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IMMERSIONS OF SPHERES INTO SPHERES
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1. Introduction.

The purpose of the present paper is to study isometric minimal immersions
/1 S™—-S""! where each sphere is endowed with some Riemannian metric of
constant curvature. For that purpose we use, besides eigenfunctions of the
Laplacian A on S™, some tensors in R™*!, It is known that such immersions
are classified by a natural number s which is called the order. When m and s
are given, we can take n at haphazard. If »n is too large, all immersions f are
not full. Hence we choose n so that most of the immersions f are full. The
method employed in the present paper is expected to be useful in the study of
some geometric properties of the image f(S™).

Isometric minimal immersions f:S™—S" ! of spheres into spheres were
studied by M.P. do Carmo and N.R. Wallach [1]. From their results we see
that there exist three kinds of isometric minimal immersions, namely, standard
minimal immersions, non standard full isometric minimal immersions and non
full isometric minimal immersions. Any stardard minimal immersion is a full
immersion and, when s is given, any two standard minimal immersions ¢; and
¢, of order s are equivalent to each other in the sense that there exists an iso-
metry of S™' which sends ¢,(S™) into ¢,(S™). In the present paper, S™ is
endowed with the standard Riemannian metric g so that S™ can be considered
as a unit hypersphere of R™*! and S™! is considered as a hypersphere of radius
r in R™ with 0 as the center. n is given by

B B (s+m—2)!
n=(02s+m I)Ms!(m—l)!
and » is given by
p._ M
s(s+m—1)

We omit the case s=1 as a too simple case. We also see in [1] that the set of
equivalence classes of isometric minimal immersions for s>3 is parametrized by
a compact convex body L in a certain vector space W, if m=3. The interior
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SOME PROPERTIES OF ISOMETRIC MINIMAL IMMERSIONS 309

points of L correspond to the equivalence classes of full isometric minimal im-
mersions and the boundary points of L correspond to those of non full isometric
minimal immersions. If s=<3, then there exist only standard minimal immersions.

Properties of isometric minimal immersions of spheres into spheres are being
investigated by K. Tsukada [10] and K. Mashimo [3] in various aspects. In
the present paper some other aspects are treated. It presents some fundamental
formulas in tensor form which wait for various applications. As examples of
such applications, some properties of the image, which is considered as a sub-
manifold of the Euclidean space R™ containing the target sphere S*°*, are studied
in connection with the Gauss map.

It is known that there exists an intimate relation between eigenfunctions of
the Laplacian A on S™ and an isometric minimal immersion of S™ into S™~* [9].
Hence in §2 we consider immersions f:S™—S"! brought about by eigenfunc-
tions of order s. For such an immersion which we call an immersion of order
s, we have a tensor of R™*! of degree 2s, which is called the tensor of degree
2s associated with the immersion f. Since S™ is considered as a unit hyper-
sphere of R™*', the position vector » of a point p of R™*' ranging S™ plays
the central role. Thus in §3 such tensors are studied for isometric minimal
immersions. We prove there that the isometric minimal immersions of order
s=3 are rigid, which is in fact already known [1]. A space of tensors of degree
2s which we denote by B, plays an important role in the theory of minimal
immersions. The unit element of B, ; is studied in §4. In §5 standard minimal
immersions are studied. The tensor of degree 2s associated with the standard
minimal immersions of order s is proved to be the unit element of B, ; multiplied
by a certain number. In §6 the relation between an arbitrary isometric minimal
immersion and a standard minimal immersion, both of order s, is studied and it
is shown that any isometric minimal immersion is characterized by a tensor ds.,
of degree 2s and an interval I depending on d,,. This tensor vanishes if s<3
and depends on at least 18 independent variables if s=4 and m=3. This fact
has been pointed out by do Carmo and Wallach [1]. All properties of isometric
minimal immersions are printed in the tensor JM but unfortunately its computa-
tion is perhaps impracticable except for small m, m=3, and s, s=4. In §7 we
return to fundamental formulas given in §3 and deduce some properties of iso-
metric minimal immersions.

The present study was stimulated by the paper of M.P. do Carmo and N.R.
Wallach [1] and some papers of H. Nakagawa, K. Ogiue and T. Itoh [2], [7].
Thus some of the results due to do Carmo and Wallach reappear in the present
paper bearing different appearance. But the method employed here will be of
some use in differential geometry of such minimal immersions as treated in the
present paper. Most of the obtained results are contained in Theorems 3.3, 4.1,
5.2, 5.4, 6.2, 6.3, 7.1, 7.3, 7.4 and Lemmas 3.1, 5.1.

The author wishes to express his hearty thanks to Prof. K. Ogiue for valu-
able suggestions. The author is also grateful to the referee for his kind advice
in improving the paper.
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2. Eigenfunctions of the Laplacian and some tensors-of R™*.

In the present paper we use indices as follows:

A’ 'B’ C’ T :1’ .‘.’ n’
a’ b’ C’ ot ) h’ i’ ]" i :1’ A ’ m+17
K, 2) o :"1) e, M,

and adopt the usual summation convention if possible. Let u?, ---, u™** be func-
tions on S™ such that, for each point p of R™*! on the unit hypersphere S™,
ul(p), -+, u™*(p) are the rectangular coordinates in R™*! of p. Then we have

(2.1 (W24 e F(ume=1,

If we use x!, ---, x™ as the local coordinates of S™ and if the local components
of the standard Riemannian metric g of S™ are denoted by g,,, then we have

(2.2 g =>1B%B%, Bi=du"/0x".

