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SOME PROPERTIES OF ISOMETRIC MINIMAL

IMMERSIONS OF SPHERES INTO SPHERES

BY YOSIO MUTO

1. Introduction.

The purpose of the present paper is to study isometric minimal immersions
/ : Sm->S7l~1 where each sphere is endowed with some Riemannian metric of
constant curvature. For that purpose we use, besides eigenfunctions of the
Laplacian Δ on Sm, some tensors in Rm+1. It is known that such immersions
are classified by a natural number s which is called the order. When ?n and s
are given, we can take n at haphazard. If n is too large, all immersions / are
not full. Hence we choose n so that most of the immersions / are full. The
method employed in the present paper is expected to be useful in the study of
some geometric properties of the image f(Sm).

Isometric minimal immersions f: Sm->Sn~1 of spheres into spheres were
studied by M. P. do Carmo and N. R. Wallach [1]. From their results we see
that there exist three kinds of isometric minimal immersions, namely, standard
minimal immersions, non standard full isometric minimal immersions and non
full isometric minimal immersions. Any stardard minimal immersion is a full
immersion and, when s is given, any two standard minimal immersions φx and
φ2 of order s are equivalent to each other in the sense that there exists an iso-
metry of S71'1 which sends ψi(Sm) into ψ2(Sm). In the present paper, Sm is
endowed with the standard Riemannian metric g so that Sm can be considered
as a unit hypersphere of Rm+1 and S71'1 is considered as a hypersphere of radius
r in Rn with 0 as the center, n is given by

,9 Λλ ( s+τn-2)!
n = (2s+m—l)—-f TT-T-

s \(m—1)!

and r is given by

s(s~+m-l) *

We omit the case s = l as a too simple case. We also see in [1] that the set of
equivalence classes of isometric minimal immersions for s > 3 is parametrized by
a compact convex body L in a certain vector space W2 if m^3. The interior
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SOME PROPERTIES OF ISOMETRIC MINIMAL IMMERSIONS 309

points of L correspond to the equivalence classes of full isometric minimal im-
mersions and the boundary points of L correspond to those of non full isometric
minimal immersions. If s^3, then there exist only standard minimal immersions.

Properties of isometric minimal immersions of spheres into spheres are being
investigated by K. Tsukada [10] and K. Mashimo [3] in various aspects. In
the present paper some other aspects are treated. It presents some fundamental
formulas in tensor form which wait for various applications. As examples of
such applications, some properties of the image, which is considered as a sub-
manifold of the Euclidean space Rn containing the target sphere Sn~\ are studied
in connection with the Gauss map.

It is known that there exists an intimate relation between eigenfunctions of
the Laplacian Δ on Sm and an isometric minimal immersion of Sm into S71'1 [9].
Hence in § 2 we consider immersions / : Sm-+Sn~1 brought about by eigenfunc-
tions of order s. For such an immersion which we call an immersion of order
s, we have a tensor of Rm+1 of degree 2s, which is called the tensor of degree
2s associated with the immersion /. Since Sm is considered as a unit hyper-
sphere of Rm+1, the position vector u of a point p of Rm+1 ranging Sm plays
the central role. Thus in § 3 such tensors are studied for isometric minimal
immersions. We prove there that the isometric minimal immersions of order
s^3 are rigid, which is in fact already known [1]. A space of tensors of degree
2s which we denote by Bs>s plays an important role in the theory of minimal
immersions. The unit element of Bs,s is studied in § 4. In § 5 standard minimal
immersions are studied. The tensor of degree 2s associated with the standard
minimal immersions of order s is proved to be the unit element of BStS multiplied
by a certain number. In § 6 the relation between an arbitrary isometric minimal
immersion and a standard minimal immersion, both of order s, is studied and it
is shown that any isometric minimal immersion is characterized by a tensor ds>s

of degree 2s and an interval / depending on ds,s. This tensor vanishes if s^3
and depends on at least 18 independent variables if s=4 and m=3. This fact
has been pointed out by do Carmo and Wallach [1]. All properties of isometric
minimal immersions are printed in the tensor ds> s but unfortunately its computa-
tion is perhaps impracticable except for small m, m^3, and s, s^4. In §7 we
return to fundamental formulas given in § 3 and deduce some properties of iso-
metric minimal immersions.

