication does not necessarily satisfy
the left distributive law

(α, β9 γ^[_K} KJ) .

However, if πi^&+3, this one holds. So the homotopy set \_K, K~\ becomes a
(non-commutative) ring.

Its ring structure is described by the following:

THEOREM D. Let H ^ & + 3 , and for each element Θ and θ 'e[7£, IQ we can
put

(5.5) 6> = (#Λ s)eMat(r, tKh, KJ)

and

r, [/fft, if,]),

(5.6) ΰhs=ahsσhs+bhsλhs+ghs€ΞlKh, KS

dhs, a'hs, bhs, b'ns^Z for 1^/z, s^r.

Then the multiplicative structure of [if, K~\ ts given by the formula'

(5.7) θ e ' = ( 0 Z . ) e [ # , /Γ] = Mat(r, [Kh9 KJ),

where

(5.8) »2,=i4Λ,σ

(5.9) ΛΛs αnJ 5 Λ s are J ^ n ^ ^ (4.22),

and
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Γ f t s = Σ {{a'hlιthq+b'hqvιi)p*hιAgiS)
< Z = 1
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for l<h, s^r.

Now we suppose that ah—aι for 1^/ι^r. Then the above result can be
simplified as follows:

THEOREM E. Let n^k+3, and we suppose that

OLK — OLI for l^h^r.
Then

[_K, K2 = M(r; mlf Gλ) as a ring,
where

the integer mλ ts the order of ax and

We denote by Inv (M) the group of all multiplicative invertible elements of a
ring M.

Then the above theorem implies

COROLLARY F. Under the same assumptions as above, we have an isomorphism

Eq (ίQ = Inv (M{r mu G1)).

For example, we can determine the group Eq(V (SnVSn+m)) for n^

and Eq(\JEmCP2) for ?n^2.

Finally, as an application we study the homotopy classification of connected
sums of sphere bundles over a sphere which admit cross-sections.

THEOREM G (H. Ishimoto, [3]). Let n^k+3 and k^l. Let Xh and XL be
n-sphere bundles over a (n + k + iysphere which admit cross-sections, for 1^/z^r.

Then the connected sums *r

h=xXh and #Λ=I^Λ o,re of the same homotopy type
if and only if there exists an unimodular (rXr)-matrix Λ^GL{r, Z) such that

(6.8)

ί λ(Xί)

, λ(X'r) .

=A

λ(Xr) ,

where the abelian group Jπn+k{SO(n))/Pπn+k+i(Sn) is considered as a left Z-
module.
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The above result has been already established by H. Ishimoto ([3]) and he
also considered the more general cases. However, his method is quite different
from ours, and he used essentially the technique of the handlebody theory to
prove it. On the contrary, we use simply the elementary homotopy theory, so
our technique is applicable to the case of the connected sum of spherical fϊbra-
tions over a sphere with a cross-section which do not always have the homotopy
types of closed smooth manifolds, and we will treat it in the subsequent paper.

This paper is organized as follows: In § 2 we construct several homotopy
classes of maps needed to determine the structure of [_Khy Ks~] and [_K, A"], and
in §3 we determine the additive structure of them. Similarly, in §4 and §5,
we determine the multiplicative structute of them. In § 6 we classify the homotopy
type of connected sums of sphere bundles over a sphere which admit cross-
sections.

In the final of this section, the author would like to take this opportunity to
thank Professor S. Sasao for his sincere many valuable suggestions and encour-
agements.

§2. The construction of elements of \_Kh, Ks~],

For each l^h^r, let Kh denote a CW complex

(2.1) Kh=Sn{Jen+k+1,

such that the attaching class ah^πn+k(Sn) satisfying the following condition:

(2.2) There is an element α^e^7i+jfe_2(571"2) such that ah is a double suspension
of a'ί, ah—E2afhf and both a'h=Ea'ί and ah have the same order mh.

Then it is easy to see that the integer mh is finite and α Λ = 0 for n = 3 .
Now let us define two complexes Kύ and K'{ as follows:

(2.3) Kt=Sn-1]Jen+k and K'^Sn-2\J en+k~ι.

Then for each l^h^r, there is a cofibre sequence

(2.4) Sn + k-2 > Sn-2 > K£ > Sn + k-l > g n - l

i'h Ph Oίh th ph

— > Kk — > Sn+k — > S n —>K h — > Sn+k+1.

Since ah — Ea'h and a'h—Ealy we may canonically identify

(2.5) Kh=EKί and Kί=EK%.

Furthermore the following relations are clear.
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(2.6) ιh = Eϊh9 ϊh = Ei'i,

Pκ=-Ep'h9 p'h=—Ep'ί,

where ιdh, Ίd'h and id'l denote the homotopy classes of the identity maps ιdKh,
ιdκ,h and idκ*h, respectively.