As it is well-known, {u?, ---, ¥™*'} is an orthonormal basis of the space of
eigenfunctions of the Laplace-Beltrami operator A=—g#?V,V, on (S™, g) satis-
fying

Aut=2Au", A=m,

1

[ — Jji
Ssmu’u do= 1 0 Ssmda)

where dw is the volume element of (S™, g).
Let V, be the space of eigenfunctions f of A satisfying

(2.3) Af=2Af, 2;=s(s+m—1).
Then we put
(2.4) n=dim V;

=Q@2s+m—1)(s+m—2)!/(s(m—1)!)

and take n linearly independent eigenfunctions f4€V, (A=1, .-, n)¥such that

(2.5) Zalf4r=r*

where » is a positive constant. Taking an orthonormal basis {&;, ---, &,} of R,
we have an immersion f:S™—S™"! induced by f4&,, where S™! is a hyper-
sphere of radius » in R™. In the sequel this understanding is continued. But,
in general, such an immersion may or may not be isometric and minimal. f is
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an isometric minimal immersion if and only if f satisfies besides (2.5) the con-
dition

(2.6) 24BiBi=gu.,  Bi=of*/ox*.

We denote the linear space of covariant symmetric tensors of degree s of
R™1 by S, If tS; and v, ---, vs are vectors of R™*!, then i(vy, -, vs) ER.
We define a linear subspace S, of S; by saying that teS; if and only if &S,
and

(2-7) Eit(el; €4y VUgy 0, US)__‘O

for any s—2 vectors vs, -+, v and an orthonormal basis {e;, -*+, en+} of R™*.
In the present paper we always use e, in this sense. The following fact is
well-known. t(u, ---, u), where t€S; and u is the vector field on S™ whose
rectangular components in R™*! are u!, ---, u™*! as we have stated above, is an
eigenfunction of the Laplacian on S™ satisfying

2.8) At(u, -, w)=2At(u, -+, u).

Conversely, for any eigenfunction f of A satisfying (2.3) there exists a tensor
teS; satisfying #(u, ---, u)=4. This means that there exists a mapping ¢ : V—S;
with the inverse ¢~': S,—V,. It is to be understood that in the sequel we use
the letter u only in this sense.

Now we consider eigenfunctions f4 satisfying (2.3), (2.5). The n tensors
t4eS; such that #4(u, ---, u)=f* are then denoted by F4 (=¢(f4)). From these
tensors F4 we get a covariant tensor f, , of R™*! of degree 2s such that f; (vy,

oo, Vg Usyr, *, Ugs) IS Symmetric both in vy, =, vs and in vgy, =+, vy and
Ss s, o0, Vs Usary *o0, Vi)
= fosWs1, v, Vas; V1, 00, Us)
by putting
2.9) fs,s(vh e Vs User, 0ty Uss)

:EAFA(Uly ) US)FA(US+17 Ty 7)23) .

fss is called the tensor of degree 2s associated with the immersion f. We can
also consider a tensor F of R™*! of degree s and with value in R™ associated
with the immersion f such that the components in R™ are F4. 5

In order to study the property of f,; we define the space B, of covariant
bi-symmetric tensors of R™*! of bi-degree (s, s) by saying that b, ;= B, . if and
only if by is a covariant tensor of R™*! of degree 2s satisfying
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(210) bs,s(vh iy Vs Usery =0y U2s)
=bg, s(Vss1, **y Vos; V1, "0y Us)
=bs,s(Upy, *** 5 Upsy s Vssr, *** 5 Vas)
for every permutation P of 1, ---, s and every vectors v, -+, vy, of R™*, A

linear subspace Bj,s of ﬁs,s is defined by saying b ;€ B, s if and only if b, =
B;, s and satisfies

(2.11) ibs,s(er, e, Vs, v, Vs Usar, =0, Veg)=0.

As teS; satisfies (2.7), fs s satisfies (2.11), namely, f; ;=B We call B, the
space of bi-symmetric harmonic tensors of bi-degree (s, s).

An immersion f:S™—S™"! caused by eigenfunctions f4 satisfying (2.3) and
(2.5) is called an immersion of order s. Thus we have obtained the following
lemma.

LEMMA 2.1. There exists a mapping @ of the space T of equivalence classes
of 1sometric minimal vmmersions of orvder s into By, s.

Then there arises the following problems.

(o) What is the image of the equivalence class §) of the standard minimal
immersions?

(B) How is the relation between the image of the equivalence class §) of the
standard minimal immersions and the image of an equivalence class { of non
standard isometric minimal immersions?

() is answered in §5. (f) is studied in §6.

3. Some properties of the tensor f; ; of an isometric minimal immersion.

We denote the Riemannian connection on (S™, g) by V. If a is a function
on S™ we understand V;a to be the usual partial derivative 9;a.

As we have explained in § 2, we have, for each eigenfunction /4, the tensor
F* satisfying f4=F4(u, ---, u). As F4 is a symmetric tensor, we get

(31) szAst“‘(V;u)

where F4(V,u) stands for F4V,u, u, ---, u). Similarly we abbreviate F4(u, ---, u)
to F4(u) or even to F4, hence f4=F4, if there is no possibility of confusion,
and FANu, -, Vo, u, -, u) to FAN u, -, Vu).

On the other hand we have
(3.2) Vut V=gt —uty®,

(33) V,,V;u"z—g,,zu"
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where V¢=g#*Y,;. As we use rectangular coordinates in R™*!, we can freely
write u, for u® so that (2.1) may be written u,u*=1, d;pu*u=1 or o0**uu,=1.
Thus we have u,9V;u*=0 and

(3.4 Vot N =gus .

From (2.5), (2.6) and (3.1) we get
(3.5) Saf4Nf4=0, namely, 3, F4u)F*(V,u)=0,
(3.6) "D FAN L )FAN u) =g,

which can be written in terms of f;; as

(3.5) fs, s(Vau; u)=0,

(3.6) o s(Vpu; Vau)=s"2g,21,

where f(Viu; u) or fg(Vau) and f, (V.u; Vu) stand for fo (Viu, u, -, u;
u, -+, u) and fy (Vau, u, -, u; Vu, u, -+, u) respectively.