The present study was stimulated by the paper of M.P. do Carmo and N.R.
Wallach [1] and some papers of H. Nakagawa, K. Ogiue and T. Itoh [2], [7].
Thus some of the results due to do Carmo and Wallach reappear in the present
paper bearing different appearance. But the method employed here will be of
some use in differential geometry of such minimal immersions as treated in the
present paper. Most of the obtained results are contained in Theorems 3.3, 4.1,
5.2, 5.4, 6.2, 6.3, 7.1, 7.3, 7.4 and Lemmas 3.1, 5.1.

The author wishes to express his hearty thanks to Prof. K. Ogiue for valu-
able suggestions. The author is also grateful to the referee for his kind advice
in improving the paper.
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2. Eigenfunctions of the Laplacian and some~tensors~of Rm+ί.

In the present paper we use indices as follows:

A , B, C, '•- = 1 , •••, n,

a, b, c, •••, h, i, j , •" = 1 , •••, m - h l ,

tc, λ, μ, ••• = 1, •••, m,

and adopt the usual summation convention if possible. Let u1, •••, um+1 be func-
tions on Sm such that, for each point p of Rm+1 on the unit hypersphere Sm,
u\p), •••, um+1(p) are the rectangular coordinates in i?m + 1 of />. Then we have

(2.1) (uψ+ ~+(um+1)2=l.

If we use x1, •••, xm as the local coordinates of Sm and if the local components
of the standard Riemannian metric g of Sm are denoted by gμλ, then we have

(2.2) g ^ = Σ Λ β J β J , Bi=duh/dx> >

As it is well-known, {u1, •••, wm+1} is an orthonormal basis of the space of
eigenfunctions of the Laplace-Beltrami operator A=—gμλlμlλ on (Sm, g) satis-
fying

Auh—lxu
h, λ1—m)

1 Γ
uJuιdω= rτ-δJi\ dω

where dω is the volume element of (Sm, g).
Let Vs be the space of eigenfunctions / of Δ satisfying

(2.3) Af=λsf,

Then we put

(2.4) n^dimFs

=(2s+m-l)(s+m-2

and take n linearly independent eigenfunctions fA^Vs (Λ=l, •••, n)Jsuch that

(2.5) ΈA(fΛ)2=r2

where r is a positive constant. Taking an orthonormal basis {eu •••, £„} of i?n,
we have an immersion / :S m ->S 7 1 " 1 induced by / ^ A , where S71"1 is a hyper-
sphere of radius r in i?π. In the sequel this understanding is continued. But,
in general, such an immersion may or may not be isometric and minimal. / is
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an isometric minimal immersion if and only if / satisfies besides (2.5) the con-
dition

(2.6) ΣABA

μBί=gμλ, Bf=dfΛ/dxλ.

We denote the linear space of covariant symmetric tensors of degree s of
Rm+1 by Ss. If t^Ss anάvly •••, vs are vectors of Rm+1, then t(vu - , υ8

We define a linear subspace S s of Ss by saying that t^Ss if and only if
and

(2.7) Σtffo, elfvs, - , v,)=0

for any 5—2 vectors z;3, •••, z;s and an orthonormal basis {eu •••, £m+i} of i ? w + 1 .
In the present paper we always use e% in this sense. The following fact is
well-known. t(u, •••, u), where t^Ss and u is the vector field on Sm whose
rectangular components in Rm+1 are u\ •••, um+1 as we have stated above, is an
eigenfunction of the Laplacian on Sm satisfying

(2.8) A t ( u , ••-, u ) = λ s t ( u , •••, u ) .

Conversely, for any eigenfunction / of Δ satisfying (2.3) there exists a tensor
t^Ss satisfying t(u, •••, u)=f. This means that there exists a mapping φ : VS-^SS

with the inverse φ'1: S S -^F S . It is to be understood that in the sequel we use
the letter u only in this sense.

Now we consider eigenfunctions fA satisfying (2.3), (2.5). The n tensors
tA(ΞSs such that tΛ(u, •••, u)=fΛ are then denoted by FA (=φ{fA)). From these
tensors FA we get a covariant tensor fs>s of Rm+1 of degree 2s such that fs,s(vu

•••, v s ; fs+1, •••, v2s) is symmetric both in vly •••, vs and in z;s+1, •••, z;2s and

/ * , « ( V i , •'• , Vs] Vs+1, - , V2S)

by putting

(2.9) f s , s ( v u >•-, v s ; vs+i, •••, v2S)

= ΈΛFA(VI, ••• , v s ) F A ( v s + 1 , ••• , ι ; 2 β ) .

/ S ) S is called the tensor of degree 2s associated with the immersion /. We can
also consider a tensor F of Rm+1 of degree s and with value in Rn associated
with the immersion / such that the components in Rn are FA.