Here, for our purpose, we quote the well-known

LEMMA 2.7 (H. Toda, [12]).
(a) There is an element ξ'h^πn+k(Kh) such that ph^h) = mhcn+k and the

element ?ί is determined up to z^7rn+fe(57l~1). The element ξ'h is called the coex-
tension map of mhcn+k-i

(b) There is an element β'h<=[Kί, S71"1] such that βΊι°ϊκ — mκin-\> and the
element β'h is determined up to p'^πn+kiS71'1). The element βf

h is called the ex-
tension map of m^n-i-

For each lg/z^r, we define two elements ξh and βh by

(2.8) ζh — — Eξr

h<^πn+k+ι{Kκ),

and
βΛ=Eβ'hς=\:κhtS

nl.

Then it follows from Lemma 2.7 and (2.8) that we have

LEMMA 2.9. The above elements satisfy the following relations:

(a) ph°£h=mhtn+k+i-

(b) βh°ih=

Similarly, we define two elements λ'h8 and μ'h% for l^h, s^r by

(2.10) ^ . = f ί ί i , and μ'n,=i',oβ'h in [ ^ , Kβ.

In particular, for h = s, we put

(2.11) λ'h = λ ' h h , and μ'h = μf

hh.

Furthermore, we define two elements λhs and μhs for l^h, s^r by

(2.12) λh, = Eλ'h» and μhs = Eμ'hs in \_Kh, Ks~].

For h — s, we put

(2.13) λh — λhh> and μh=μhh-

Then we have easily
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LEMMA 2.14.

(a) λh8=ξ8*ph.

(b) μhS=isoβh.

Let us consider the relation between the attaching classes of Kί
EΞπn+k-^S71-1), for l^h^r. For each βtΞπn+k-iiS"'1), we denote by (β) the
cyclic group generated by β. Then there is an element γ^π-n+k-iiS71'1) satisfy-
ing (a'h)r\{a's) — (y). Thus, there is an uniquely determined pair of positive integers
(th8f tSh) such that, if a'hΦa's, then

(2.15) (i) th8a'8=t8ha'h=γ, and

(ϋ) l^ths£ms, l^tsh£mh.

In particular, if a'h=a8, we put

(2.16) th8=t8h=l.

LEMMA 2.17. There is an element σ'ns^LKί, K's~] satisfying the conditions
ffhsoihz=ztshig and p's°σ'hs—thsp

f

h. In particular, if af

h—a's, then we can choose
σ'hs=id'h.

Proof. Since [Kί, Sn+kΊ = πn+k(Sn+k), the proof can be easily obtained.
Q.E.D.

Now we define the element σhs<=[_Kh, Ks~] by

(2.18) σhS^=Eσ'hs -

Then the following is obvious.

(2.19) σhs°ιh = tshιs, and ps°σhs=thsph.

Since K^—EK^, the homotopy set [_Kh, K's~] becomes a group with the track
addition.

Here we note that the integer mstsh is divisible by mh and we obtain

PROPOSITION 2.20. For each tnpple of elements (σ'hSy ξ
f

hs, β'hs), the following
relation holds in \K^ Kr,~\ :

h/mh)μ'hg = mgσ'h8 (mod G'h8),

where G^pW^nn+^S"-1).

In particular, if aι

h — a's, then we can choose σ'hs=idh, so we have

COROLLARY 2.21 (S. Oka, [6]). For each coextension ξf

h {resp. extension β'h).
there exists an extension β'h {resp. a coextension ξ'h) such that
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λ'h+μ'h=mhtd'h in IKί, Kί] .

Proof of Proposition 2.20. We put x — ths, y=m8tsh/mh, and z—m8. First,
consider the exact sequence

pΉ* in*

Since

=0,

there is an element γ^πn+k{Kr

s) satisfying

xλ'h9+yμ'hs-zσ'h8=ρ'h*{γ).

Secondly, consider the isomorphism

Pk*:πn+k(Sn+k)^U<ί, S»-

Since

= (xms)p'h-(zth8)p'h

=0,

we have ρ'8(γ)=O. If we consider the exact sequence

i's* P's*

Xn+kiS71'1) —•> πn+k(Kί) —-> πn+k(Sn+k),
then we obtain

-zσ'h8=p'h*(r)=Q (mod G'hs).

Thus the proof is completed. Q.E.D.

Now, by applying the suspension functor homomorphism, Proposition 2.20 can
be transformed into

PROPOSITION 2.22. For each triple of elements {σhSy ξh, βh), the following
relation holds in [_Kh, Ks~] :

thshs+(mstshmh)μhs~msσhs (mod Ghs),

where the group Ghs is defined in (2.26).
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COROLLARY 2.23 (S. Oka, [6]). For each extension βh {resp. coextension ξh),
there is a coextension ξh {resp. an extension βh) such that

ihΛ-μn — mhιdh in [_Kh, Kh~] .

Since Kh — E2K'ύ, the track addition defines an abelian group structure on
the homotopy set [_Kh, Ks~] for 1^/z, s^r. Now we determine the additive
structure of .\_Kh, Ks~\.

First, we need the following two lemmas.

LEMMA 2.24.