We also get from (3.1)

3.7) Vi fA=—sguif*ts(s—DFA(T,u, Yau),

where we have used (3.3). We have

(38) EAfAv/tvifA:‘_EAV,(!]‘AVX][A:_g/ll
from (3.5) and (2.6), and, on the other hand,

g* A FA(V o, Vau)=—f*
in view of (2.7) and (3.2). Then we can deduce from (3.7) and (3.8) that —m=
—smr?—s(s—1)r* which proves
(3.9 ri=m/(s(s+m—1)).

(3.7) is the formula for the second fundamental form H,;* of the image
22 f(S™) in R™, where 7 is the embedding 7: S* !> R™.

From (3.7) we get, if s=3,
(3~10) Vuv#vﬁfA:’_Sg/,zjvva_'(S—"l)(guyvij—E‘gvAV,qu)

Fs(s—=D(s—2)F4(V,u, V,u, Vu).
As we have

S AN A=V E A AV ) =AY, A
and

3.11) SN fA=24B =0,
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we get in view of (3.5) and (3.8)
(312) fs,s(vvu, vyu; VXu):O

if s=3. If s=2, we have the simple formula

VvvyvlfA:_zg/zlvva—gvyvlfA’_gvlv[.th

which implies that the second fundamental form is parallel in the normal bundle.
From (3.11) we get, in view of (3.5) and (3.7),

(3.13) S s(Vou; Vu, Vu)=0.
Now let us define a covariant tensor X, of degree p by
(3.14) Yps, -, V) =FssWa, =, Up, U, v, UG U, e, 1)
and a covariant tensor X, , of degree p-+q by
(3.15) Xo.p(Wi, =) we; v1, o+, Vp)
=fo W, o, W Uy e, U Vs e, Upy Uy e, U

These are in fact tensor valued functions on S™ except the case p=¢g=s.
We have from (3.5)

(3.16) 2L(Vu)=0.
From (3.7) and (3.8) we get

—Gua=—5Guar*+s(s— 11V, u, V,u),

hence

(3.17) YV, u, Vu)=—(s(s+m—1)""guz -
(3.6), (3.12) and (3.13) are equivalent respectively to
(3.18) XN Vau)=s"2guz,
(3.19) X:s(Vou, Vau, Vu)=0,

(3.20) X1, o(Nou; Vau, Vu)=0.

At any point of S™ the m-1 vectors u, Viu, -+, V,u are linearly independent
vectors of R™*!, In the sequel we denote by {,) the natural metric in R™*! so
that we have <u, u>=1, <u, V,u>=0. Thus (3.16) implies X,(v—<v, u>u)=0 for
an arbitrary vector v of R™*!. Consequently we get

L) =X,(v—<v, upu-+<{v, upu)
=, W)=, W4 fAfA=r*<v, uy,
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namely
3.21) Liw)=0m/(s(s+m—1))<u, v>.

As for X, we have, in view of (3.4), g.2=<V.u, Vaud, L(V,u, Vu)=
—(s(s+m—1))""Vu, Vauy and Xy(u, Vu)=X,(V;u)=0. Thus we have

Lo(vy, vo)=—(s(s+m—1))" vy, vy,
Xo(u, v1)=X(u, v5)=0

if <u, viy=<u, v,y=0. Consequently, for arbitrary vectors v; and v,, we have,
in view of Zy(u, u)=X,(u)=r?

Loy, v2) =Xo(V1—<v1, uDuAv1, UDU, V3— vy, UDUAVs, UDU)

=—(s(s+m—1))"Kv,—< vy, udu, va—< vy, upuUY+<vy, uY{vy, udr?,

namely,
(3.22) Xao(vy, v2) :s—(si}-%il)%u’ iU, Ve — 'S*(g’_'{:"}hi"l)’ vy, V2.
In such a way we get
(3.23) Xa(w v):%%)lw, wy<u, v>+%<w, w,
(3.24) Xs(vy, Vo, Ug):’gtg%?:l’)"<u, vi<u, voy<u, vy

——Z‘S(s—;n—jlj—zp<u, vp){Vp@, Vpa)? s
(3.25) L, 2(w s v, ) :%%)2 u, wy<u, viy<u, vo)

— S(S+m—:ﬁ<u, wH<vy, v

+;1;<<w, 23<0, V-, 0>, 1))

where vy, v,, vs, v, w are arbitrary vectors of R™*,

As we have Xg, p(wy, =, wq; V1, =+, Vp)=Xp, Vs, =+, Vp; Wy, -+, We), Xy pes(wy,
sy W Uty vty Upy W) =Xg p(Wy, =+, Wq; V1, =, Up) and Xo, p=X,, ¢=X,, the equations
(3.21), (3.22), (3.23) are satisfied by (3.24), (3.25). Though these equations are
useful, it is also important to notice that (3.22) is sufficient for an immersion f
of order s to be isometric and minimal.

In order to prove this, suppose that /4 are eigenfunctions satisfying (2.3)
and (3.22). From (3.22) we get X,(u, u)=r* which shows that (2.5) is satisfied.
Hence we have, for an arbitrary vector w of R™*,



316 YOSIO MUTO
fostw, -, w; w, -, w)y=<w, w)rt.
From this equation we get, for arbitrary vectors v, vy, v,, w of R™*,
fos, w, -, w; w, -, w)y=<Lw, wyw, w)r?
(s—1)fs, sy, Vo, w, =y w; w, =+, W)
+5fs sy, w, o, W vy, W, e, W)

=y, vorlw, wy - 2(s—1)<vs, wHve, wHw, wHHrE,
hence
(s—1)Xy(vy, Vo) 45Xy, 1(vy; Vs)
=(vy, ver+2(s—1)<u, vd<u, v))r’.

This proves that (3.23) is a result of (3.22). As we easily get (2.6) from (3.23),
f:S™S™! is an isometric minimal immersion. Thus we have the following

lemma.