In order to study the property of fSιS, we define the space BStS of covariant
bi-symmetric tensors of Rm+1 of bi-degree (s, s) by saying that bs<s^Bs , if and
only if bSιS is a covariant tensor of Rm+1 of degree 2s satisfying
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(2.10) b s > s ( v u •••, v s ; v s + u •••, v 2 s )

= b s , 8 ( v g + 1 , -" , v 2 s ; v u •••, v s )

:=zOS!s\Vp{i), '" , Vp(S) J Vs+1, '•• , Vzs)

for every permutation P of 1, ••• , s and every vectors vlf •••, z;2s of Rm+1. A
linear subspace Bs>s of Bs>s is defined by saying bSιS^Bs>s if and only if bs>s^
Bs>s and satisfies

(2.11) Σlibs,s(eι, elt v3, •••, vs v8+1, •••, iλ> s)=0.

As ί e S s satisfies (2.7), /,,, satisfies (2.11), namely, / u G β u . We call 5,,, the
space of bi-symmetric harmonic tensors of bi-degree (s, s).

An immersion / : Sm->Sn~1 caused by eigenfunctions fΛ satisfying (2.3) and
(2.5) is called an immersion of order s. Thus we have obtained the following
lemma.

LEMMA 2.1. There exists a mapping Φ of the space g of equivalence classes
of isometric minimal immersions of order s into Bs>s.

Then there arises the following problems.
(a) What is the image of the equivalence class ΐj of the standard minimal

immersions?
(β) How is the relation between the image of the equivalence class ϊj of the

standard minimal immersions and the image of an equivalence class f of non
standard isometric minimal immersions?

(a) is answered in § 5. (β) is studied in § β.

3. Some properties of the tensor fSι s of an isometric minimal immersion.

We denote the Riemannian connection on (STO, g) by 7. If a is a function
on Sm we understand lλa to be the usual partial derivative dλa.

As we have explained in § 2, we have, for each eigenfunction fΛ, the tensor
FA satisfying fΛ=FΛ(u, •••, u). As FA is a symmetric tensor, we get

(3.1) lλf
A=sFA{Ίλu)

where FA(1 λu) stands for FAC7χu, u, •••, u). Similarly we abbreviate FΛ(u, •••, u)
to FΛ(u) or even to FA, hence fA~FA

y if there is no possibility of confusion,
a n d FA{lλu, •••, lκu, u, •••, u) t o FA(lλu, •••, l κ u ) .

On the other hand we have

(3.2) Iμ

(3.3)
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where 1μ—gμλτ7λ. As we use rectangular coordinates in Rm+1, we can freely
write uh for uh so that (2.1) may be written UiUι — l, δihu

ιuh — \ or δί

Thus we have ul

T7^ut=0 and

(3.4) lμu%lλu*=gμλ.

From (2.5), (2.6) and (3.1) we get

(3.5) ΈΛfΛVχfΛ=0, namely, ΣAFA(U)FAC7XU)=0 ,

(3.6) s*T>AFAφμu)FA

which can be written in terms of fSiS as

(3.5)' Λ

(3.6)' f..,C7

w h e r e / S > S ( 7 ^ M ; U) o r f s , s { V λ u ) a n d f S ί S { x 7 μ u ; V χ u ) s t a n d f o r f s , s ( ^ λ U , u , ~ , u ;
u, •••, M) a n d fSlS{Vμu, u, •••, w,lλu, u, •••, M) respect ive ly .

W e also g e t f r o m (3.1)

(3.7) 7 /̂̂  =

where we have used (3.3). We have

(3.8) Σ^W/^-Σ^/^/^-^

from (3.5) and (2.6), and, on the other hand,

g'nFA(lμu, lλu) = -fA

in view of (2.7) and (3.2). Then we can deduce from (3.7) and (3.8) that —m =
—smr2—s(s—l)r2 which proves

(3.9) r2=m/(s(s + m-ϊ)).

(3.7) is the formula for the second fundamental form Hμλ

A of the image
ι°f(Sm) in Rn, where i is the embedding 2: Sn-1-^Rn.

From (3.7) we get, if s^3,

(3.10) lvlμlif
A=-sgμλlJ

A-{sμ

+ s(s-l)(s-2)FA(lvu, lμιι, lλu).