Proof. Let pr: {Ks, Sn)-*{Sn+k+1, s0) be a natural projection map. Then it
follows from the homotopy excision theorem that the induced homomorphism

pr* : πn+k+ί{Ks, Sn) - ^ πn+k+1{Sn+k+1)

is^an isomorphism. Hence we have the exact sequence

Let άs:(Dn+k+1, Sn+k)->(Ks, Sn) be the characteristic map of the (n+£ + l)-cell

en+k+i i n Kgt T h e n i t i s dear that πn+k+1(Ks, Sn) = Z{άs}, and pr*(ά8) = ±cn+k+1.
Since d(άs)=as and the order of as is ms, we obtain lm(ps*)= {msch+k+i} =Z.
Hence it follows (2.9) that we have

πn+k+i(K,)=Z{ζs}®t,*πn+k+1(Sn). Q.E.D.

LEMMA 2.25. Let Eat denote the induced homomorphism

Ea% : πn+1(Ks) — > πn+k+1(Ks).

Then lm(Eat)=is*ah*πn+k+1(Sn+k)={is°ah°ηn+k}, where πm+1(Sm)= {ηm}=Z/2Z
= Z2 for m^3.

Proof. If n=3, then ah=0 and the statement is trivial. Otherwise, the
proof easily follows from the Barratt-Hilton formula. Q. E. D.

Then we have the following

PROPOSITION 2.26. For each l^A, s<r,
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[_Kh, KS-] = Z{σhs}®Z{λhs}@Ghs = Z®Z®Ghs,

In particular, if ah~as, we obtain

COROLLARY 2.27 (S. Oka, [6]). For each l^h^r, \_Kh, Kh~\^Z{ιdh}®Z{λh}

hy where Gh = p*hih*πn+k+1{Sn).

Proof of Proposition 2.26. Consider the exact sequence

πn+i(Ks) —^πn+k+1

Applying (2.24) and (2.25) to the above sequence, we have the exact sequence

Pt it oc*

0 — > Z{ξs}®G'hs — ίKh, K,l — Z{ιs} —+ πn+k(IQ ,

where G'hs=ιs*πn+k+1{Sn)/ιs*ah*πn+k+ι(Sn+k).
On the other hand, since tshah=thsas and Kev {at)={tshιs} =Z, the following

sequence is exact.

0 —+ Z{ξs}®G'hs -X lKh, Ks] -X {t,hι,} =Z—+0.

Then the proof is completed by (2.19). Q. E. D.

Here we remark the following result which is useful for the applications.

PROPOSITION 2.28. Let Ghs be the abelian group

Then

Ghs^τrn+k+i(Sn)/Ihs t
where

hs^cx^πn+k+i(Sn+k)-{-as*πn+ k+i(Sn+k),

ah*πn+k+1(Sn+k)
and

in particular, for the case ah~as, we have

Gh — G hh = π n+ k+i(Sn) / ah*π n+ k+i(Sn+k)

= πn+kUSn)/Eatπn+1(Sn).

Proof. Consider the exact sequence
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Eat P
πn+k+1(Ks)

It follows from the Barratt-Hilton formula that the induced homomorphism

Pt: U*πn+k+1(Sn)/ι8*ah*πn+k+1(Sn+k) — > \_Kh, Ks~]

is monic. Hence we have Ghs=ιs*πn+k+i(Sn)/zs*ah*πn+k+i(Sn+k). Next, consider
the exact sequence

Then we have is*πn+k+i(Sn) = πn+k+i(Sn)/as*πn+k+ι(Sn+k), and the statement can
be easily obtained. Q. E. D.

§ 3. The additive structure.

Let Ky Kf and K" denote the CTF-complexes (See (2.3))

(3.1) K=\JKh,
h=i

and

K"= V K'r' .
h=i

Then it is easy to see that

(3.2) K=EK' = E2K", and K'=EK".

The aim of this section is to determine the additive structure of [_Kt K2,
which is defined by the track addition.

Let a (resp. a') denote the map

(3.3) a:\/Sn+k—> V Sn

(resp. a': V 57l+*~1 — > \J S71'1),

where the /z-th factor of a (resp. a1) is the map ah (resp. a'h). Since the com-
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plex K (resp. Kf) is considered as the mapping cone of a (resp. a'), there is a
cofibre sequence

a' r ϊ P' r
(3.4) V Sn+k-χ — > V S71-1 —>K f — > V Sn+k

a r i P r Ea r

—> V s n — > K—> v s n + k + 1 — > v s n + 1 .
For each l^h^r, let j h denote the natural inclusion map to the /z-th factor

(3.5) jh:Kh—>K= V Kg.
S = l

Then from πn+i(K)=ι*πn+1(\/Sn) and πn+1(\J Sn)=§πn+1(Sn), we obtain the
following two lemmas.

LEMMA 3.6. πn+k+i(K)=ι*πn+k+1(\/ Sn)@{® Z{jhξh}).
Λ = l

LEMMA 3.7. Let Eat denote the induced homomorphism

Eat: πn+1(K) — > πn+k+1(K).
Then,

lm(Eat)= @]&*ιs*ah*πn-,k+ι{Sn+k).