LEMMA 3.1. Let f:S™=S""* be an vmmersion of order s such that n and v
are the numbers giwen mm §1. Then (3.22) 1s a necessary and sufficient condition
for this immersion f to be isometric and minimal.

THEOREM 3.2. [If s=3, the tensor f s of an isometric minimal 1mmersion f
is a tensor such that
m-+3 1

(B.26)s  fao(wi, ws, ws; vy, Vs, Vi) = 3,!,3@11,2),,(*)_,3,1,3(771+2) **,
) =2pwpm, v{Wpw, V{Wpw), Vs,
() =Zp(wpm, v{Wpe), Wpe><{Vs, Vs
FWpw, Ve {Wr@, Wp <V, V1
+wpw, v{Wrpe, Wp@ <V, V).

Proof. When s=3, (3.24) is equivalent to

3
fos(vy, vg, v U, u, u)— 3(7:7%) u, vidlu, vordu, vy

1 =, upu, v<vy, Vs +<u, v2{vs, U

T 3 t2)

+<u, v)<vy, v22)=0

The left-hand-side can be written in the form c¢;;;u*u’u* with constant coefficients
cr;y which are symmetric in &, 7, 7. Hence ¢;;;=0 and we get ¢, wwiwi=0.
This proves (3.26),.
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Now let us notice that, according to the definition, the tensor f; ; induces a
mapping ¢; s: S™XS™—R such that

©s, s(p, q):ZAfA(p)fA(Q)

where f4(p)=F4u(p), -, u(p)). If {fY, -, f*} is an orthonormal basis of the
eigenspace V, then the set {f*, ---, f"} induces an isometric minimal immersion
f:8™—S 1 (1], If {’f%, -+, ’/™} is also a set of eigenfunctions in V;, then we
have
/fA:SBAfB

where [Sz*] is a constant matrix on S™. If, moreover, {'f%, ---, 'f"} induces
an isometric minimal immersion ’f : S®—S"~! such that the tensor ’f, ; associated
with “f is equal to the tensor f; ; associated with f, then we have

LAY [ =2 DA,
namely,

ZaScASH D) fH Q=24 4D)S ) .
As ¢ can move freely on S™ independent of p, we get
2SS (p)=r5(p) .
As p can move freely on S™, we get
2 4Sc*Spt=0cs,

hence [Sp4] is an orthogonal matrix and the immersion ’f is equivalent to the
immersion f. It is easy to see that a similar result is obtained when {f*, ---, /™}
is any basis of V, inducing an isometric minimal immersion f:S™—S""!. Thus
we have the following theorem.

THEOREM 3.3. If f:S™=S"tand 'f:S™>S"! are full isometric mimmal
smmersions of order s, such that fs ='fs s then 'f is equivalent to f.

If s=3, f; s is given by (3.26);., Thus Theorem 3.2 and Theorem 3.3 prove
the rigidity property of isometric minimal immersions of order 3 [1].

4. The unit element of B; ;.

In the foregoing paragraph we found that, if f is an isometric minimal im-
mersion: S™—S"-! of order 3, then the tensor f,; is given by (3.26);. If the
order is 2, f,.. is easily obtained from (3.22) in the form
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Sao(wy, woa; vy, U2):%(<wl; Vil Ws, Vo +{Ws, v10{Wy, Vo)

1
2(m—+1)

which is just the formula (7.14) of [6].

If s=4, f; s acquires some freedom which increases rapidly with s. In order
to study this phenomenon we first define the unit element U of By, ,.

As R™*! is endowed with the natural Riemannian metric <, ), we can extend
the inner product to S; by the formula

<wy, werdvy, v

(4.1) Gy td =2 agti(eyy, -, e ten, -, e,).

Similarly, if b is an element of B, ; and ¢ an element of S;, we can define the
action of B, ; on S;, bet and {ob, by

(bet)vy, -+, ve)=@b)(vs, -, Vs)
:211~~lsb(vl; ty Usy €yttt els)t(elly Tty ezs)
Izzl...zsf(ew ) ezs)b(etly Tty Gy Uy i, vs) .

This implies that b acts as a two-sided linear operator on S;. The unit element
U of By, is defined by

(4.2) U-t=t

where t is any element of S;.
We try to put

4.3) Ulwy, 5 we; v, V)= 00S w) Wy, V1) - Ws, V)

+ 018 1)S Wy W1, Wed<vy, Vo){Ws, Vg -+ {Ws, Vs

+ 0,86 S Wy, We + {Wap-1, Wap)
vy, Vg ++* {Vap-1, U2p>
{Wap+1, U2p+1> W, Vs,

where &, (resp. &,) means the symmetric part with respect to wy, --+, ws
(resp. vy, ==+, vs) and a,#0. The number p, p=[s/2], and the coefficients
ay, ai, **+, a, are chosen in such a way that U satisfies

(4.4) 2U(e,, e, vs, *, Us; Ussr, 7, V2s)=0
and (4.2).
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To that end, we first define g, (wy, =+, ws; vy, =+, vs), 0Zr=p, and
Gr.s-2,8(Ws, 0, Ws; vy, 0, V), 1Sr=p=[s/2], using P, @ for permutations, by

(4.5) Gr.s.s(Wy 0y Wes Vyy o0, Us)
=3p,{Wpw), Wpwe " {Wper-1, Wpeny
<UQ(1): UQ(2)> <UQ(2T—1); UQ(zr)>
{Wparin, Vgeriny = Weasy, Vo) s
(4.6) Gros-0,(Ws, *++, W5 Uy, 0, V)
:EP,Q<WP(3), Wpwy  {Wper-1, Wpeny
<UQ(1>, UQ(2)> <UQ(2r—1), UQ(zr)>

{Wpartn, Vgareny - {Weas), Vew?

where w,, -+, ws, vy, -+, vy are arbitrary vectors of R™*! again and P in (4.6)
is a permutation of 3, ---, s.