Thus, by replacing K instead of Ks in the proof of (2.26), we can obtain

PROPOSITION 3.8. For each 1^/z^r,

[_Kh, Ky-^®Z{js°σhs, j,*λhs}®Gh^2rZ®Gh,

where

n)/pt( Θ j,*t.*ah*πn+k+i(Sn+k)).

Let πh: K— \j Ks->Kh be the natural projection map to the /z-th factor.
5 1

Then for each 1^/?, s^r, we define two elements of \_K, K~\, σhs and λhs, by
the following:

(3.9) όhs—js^σhs°πh and λjι8=ja

oλfis

o7ΐh

Then, from IK, # ] = Θ π*lKh, K] and (3.8), we have

THEOREM A.

IK, # ] = θ
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where

and

k+1(\/Sn)/pt( © Js*ts*ah*πn+k+1(Sn+k)).

Now, for each l^h, s^r, let ΛΛs be an abelian group. Then we define the
matrix group of degree r, Mat(r, Λhs), by

(3.10) Mat(r, Ahs) = {A = (ahs): ahst=Ahg},

where the (h, s)-entry of A goes through Ahs. In particular, if Λhs — Λ for any
(h, s), then Mat(r, Λhs) is the usual matrix group of degree r with the coefficient
A, Mat(r, A).

Let denote the inclusion map

(3.11) j:K=y Kh—*ilKh.
h=i h=i

PROPOSITION 3.12 (A.J. Sieradski, [10]). There is a split exact sequence

0 — > 77—> IK, K~] -IX Mat(r, [Kh, KJ) — ^ 0 ,

where

H denotes the group © [CϋΓΛ, Kh : Π ΛΓβ, ϋί] .
h=l 8=1

Proof. This follows from the exponential law and K=EK'. See in detail
[10]. Q.E.D.

In general, it is difficult to compute the group H. However, if 72^ £+3, H
is trivial by the dimensional reason and we have

PROPOSITION 3.13. Let n^k+3, then the induced homomorphism

; * : [ # , ϋ Π - 1 * Mat (r, ίKh, KJ)

is an isomorphism.

Let n^k+3. Then it follows from (3.13) that, for θe[ϋί, K~\, there is an
element A — {θhs)^MdX{r, [_Kh, Ks~]) satisfying

(3.14) j*(θ) = {θh9)

and this expression is uniquely determined. Since θhs is an element of [_Kh, Ks~],
by Proposition 2.26, there exists uniquely determined triple {ahs, bhs, ghs) such
that,
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(3.15) θhs=ahsσhs+bhsλhs-\-ghs,

where

ahs,bhs^Z and gh8^Gh8.

We may consider (ahs), (bhs) and (ghs) as an element of Mat(r, Z), Mat(r, Z)
and Mat(r, GΛs), respectively, and Proposition 3.13 can be restated as

COROLLARY B. // n^k-^3, then we have a group isomorphism

7* : \_K, Kl — > Mat(r, Z)0Mat(r, Z)0Mat(r, Ghs).

§4. The multiplicative structure.

The purpose of this section is to investigate the multiplicative structure of
[_K, K~\ which is defined by the composition of maps. In particular, for the case
n^k+3, [_K, K2 (=Mat(r, {Kκ> Ks~])) becomes a (non-commutative) ring and we
will study its ring structure.

First, for each 1^/z, s, m^r, we consider the multiplication

(4.1) lKh9 Ks~] X ίKm, Kh-] — UCn, K,l

which is also defined by the composition of maps. It is well-known that the left
distributive law

holds in (4.1). But, in general, the right one does not hold. However, as is well
known, we have

(4.2) {γ+δ)oEβ=γ°Eβ+δ°Eδ for β^lX, V] and γ, δ^lEY, Z] .

In particular,

(4.3) ar=r<a(tdχ)), aEγ' = {a(ιdEY))°Eγ'

for γ, γ'^[_X, F ] and any integer a.

Now, for each integer a, we define a homomorphism

(4.4) φs

a : lKh, KS2 — > [_Kh, KJ

by
φ ( o θ for

Similarly, we define a homomorphism

(4.5) φa : πn+*+i(Sn) — > πn+k+1(Sn)

by
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ψa(g)^(acn)og for g^πn+

Then, from the formula (4.2) we have

LEMMA 4.6.

(a) φ8a0pnoi8*=Pt0is*βφs

(b) φs

a(θ) = aθ for θ=EΘ'*ΞlKh, Ks~] .

(c) φa(g) = ag for g=Eg'(Ξπn+k+1(Sn).

Since σhs~Eσ'hs and λh8=Eλ'hs, we have

(4.7) φ8a(σhs) = aσhs and 0£WA,)

In particular, the above lemma shows that the subgroup Ghs is closed with
respect to φs

a, and that φs

a\Ghs is determined by ψa.

PROPOSITION 4.8. Let

g=P*i»*(gi)^Gh8 and g' = p%,ih*(gΊ)^Gmh

for gie=πn+k+i(Sn)/ah*πn+k+i(Sn+k) and

gl^πn+k+1(Sn)/am*πn+k+1(Sn+k)

then the following relations hold:

(1) λhs°λmh

(2) λhs°Gmh~t

(3) λht g'=0.

(4) g°λmh = m

(5) σ f t , ^ ' =

(6) goσmh^tm

(7) ^ - ^ = 0 .

(1) λfls°λmh = (ξsoph)0{ξh°Pm)

= ξ,<ph*ζh)*pm

=ξAmhen+k+i>Pm (by (2.9))
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(2) λhs°σm}l — {ξs°ph)oσmh

~Zs°(ph°(7mh)

=ξAtnhpn) (by (2.19))

(3) Since ph°ih=0, λhs°g' = (ξs°phHihogΊ'pm)=0.

(4) g0λmh = (is0gioph)o(ξh°pm)

= lsoglo{ph°ξh)oPm

=hogίo(mhίn+k+i)oPm (by (2.9))

=mκ(Pmi8*(gi)).

The rest of the proof can be obtained by the similar argument. Q. E. D.

PROPOSITION 4.9.

(a) σhs*λmh = (mhths/ms)λms mod Gms.

(b) σhs°σmh={(tsmtmhths — tmstshthm)/mstsm}άms-h(tshthm/tsm)<7ms Πlθd Gms.

Proof. It follows from Proposition 2.26 that we may assume

σhs^mh-cιλms+bσms+g for a, b^Z

and g=p1kts*(g')^Gms.
Since

we have

m (by im = Ei'm)

= a(ξ,opmojm)+b(t8mis)+(iitog'opmoim) (by (2.19))

= (btsm)is. (by pm*im=0)

Hence ^=0. Similarly, from (2.9) and (2.19) we have

On the other hand, by using ps°is—0,
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Mams)pn . (by (2.9))

Hence

(a??ΐ8)pm = (mhth8)pm in [_Km, Sn+k+1l=Z {pj,
and so

a = mhths/ms.
Therefore,

σhs λmh = (mhth8/m8)λn8 mod Ghs.

Thus the statement (a) is established and (b) also can be shown by the similar
argument. Q. E. D.

The above proposition implies that, for each l ^ m , h, s^r, there exists ele-
ments βms and fis^Gms satisfying two conditions

(4.10) σh8oλmh

and

(4-11) (?hs°<7mh— {(tsm

In particular, we note that

(4.12) /3L-0 if ah=as

and

(4.13) rmS=0 if ah=as or am=ah.

THEOREM 4.14. The multiplication (4.1) is given by the formula:

Θ°Θ' = {aa'tshthm/tsm)σms

+ {aa\tsmtmhths~-trίLStshthm)/(mstsm)Jr(ab/7nhths/iits)

+ a'btmh

J

Γbb/mh}λms

for θ = a<rh8+bλh8+g&ZKh, Ks~] and
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where α, a', b, b'^Z,

g=p*ts*(
and

In particular, for the case h — s=m, we also have

COROLLARY 4.15 (S. Oka, [6]). The multiplication of [_Kh, Kh~] is given by
the formula:

for θ=aidh+bλh+gt=lKh, Kh~\
and

where a, a', b, b''GZ and g, g'^Gh.

Proof of (4.14). It follows from the right distributive law that

Since σmh — Eσ'mh, we have

afΘoσmh — aafσhs^σmh

Jraίbλhs°σmhΛ-af{g^σmh)

= (aa/tshthm/tsm)σms+aa/γ^s

+ {ad (tsmtmhtfis tmst'shf ήm)/ ^lstsm\ Λms

Jr(a'btmh)λms+(a'tmh)ptιs*(gί).

= (aa'tshthm/tsm)σπιs

Jr {aa'(tsmtmhths—tmstshthm)/

Similarly, by using lmh~Eλ'mh, we have

b'θ*λmh= {(ab/mhths/ms)+bb/mh}λms+(mhb
/)ptιs^g1)+ab/β}ίrι

Moreover, by using ih — Ei'h we have
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Thus the proof is completed. Q. E. D.

Let π'h denote the natural projection map to the /ι-th factor,

(4.16) π'h\ V Sn—>Sn.

Furthermore we put

(4.17) βms = π'*js*βis and fms=π'm*Js*rms.

Now, we proceed to investigate the multiplication

(4.18) ZK, K] X IK, K~] — > [_K, IQ

which is defined by the composition of maps.

r r r _

PROPOSITION 4.19. Let g=Σ,gh and g'—'Σgtί be any elements in G=@πtGh,
h=i h=l h=l

where gh = πt(ptt*(gh)) and g'ί = πt(pti*(έ'i))eπtϋh for gh, ί ϋ ε f f n + H i ( V Sn),

Then the following relations hold:

Whims if h — q(1) h s m q

[ 0 otherwise.

ί tmhϊms if h=q
(2) Λ / i s m < z \

{ 0 otherwise.

ί {mhths/ms)Jms+βmS if h=q
(3) h s m q

{ 0 otherwise.

(4)

{\*smtmhths *ms*sh*hm)I f'flsΐsm\ XmsT

(t8hthm/tgm)σmg+fms if h = q

0 otherwise.

(5) JΛ, ^ = 0 .