Then we get
4.7) 22i8r, 5,5, €, Wy, 0, Wiy, o, V)

=2r(2s—2r+m—1)gy oo, (W, "=+, Ws; V1, =+, Vs)
+(s=2rN(s—2r—1)grs1,5-2, (W3, **+, We; V1, =+, Vs)

where the second term in the right-hand-side should be deleted if 2r+2>s. As
(4.3) is equivalent to

(4.8) (sU=aogo,s s+ a:181,6,5F - +Apgp,s.s,

we get, in view of (4.7),

(4.9) {s(s—=1D)a,+2(2s+m—3)a,} g,
+{(s—2)(s—3)a;+4(2s+m—>5)a.} g,

+{(s=2p+2)(s—=2p+1)ap-1+2p2s+m—2p—1)a,} gy
+(s=2p)s—2p—1)apg ps1
=0

where g, stands for g, ;-s,s.
From (4.6) we see that g, -+, g, are linearly independent if 2r=<s. Then

we find from (4.9) that s=2p-+1 if s is an odd number, and that s=2p if s is
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an even number. The ratio of a,, a;, -~-, a, is obtained from the system of
equations

(4.10) (s=2r+2)(s—2r+a,.,+2r2s+m—2r—1)a,=0

where » ranges 1, 2, ---, p.
We can write (4.10) in the following form :

(s®—s)a,+(2m—+4s—6)a,=0,

{(s*—=s)—4(p—Ds+2p—DEZp—1} ap-1+ {2pm-+4ps—2p2p+1)} a,=0.
Summing up these equations side by side we get
(s*=s)aptast - +ap-1)

+2ma;+2as+ - +pay,)+2p2s—2p—1)a,=0
which becomes

(4.11) (s*=s)aota,+ - +ap)+2mla+2a,+ - +pap)=0

because of
—s2s+2p2s—2p—1)=—(s—2p)(s—2p—1)=0.

If ¢ is any element of S;, then we have
Dt @rs sV, oy Vs oy 0y €t ey, v, ey)
=0 if »>0
=(s D%y, -+, vs)  if r=0

because of (2.7) and (4.5). Hence U is the unit element of B; ; if we put a,=1.
Thus we have proved the following theorem.
THEOREM 4.1. The unit element U of Bs; s is given by (4.3) when p and

Qo, Qy, =+, Ap are determined by

(s—2p)s—2p—1)=0,  a,=1
and (4.10).

5. Standard minimal immersions.

An isometric minimal immersion f:S™—S""! is called a standard minimal
immersion if the set of eigenfunctions {f%, ---, f*} is an orthonormal basis of
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Vs, namely,

G.1) SM FBfAdgy= 584

where M stands for S™, dw is the volume element of S™ and ¢ is a certain
constant.

LEMMA 5.1. (5.1) 18 equivalent to
(5.2) (FB, FAy—=c'684,

namely,
Ezl-»stB(ely ] els)FA(ezp Tty 313)26,58‘4

where ¢’ 1s a constant and
(5.3) FAu, -, u)=r4.

Proof. When rectangular coordinates are taken in R™*! and the components
of F4 and u are written F,,..* and u* respectively, (5.3) is written

Auzl qu:fA.

(5.3) F.

1y

Now, for any natural number ¢ and any vector v of R™*! we have, in view of
the symmetry property of S™,

S u, vHdw=k v, X7
M
and especially

S (W) dw=k,

M

which determines %,. As we have

51‘112 51.2(1‘11241)11 v’24:<v, )
and
29— J 1
{uy VM=, UM -+ 0y 0, U202
=Uy, ulzqvn ceepleg s
we get
(5.4) [ wendo= kg, =k

where d;,..,, is the symmetric part of 8., =+ 01y, 15, DAmely,

q

(5.5) 5-[1...1,2426(1')51.'112 o 57:2(1'112(1 .
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Hence we have

| f2r4dw=F, . 2F

4 11 ... gtes
gb1-tgs SMu u2sdw

B ASryigs
Foyyimags0 .

=k,F,,.

1y
f* being eigenfunctions, F4 satisfy

EiFiils-nlsA:O
and consequently we get

(56) Fll""sBFls+1~--128A51'1ml23
25(s 1) ) Z
= (25)| 07101 ... §s SFJI"'JsBFuu-zsA

which proves the lemma.
At the same time we get

(5.7) (28)1c=2%(s VW2hyc .

¢ is obtained from

(5.8) nc:SMZA( A do=rtc,
where ¢, is the volume of the unit sphere S™.

Remark. We easily get

_ (m=D11@2g—1!!
ko= 2g+m—111

From (4.3) we get
(5.9) Ulu, -, usu, -, u)=a
where a=a,+a,+ -+ +a, and ea,=1. Then the tensor A, ; defined by

(5.10) hs,s=a U

satisfies

(5.11) B sy =y wsu, e, u)=r2,
(5.12) SMhS’S(u’ e usu, e, Wdo=rn .

Now, the inner pioduct defined by (4.1) in S; can be naturally extended to
the inner product in S;. If C and D belong to S, <C, D) is defined by

<C, D>:211~~-13C(911y ) ezs)D(elly ) els) .
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We can also consider any element A of Es,s as a two-sided linear operator acting
on S according to the formula

(AC)vy, =+, v5)=(CoA)vy, -+, vs)
=0 Ay, 0, U5 ey, o, e )Ceyy, o, ey)
:Ezln-lsc(elly Tt ezs)A(ell’ Ty els; Vg, =ty Us) .

We denote by P, the orthogonal complement of S, in S,. If we put n'=
dim P;, we have

n’=dim §;—dim S;=(s+m—2)1/(m (s—2)1).
We have the following theorem.
THEOREM 5.2. U 1s the projection operator: S—S..
Proof. Let 1,‘11...,se§s be the tensors defined by
typors1y o5 V) =U(e,), ooy €505 U1y oy Vs)

:U(UI; Vs 8-71’ ) e]g)'

Then ¢,,.,,€S;, and every be P, satisfies

Ezlmzsb(ezl; Tt els)tjl---,]s(ellr ) ezs):O;
hence
leu-‘bsb(elly ) ezs)U(ejly Tty €hg5 €y ezs>:O .