(6) g°tmq=inqπ*ι(

r

(7) σh8°g'=t8h(lΣ
m — l

(8) g° ffmq = t m q K % ( p g q

(9) gog'=0.

Proof. Since πh°jq=δhqidh, the proof follows from (4.18), (4.10) and (4.11),
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where δhq denotes the Kronecker delta. Q. E. D.

Now, the multiplication of \_K> K~\ is stated as follows:

THEOREM C. Let Θ and Θ' be any elements of [_K, K~\ of the forms

(4.20) θ = Σ (ahsσhs+bhsλhs)+g,
7 l

' = f t Σ {a'kSσhs+b'hsλhs)+g',

ahs, bns, a'hs, b'hseZ for l^h, s^r.

Then the multiplication of [_K, K2 is given by the formula:

(4.21) Θ"Θ'= Σ (Ahsσhs+Bhsϊhs)+ Σπf,(Γh),

where

(4.22) Λhs^ Σ (a'hqaqstsqtqh/tsh),

r

Bhs— Σ {cihqaqs{tshthqtqs—thstsqtqh)/{mstsq)
q=ί

+ a'hqbqsthq+(b'hqaqs?nqtqs/??Ίs)+b'hqbqs7?ιq},
and

(4.23) A - Σ (a'hqthq+b'hqmq)ptι*(iq)
q=l

Σ {a'tι
q,s=l

+ Pt( Σt( Σ
q,s=l

Proof. It follows from the right distributive law that

*θ'= Σ a'nqθoσmq+ Σ θ*λmq+θ*g'.
m,q=l τn,q=l

Since σmq=Eσf

mq, by using (4.2)

Θ°omq= Σ ahsσhs°σmq-\- Σ bhsλhs<>σmq+g<>σmq
h s i h s i
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r r
= Σ aqs{tsqtqm/t9ΊΛ)σms+ Σ aqiπ%,jΛ*(γ%,t

S = l S = l

r _
i 2-ι @qs \\tsmtmqtqs tmstsqtq'm)/WlstSΊn\ λ

"i ^ J {GqsKtsintmqtqs ^mshqtqm)/ \^s^
S = l

Jrπ*ι(tmqp1kt*(gq)+ Σ aqsjs*(rU)

Similarly,

_ r __ r _ _ _
Θ°^mq=: Σ βΛs^Λso^m5+ Σ bhsλfrs0λmq-\-g°λ

hsl hi

_
= Σ {(aqsmqtqs/ms)+bqsmq} λms

On the other hand,

Since ι — Eif,

θ « r i = ( Σ βΛ^ΛS+ Σ bhsJ

r _

= ( Σ (αΛ«σ f t β»2+6Λ^A,
h, s = l

Furthermore, it follows from πhH—ih^πf

h and ph°ih—^ that

όhs°t — (j s° όns°π'h)°ι

and
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r

g°ι = (Έ gκ)°ι
Λ. = l

= Σav» (by ι=Eϊ)
Λ l

Hence

Έ( Σ
771 = 1 h , S =

Therefore,
r _ r

where >lΛβ, Bhs and ΓΛ are defined by (4.22) and (4.23). Q.E.D.

§ 5. A representation by matrices.

Let A—(θhs) and B=(ΰ'ns) be any elements of Mat(r, \_KKi Ks~]), where
θhs, θ'hs^ίKn, Ksl for l̂ g/z, s^r. Then the matrix multiplication

(5.1) Mat (r, [Kh, ^ s ] )xMat (r, [ϋfft, if,]) — > Mat (r, [ϋTΛ, Ks~])

is defined by

w ^y /i £3 — o —^(7 fts;,

where

(5.3) (?g,= Σ 0ii,'0/tm for l g A, 5 ^ r .
771 = 1

In general, this matrix-multiplication does not necessarily satisfy the associa-
tive law. However, it is easy to see that the associative law holds if j * : [_K, K~]
->Mat (r, \_Kh, Ks~]) is a multicative homomorphism since /* is surjective. Further-
more, the element E=(δhsσhs) is an unit element, where δhs denotes the Kronecker
delta.

Here we quote

PROPOSITION 5.4 (A.J. Sieradski, [10]). // n^k+3, the induced homomor-
phism
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is an additive and multiplicative isomorphism, where the multiplication of [_K, K~\ is
defined by the composition of maps and one of Mat (r, \_Kh, KS2) is given by the
matrix-multiplication.

If n^k+3, then it follows from the Freudenthal suspension theorem that

71'1) and [_K, K~] may be considered as a (non-commuta-
tive) ring. Then, by using Theorem C and (5.2) we have

THEORExM D. Let n^k+3, and for each elements Θ and θ'e[ϋf, K~] we
can put

(5.5) θ=(0Λ,)e=Mat(r, lKh) Ks~])

and

where

(5.6) θh8=ah8σhB+bh8λh8+gh8^lKh, Ks~],

θf

hs=a'hsσhs+b'hsλhsΛ-gf

hs^lKh, Ks~] ,

ahSy a'hSy bhs, b'hsίΞZ for 1<ΞΛ, s^r.

Then the multiplicative structure of [K, K~] is given by the formula:

(5.7) θ θ'=(02,)eΞ[/C ϋQ = Mat(r, lKh, KJ),

where

(5.8) θϊs=Ahsσhs+Bhsλhs+ΓhsζΞίKh, K8~] ,

(5.9) Λhs and Bhs are defined by (4.22),

and

(5.10) Γhs= Σ {(a'hqthq+b'hqmq)pti,*(gq,)

+ aqstsqptis*(g'hq)+b'hqaqsβ
q

hs

Jra'hqaqsγ
q

hs} for l g

Remark 5.11. We suppose that n^k+3 and

(5.12) αΛ = αi for 1^/
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Then it is easy to see that

(5.13) βh^ϊls^O for 1̂ /2, s, q^r,

th8=l for l^/i, s^r,

and

mh~mγ for l^h^r.

Under the above assumption, by using Corollary B we have

(5.14) [_K, ZΠ=Mat (r, Z)©Mat (r, Z)©Mat (r, d )

as an additive group,
where

369

Then, by using Theorem D, the multiplication is given by

(5.15) Θ»Θ'=(A, Bf Γ)°{A\ B', P)

for Θ = (A, B,

Here we note the formula

(5.16)

and θ'=(A't B', P)

Ά

0

.0

Ά

0

0

A'

Ά

A'

0

0

A+m^A

0 '

Γ

Af.

0

Ά 0

0 A+m,B

,0 0

'B + BΆ+niiB'B)

0

0

Γ

A.

( A'\ -^

0

For each integer m and an abelian group H, let M(r m, H) denote the
ring of matrices of the form

for A, 5 e M a t ( r , Z), and

AΞMat(r, H).

'A 0 01

(5.16) 0 A+mB Γ

.0 0 A.

Hence it follows from (5.14), (5.15) and (5.16) that we obtain

THEOREM E. Let n>k+3, and we suppose that
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(Xh=<Xi for l ^ h ^ r .

Then
IK, K~] = M(r\ mlt d) as a ring,

where
the integer mλ is the order of aλ and

We denote by Inv (M) the group of all multiplicative invertible elements of
a ring M.

Then we also have

COROLLARY F. Under the same assumptions as above, we have an isomorphism

Eq (K) = Inv (M(r;m1, GO).

EXAMPLE 5.17. Let n ^ m + 4 . Then

Eq(V(S Λ VS n + m ))sInv(M(r; l , πs

m)),

where πi, is the m-th stable homotopy group of spheres.

EXAMPLE 5.18. Let m^2 and CP2 be the two dimensional complex projec-
tive space.

Then

Eq (\JEmCP2) = Inv (M(r 2, 0)).

Proof. Let rj2^π3(S2) be the Hopf map and we put ηt=Eι~2η2 for ί^2.
Then it is well-known that EmCP2=S2+m U e4+m and πM{St)={ηt°η^i}=Z/2Z

V2 + 7Π

= Z 2 for t>2. Thus the assertion easily follows from Corollary F. Q. E. D.

A similar argument also shows

EXAMPLE 5.19. Let m^i and HP2 be the two dimensional quaternion pro-
jective space.

Then

24, 0)).

§ 6. The applications.

In this section, we will investigate the action of Eq (K) on the homotopy
group π2n+k(K)

(6.1) Eq (K) X π2n+ k(K) —> π2n+ k(K)
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which is defined by the composition of maps, and give the another proof of
Ishimoto's main results given in [3], which classify the connected sum of sphere
bundles over a sphere with cross-sections up to homotopy.

First, we recall several basic results about sphere bundles over a sphere.
(See in detail [4]) Let X be a n-sphere bundle over (w + &+l)-sphere which
admits a cross-section, and consider the part of the homotopy exact sequence of
the fibration

πn+k(SO(n)) ^ — > πn+k(SO(n+l))

J

π2n+k(Sn)

Fig. (6.2)

where / means the classical /-homomorphism and the homomorphism P is defined
by Whitehead product, i.e.

(6.3) P(O = K, tnl for

Furthermore, it is well-known that

(6.4) P=-Jod and EoJ=-JoU.

We denote by 1{X) the characteristic element of X. Since X has a cross-section,
there exists some element γ^πn+k(SO(n)) satisfying

(6.5) X(X)=j*(r).

Then it follows from (6.2) that the element J{γ)^Jπn+k(SO(n)) is uniquely deter-
mined up to Pπn+k+i(Sn), and so we define the invariant λ(X) by

(6.6) λ{X)= {J(γ)} Gjπn+k(SO(n))/Pπn+k+1(Sn).

By using this invariant, I.M. James and J.H.C. Whitehead classified the homo-
topy type of sphere bundles over a sphere with cross-sections as follows:

THEOREM 6.7 (I.M. James and J.H.C. Whitehead, [4]). Let Xx and X2 be
n-sphere bundles over the (n + k + l)-sphere which admit cross-sections, and n^k+3.

Then Xx and X2 are of the same homotopy type if and only if λ(X1) = ±λ(X2).