On the other hand, we can put, in view of (4.3),
(5.13) Ule,, =+, 555 ayy v, €4)
:@(j)ajlll 5;318+@(J)51112U*(213, Tty er, ezly Tty e’bs)

where U* is a certain tensor of degree 2s—2. As the tensor Es,seﬁs,s defined
by

(514) Es,s(e]p Tty €55 Gy ezs):6(j)51121 5]313

is clearly the unit element of ﬁs,s and U satisfies U-U=U-E; ;=U as a linear
operator by virtue of (4.4), we can see that U and V=E; ;—U are projection
operators such that U:S;—S;, V:S,—P,.

COROLLARY 5.3. An element b of 8, belongs to Py if and only if there exists
an element ¢ of S, such that

(5.15) b(vy, =, V) =By vy, varc(vy, -+, V).
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Proof. It is easy to see that, if b satisfies (5.15), then b belongs to P;.
Conversely, if b belongs to P, we have b=(E; ;—U)b. On the other hand, we
get, from (5.13) and (5.14), —((E;, s—U)b)(vy, -+, v5)=S <1, vopc(vs, -+, vs) by
choosing a suitable tensor c.

Let {a', ---, @™ and {a™*!, ---, a®*™} be orthonormal bases of S; and P

respectively and letNthe indices &, %, { run the range n+1, ---, n+n’. Then for
any element X of B; ; we have

X=x540"Qa*+xp:0a°Q@a*+ x 40" Qa+x ,:a"Qa*
where xp4=X4p, Xps=Xep, Xy:=X,. Especially, if X belongs to B;; we have
X—_—"XBA(ZB®[ZA.
If f is a standard minimal immersion with eigenfunctions f*, ---, f™ and

FA=¢(f4), then {F?, .-, F"} is an orthonormal basis of S, and satisfies (5.2) as
we have pointed out in Lemma 5.1. Hence we can put

(5.16) U=up FEQFA

where the coefficients up, are obtained as follows. As U is the unit element of
B; s, we have, in view of (4.2),

uBAFB<FAy Fc>:<uBAFB®FA)'FC:FC ,
hence ¢’'upcFE=F°¢ Thus we get ug,=6dz4/c’, and consequently
(5.17) U= ci,zAF@FA.

From this result and (5.10) we get
h -_7’.2, ) FA®FA
55T g <A :
On the other hand, we have, from (5.17),
1 e 1P

U, oy usu, - u)=—24(4P=—.

¢ c
From this and (5.9) we get ac’=r* and consequently
(518) hs,s:EAFA®FAy

which proves that h, is the tensor of degree 2s associated with the standard
minimal immersion.
Thus we have the following theorem.

THEOREM 5.4. The unit element U of B, s and the tensors F* of a standard
nmememal immersion f: S™—S""! are related by the equation
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U:ci,ZAF"(X)FA, c=art.

6. Non standard isometric minimal immersions.

In order to distinguish a standard minimal immersion from a general immer-
sion, both of order s, we denote the former by A and the latter by f hereafter.
The associated tensors of degree s are denoted by H4 and F4 respectively and
the associated tensors of degree 2s are denoted by h,; and f; ; respectively.
Thus we can write

6.1) hy =3 HAQHA
and
6.2) U= Ci/zAH@HA .

Now let us take an arbitrary tensor bs, ;< B;, s and look for the condition that
there exists an immersion f:S™—S" ! of order s such that b, ;=X 4F4QF4.

As b s is an element of B, and {H?, ---, H"} is an orthonormal basis of
S5, we can express b s in the form

(6.3) bsis:bBAHB@)HA

where bps=b45. From this formula we immediately obtain the following lemma.

LEMMA 6.1. Let b be an element of B;ss. Then there exists a symmetric
tensor of R™ with components bpy such that (6.3) holds. A necessary and sufficient
condition that there exists an immersion f of order s such that b ;=X JFARQF4
is that bs s(u, -+, u;u, -, u)y=r? and bp4 is non-negative. f is full if and only
if rank[bps]=n.

Immersions considered in Lemma 6.1 are not in general isometric minimal
immersions. We now study f; ; for an isometric minimal immersion. According
to Lemma 3.1, an immersion f:S™—S""! of order s is isometric and minimal if
and only if f, =2 4F4QF4 satisfies (3.22), hence

N L .
(64) fs,s(bly Ugy Uy wooy U5 Uy ooy u>_ S(S“'r‘ﬂl—l) <u’ U1><u, U2>
1
T Gmen)

When f is an isometric minimal immersion, we put

(65) fs,s:hs,s+ds,s
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for the associated tensor f;,. Then we have

(6.6) ds s(u, -+, u;u, -, u)=0,
(6.7) ds, sy, vy, U, o, Uz U, -, u)=0

from (6.4) which is satisfied by f; ; and by h,,. Hence we have obtained the
following theorem.

THEOREM 6.2. An immersion f: S™—S™"! of order s is isometric and minimal
of and only if the tensor d s defined by (6.5) satisfies (6.7) for arbitrary vectors
vy, Vs of R™*1,

As u in (6.7) is the position vector of a point p of R™*' which ranges over
S™, (6.7) is equivalent to

(6.8) ds, (s, Ve, W, -, Wi w, e, w)=0

where vy, v, w are arbitrary vectors of R™*!, We denote by D, , the linear
space of tensors d; ;< B; s satisfying

ds, sy, Vo, w, =+, Wi w, -+, w)=0

for arbitrary vectors of R™*!. D, is nothing but the linear space W, of do
Carmo and Wallach [1].