Let Xh be a n-sphere bundle over a (n + £ + l)-sphere for l̂ Ξ/2<Ξr. We de-
note %r

h=χXh the connected sum of the total spaces Xhi h = l, 2, •••, r. Let X's,
s = l, 2, •••, r'', be another set of such bundles. Then it is easy to see that, if
%rh=\Xκ and #ϊLiA"ί are of the same homotopy type, rf must be equal to r by the
homological reason.
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Then the aim of this section is to extend the above result to the case of
connected sums of sphere bundles over a sphere which admit cross-sections, and
our result is stated as follows:

THEOREM G (H. Ishimoto, [3]). Let n^k+3 and k^l. Let Xh and Xί be
n-sphere bundles over (n + k+ϊ)-spheres which admit cross-sections, for l^h^r.

Then the connected sums f Λ = 1 I Λ and %\=iXk are of the same homotopy type if
and only if there exists an unimodular (rXr)-matrix A<^GL(r, Z) such that

(λ(Xί))

(6.8)

<λ(Xί))

= Λ

where the abelian group Jπn+k(SO(n))/Pπn+k+i(Sn) ts considered as a left Z-module.

Remark 6.9. We suppose that the attaching class ah—0. Then mh — \ and

Furthermore, we may assume

(6.10) the map ph is a retraction map to the second factor

ph: SnVSn+k+1—>Sn,
and that

(6.11) the map ςh is an inclusion map

ξh:S
n+k+1—>SnVSn+k+1.

Proof of Theorem G. We put

λ(Xh)={J(n)} and λ(Xί)={J(rϊ)} for l^/z^r ,

where γh, Th^τrn+k(SO(n)). It is well-known that each complex Xh (resp. Xύ)
has the cell-decomposition

Ph
^k+\ (resp. XL=Kh

Ph

Kh=SnVSn+k+1, and

(6.12)

where

(resp. ρ'h=i*J(

Therefore, #Λ=I^Λ and %\^\Xi have the cell-decompositions
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(6.13) * = # ϋ _ A = ( V
ft = l

and

( V
h=i

κ= y κh=
where

ρ = Έjh*(ph)^7czn+k(K) and

Since X and Xf are of the same homotopy type it and only if there exists
a homotopy equivalence Θ^Eq{K) satisfying Θ«ρ — ±pr, for our purpose, it is
sufficient to investigate the action (6.1).

Let e=(0/u)e[\K, K~], where θhg = ahsσh8+bh8λh8+ghs,

ahSy bhs^Zf and ghs=pt2s*(g'hs)^Ghs for

Then we have

(6.14) β i θ = Σ 7 . * ( Σ « Λ . ^ Λ )
β = l 7ι = l

Here,

Since ih — Eϊn and σhs~-idh—idSf it holds that

= ahsis. (by ph°th=O)

Similarly, it follows from ξh=Eζ'h and ph°ξκ~zn+k+i that

Hence we have

(6.15) θh8oph=ahsi8oj(γh)+ah8(ah8+bh8)[ξ9t i8l+i8*(£ghs, tnl)

First, we suppose that Z and Xr are of the same homotopy type. Then
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there exists a homotopy equivalence (9 = (# Λ s )eEq (K) satisfying Θ°ρ = ±p'.
Hence it follows from (6.14) and (6.15) that we have

(6.16) /(rί) = ± Σ ahj(γh) modPπn+k+1(Sn),

and

Σ ah8(ah,+bh8) = ±l for l ^ s ^ r .
Λ l

On the other hand, since Θ = (θhs)^Eq (K), by using (5.17) we have Λ—(±ahs)^
GL(r, Z). Hence the unimodular matrix A satisfies the condition (6.8).

Conversely, we suppose that there exists some unimodular matrix Λ=(ahs)
E G L ( Γ , Z) satisfying the condition (6.8). However, considering (6.7), without
loss of generality we may assume

(6.17) J(γ'9)= Σ ahs]{γh) for l^s^r.
h — l

We put θ = (θhs) = (ahsσhs+bhsλhs)(ΞlK, # ] , and B=(bhs)^Mat(r, Z). Then it
follows from (5.17) that

(6.18) θe=Eq(/O if and only if ^ + 5 e G L ( r , Z).

On the other hand, by using (6.15) and (6.17), we have

Σ θhs°ph= Σ ahsis*J{γh)+ Σ ahs{ahs-\-bhs)[_ξs, is~
Λ l Λ l Λ lΛ = l

= ts*J(ϊs)+ Σ flΛβCflAβ + ^Λ^K*, 2J
Λ = l

Hence it follows from (6.13), (6.14) and (6.15) that

(6.19) θ°p = p' if and only if Σ ahs(ahs+bhs) = l for l ^ s ^

Now we put 5 = ( M ) - 1 - ^ e M a t ( r , Z). Then we also obtain
where £ r is the identity matrix of degree r. Hence, by using (6.18) and (6.19),
we have

(6.20) θ<=Eq(K) a n d θ°p = p ' .

Therefore X and X' are of the same homotopy type. This completes the proof.
Q.E.D.
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