Remark. When s=/, B, corresponds to SH"*!of [1], page 61, but we con-
sider only real valued spherical harmonics. That D; ; corresponds to W, follows
directly from Theorem 1.5 of [1] and Theorem 6.2 of the present paper. It is
not immediate perhaps to prove this from the definition of W, ([1], page 50) and
the definition of D; .

Since c?s,s is an element of B;; there exists a symmetric matrix [dz,] such
that

(6.9) ds s=dp HPQHA.

In order to get the compact convex body L in W, (see [1]) we take arbitrarily
an element d; ; of D, ; and search for the range of ¢ such that there exists an
isometric minimal immersion f satisfying

fs,s:hs,s‘i‘td\s,s'
Let us put
fs,s:fBAHB®HAy fBA:5BA‘|—tdBA.

If [t| is sufficiently small, [fp4] is positive and the isometric minimal immersion
J is full.

_As ds s satisfies (6.6), we get, from (6.9), dg,hBh*=0. Hence, for non-trivial
ds s, the largest eigenvalue 2, of [dp,] is positive and the least eigenvalue 2, of
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[dp4] is negative. Thus [fp,] is positive if and only if ¢ satisfies

and in this case the immersion f is full. If Ai#=-—1 or A;¢t=—1, the immersion
exists but non-full. If A,<—1 or A;#<—1, then there exists no immersion f with
hs +tds s as the associated tensor.

Thus we have proved the following theorem.

THEOREM 6.3. Let f be an isometric nunimal wmmersion of S™ into S™ .
Then the associated tensor fs s 1s expressed by fos=hs s+tds s where hgs 15 the
associated tensor of the standard minimal immersions and ds,  1s an element of
D; ;. t belongs to the interval I(cis,s) defined by 2t=—1, ;t=—1 where A, and
A1 are the largest and the least eigenvalues respectively of the symmetric matrix
[dga] defined by ds, s=dz,HEQH* and ,<0<2,. If t 1s an interior pont of the
interval, [ is a full immersion. If t 1s a boundary point of the interval, f is a
non-full immersion. Conversely, for any element dss of Dss and a number t
belonging to the interval I(aAVs, s) stated above, there exists an equivalence class of
isometric minimal immersions f: S™—S""! whose associated tensor of degree 2s 1s
hs.s“"t(z\s,s-

7. Isometric minimal immersions and the Gauss map.

An isometric minimal immersion f:S™—S""! of order 2 and n=m(m+3)/2
gives a Veronese manifold. Properties of the Gauss map of a Veronese manifold
considered as a submanifold of the Euclidean n-space were studied in [6]. Here
we study more general cases.

1°. We consider isometric minimal immersions f:S™—S™ an isometric
embedding 7: S*'—R" whose image (S™"!) is a hypersphere of radius », and
the Gauss map [: 7o f(S™—G(m, n—m). We assume that the Grassm%nn mani-
fold G(m, n—m) is endowed with the standard Riemannian metric G and the
image I'(7- f(S™)) is endowed with the Riemannian metric G induced from G.
Then we can prove the following theorem.

THEOREM 7.1. The Gauss map I 1s homothetic, namely, the image I'(ze f(S™))
1S homothetic to the standard sphere (S™, g).

Let us choose a suitable covering {U;, A€ 4} of S™ by coordinate neighbor-
hoods, namely, a covering such that, for each coordinate neighborhood U, the
image I'(Gof(U;)) is a coordinate neighborhood in I'(i f/(S™)). Then the local
coordinates x!, ---, x™ valid in U; are still valid in I'GGof(U;)) and the local
components G,; of the Riemannian metric G are given by

G/z,Z:ZAHﬂ/)AI'[XUAgpg
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where H,;* are the local components of the second fundamental form of 7 f(S™).
If Cis an element of D, then we have

(7.1) a, b, v, =, v;v, -, v)=0,
(7.2) Cla, v, -, v;b,0,,v)=0

for any vectors a, b, v of R™*. (7.1) comes from (6.8) while (7.2) comes from
(3.23) just as (6.8) came from (6.4) which is equivalent to (3.22). If v is replaced
by v+c¢ where ¢ is also an arbitrary vector in (7.1), we immediately get

(S_Z)C(a, b’ C, U, o, V30, e, U)+Sc(a, b’ U, » 5, V6,0, ", U)ZO

which implies that C(a, b, v, -+, v; ¢, v, -, v) IS symmetric in a, b, c. On the
other hand, we get, from (7.2),

Cla, ¢, v, =+, v; b, v, -, v)+Ca, v, -, v;b,¢,v, -, v)=0.

Thus we have
(7.3) Cla, b, c, v, -, v; v, -, v)=0,
(7.4) Cla, b, v, -, v;c, v, -, v)=0.
Furthermore we get, from (7.3) and (7.4),
(7.5) (s—3)a, b, ¢, d, v, -+, v; v, =+, V)

+sC(a, b, ¢, v, -, v;d, v, -, v)=0,
(7.6) (s—2)C(a, b, d, v, -+, v; ¢, v, , V)

+(s—1)Ka, b, v, ---,v; ¢, d,v, -, v)=0
which are replaced by simpler formulas if s=2 or 3. Thus we get
(7.7) >iCle,, a, v, -, v; e, b v, -, 0)=0 (5=2),
(7.8) 3iCle,, a, b, v, -, v;e,v, - ,0)=0 (s=3).

As we have (3.7) for the second fundamental form, we get, after some cal-
culation using (2.5), (3.17),

Gua=(sr*+2s(s—1)/(s+m—1))guz
4+ 8%(s—1)"s, o(Vuu, Vou; Vau, Vou)gf? .
On the other hand, we have, in view of (3.2) and (3.18),
Xoo!(Npu, Vou; Vau, Vou)g??

:Ezfs,s(vyu; (29 vlu; ez)_s_zg,ul s
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and, substituting f; s=h; +C into the right-hand-side, we get
(7.9) Lo o(Vou, Vou; Vau, Vou)g?e
=20hs, (Nuu, ey, u, -+, w; Nou, ey, u, -, U)—872guz

by virtue of (7.7). This implies that the difference between a general isometric
minimal immersion and a standard minimal immersion does not appear in the
metric G and we get the following lemma.

LEMMA 7.2. Let h and f be respectively a standard wunimal immersion and
a general 1sometric minimal wmmersion, both of S™ into S™* and of the same
order. Then the Gauss image of 1o f(S™) s 1sometric with the Gauss image of
7oh(S™).

Now we calculate
R s(N e, Npr, 1ty ooy Nau, Vou, u, o, 10)g°7 .

Since U is given by (4.3) and u satisfles <u, V;u>=0 and <{V,u, Viu>=g,1, we
immediately get

(7.10) UVu, Vou, w, -y w; Vau, You, u, =, 0)g°°=ky mguz

where kg ,, is a constant depending on s and m. As h, =c’U, this proves that
the Gauss image of 7-h(S™) is homothetic to the standard sphere (S™, g). As
we have Lemma 7.2, we have proved Theorem 7.1.

2°. Let (a, b) be an open interval of R and f({): S®™>S""! be an isometric
minimal immersion depending differentiably on ¢ in (a, ). Then we can prove
the following theorem.

THEOREM 7.3. There exist no t dependent isometric munimal 1mmersions such
that the Gauss image of iof(t)(S™) s fixed pointwise.

Deformations of an immersed submanifold of a Euclidean space such that
the Gauss image is fixed pointwise are studied for example in [5]. If the Gauss
image of z0 f(t)(S™) is fixed pointwise, there exists a (1, 1)-tensor field ¢ on S™
whose local components a,* satisfy

(7.11) 0B4{/0t=a°B&.
As f(t) is an isometric immersion, we get, from (2.6) and dg,.;/0t=0,
(7.12) Qurta;,=0

where a,:=a0,°gsa.
Now we can consider that the parameter ¢ is involved only in the tensors
F4 associated with the immersion f(¢), and we get, from (3.1) and (7.11),
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(7.13) (dF, ot AN ut it - uts= a0 F, 0 AV utute - uts
Then applying the operator V, we get

—guidFy o A dtutt - us

F(s—I0dF,a A OV ut N uteus - yts

=F o, (Va2 Vo u i e yts—a ,ut e uts
F(s—DV,utta Vouteu' oo u's),
As we have V,a,;*=V,a,* by virtue of (7.11), we get
(a,,,z—a;#)F“...lsAu“ s us

+(S—1)F11.‘,18A(Vﬂu“a;”V(,u’Z—qulla#"Voulz)uls cyts=0,
hence

(@ur—ar)fsslu, =, u;u, -, u)
+(s—=1)a"%(Vpu, Vou)—a,As(Vu, Vou))=0.

Substituting [ s(u, -+, u; u, -+, w)y=r*=m/(s(s-+m—1)) and (3.17) into this equa-
tion, we get

S'l(ayg-*ag#)zo.
Thus we get a,;=0, hence

(dF,,.. 4/ dt)V uttute - u*s=0

It

from (7.13). Consequently the n functions
(dFy,.0 A dbut - uts=¢A(t)
can depend only on t. On the other hand, as we have
SdF it/ dt =0,

¢*(t) are eigenfunctions of order s, hence ¢4(¥)=0. Thus we have proved the
theorem.

3°. The present author studied Gauss-critical immersions and Gauss-critical
submanifolds in [4]. If : is an immersion of a compact orientable C* manifold
M of dimension m into the Euclidean n-space R™ and the Gauss map [': iM—
G(m, n—m) is regular, then the submanifold :M of R"™ and the submanifold
I'GM) of the Grassmann manifold G(m, n—m) can be considered as Riemannian
manifolds (M, g,) and (I'GM), G,) respectively where g, and G; are Riemannian
metrics induced from the standard metrics of R™ and of G(m, n—m) respectively.
Let us assume that {U;, A= A4} is a suitable covering of M by coordinate neigh-
borhoods such that {I'GU;), A=A} is a covering of the image manifold I'(GM)
by coordinate neighborhoods so that we can use x!, ---, x™ as local coordinates
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of M and of I'GM) simultaneously. Using such local coordinates, we see that
the local components of g, and of G, are written g,; and G,; respectively.
Then let us define Vol*(I'(GM), G,) by

Vol*(I'(M), Gl):SM(det [Gpal/det [gual)'*ulgy)

where p(g,) is the volume form of (M, g,). A Gauss-critical immersion ¢, is
defined as an immersion which is a critical point in J, of the integral
Vol*(I'(GM), G,) where J, is the space of immersions : of M such that I'(GM)
is regular. The resulting submanifold /.M is called a Gauss-critical submanifold.
Theorem 4.4 of [4] states the following result.

If 7: M—>R™ is an immersion such that (M, g,) is an Einstein manifold,
I'::M—G(m, n—m) is a homothetic mapping and moreover the components of
the mean curvature vector of :M are eigenfunctions of the Laplacian on (1M, g,)
belonging to an eigenvalue, then : is a Gauss-critical immersion.

In our case, (:M, g,) is 72 f(S™) endowed with the Riemannian metric iso-
metric to the standard sphere (S™, g), hence an Einstein manifold, the Gauss
map is homothetic and

1

~1
7.1 L griH = ST

m

7.

Hence 70 f(S™) is a Gauss-critical submanifold.

From (7.14) we immediately find that the mean curvature vector of zo/(S™)
is parallel in the normal bundle.

Thus we have proved the following theorem (see also [8], [6]).

THEOREM 7.4. Let f:S™—S"! be an isometric mimamal immersion and
7:S"'—>R"™ be an isometric embedding so that the image 1s a hypersphere of
radius v. Then i+ f(S™) 1s a Gauss-critical submanifold and its Gauss map 18
harmonac.
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