As we have

ΈΛ/^^^X fA=^(ΣAfAVμVifA) - ΣΛfV.
and

(3.11) ΣΛ/^Vi/^Σ^ί^/^ 0,
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we get in view of (3.5) and (3.8)

(3.12) f*.tf»u,lμ

if s^3. If s=2, we have the simple formula

which implies that the second fundamental form is parallel in the normal bundle.
From (3.11) we get, in view of (3.5) and (3.7),

(3.13) fUV»u;lμ

Now let us define a covariant tensor Xp of degree p by

(3.14) X P ( v u •-•, v p ) = f s , s ( v i , •••, v p , u , •••, u u , ••• , u)

and a covariant tensor XQιP of degree p+q by

(3.15) y>q,v(Wu '" , Wq',Vu ••* , Vp)

= fs,s(wu •••, wq, u, -" , u ι;2, •••, z;p, u, •••, M) .

These are in fact tensor valued functions on Sm except the case p—q — s.
We have from (3.5)'

(3.16)

From (3.7) and (3.8) we get

I)l2(lμu, 1 λu),
hence

(3.17) X2φμu, 7iM) = ^

(3.6)', (3.12) and (3.13) are equivalent respectively to

(3.18) *i.iWμu',Vχu) = s-*gμX,

(3.19) χ8(7,M, lμu, 7 Λ M ) = 0 ,

(3.20) XiΛ^,u

At any point of Sm the m+1 vectors u, lλu, •••, Vmw are linearly independent
vectors of Rm+1. In the sequel we denote by <, > the natural metric in Rm+1 so
that we have <M, M> = 1, <M, V ^ > = 0 . Thus (3.16) implies %i(z;—<v, w>w)=0 for
an arbitrary vector z; of i?m + 1. Consequently we get

, uyu)
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namely

(3.21) Z1(v)=(m/(s(s+m-l)))<M, v> .

As for X2 we have, in view of (3.4), gμλ — ̂ μUy lχu)f X<^μu,
-(s(s+m-l)Y\lμu, lλu> and X2(u, 7^M)=%I(7^M)=0. Thus we have

l))-\vly v2) ,

X2(u, VI)=%2(M, ̂ 2)=0

if <M, VIs) —{u, v2)y—Q. Consequently, for arbitrary vectors IΊ and t>2, we have,
in view of X2(u, u)=X1(u)=r2,

vu u}u, v2—(v2, w>w-r<i>2, u}u)

= — (s(s+m—ϊ))-\v1—(v1, u}u, v2—(v2, M>M> + <V1, u}(v2, u}r2,
namely,

m+1
(3.22) Uυu " ) =

In such a way we get

(3.23) Xhl(w; y) =

(3.24) X3(vlf v2,
 vs) = --r-j-^^γr<u, v^iu, v2><u, v3)

2 s ( s + m - l ) ^ x ^ ^ ( υ / x ^ ( 2

, Q ^ y . , (s-2)(m-l).
(3.25) % 1 ) 2 (^; V l f V 2 ) = 1 5 ί - F _ i 5 - < M , w X u , VlXu, v2>

1 ,
s ( s+m-l)

where i^, f2, v3, v, w are arbitrary vectors of Rm+1.
A s w e h a v e X q , p ( w l f - y w < ι ) v 1 , •••, v p ) — X p , q ( v u •• , v p \ w u •••, w q ) , X q > p + 1 ( w l y

•••, u;β; IΊ, •••, i;p, u)—XqίP(wlf •••, u;2; Vj, •••, Vp) and X0>p=XpQ=χp> the equations
(3.21), (3.22), (3.23) are satisfied by (3.24), (3.25). Though these equations are
useful, it is also important to notice that (3.22) is sufficient for an immersion /
of order s to be isometric and minimal.

In order to prove this, suppose that fA are eigenf unctions satisfying (2.3)
and (3.22). From (3.22) we get X2(u, u)=r2 which shows that (2.5) is satisfied.
Hence we have, for an arbitrary vector w of Rm+1,
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f S ) S ( w , ~,w; w, •••, w) = <w, w)sr2.

From this equation we get, for arbitrary vectors v, vlf v2, w of Rm+1,

fs.s{Vy w, -" , w; w, •••, w) = ( v , w>(w, w > s ~ V 2 ,

(s—l)fs,s(vi, v2, w, •••, w; w, •••, w)

vu w, •••, w;v2, w, •••, w)

1)<Z;1, M;><V8, W><W, wy~*)r\

hence
(s—l)Z2(^i, v2) + sXi,i(vi; v2)

= «vi, v2>+2(s-lKu, ^Xw, z;2»r2.

This proves that (3.23) is a result of (3.22). As we easily get (2.6) from (3.23),
/ : Sm->Sn~1 is an isometric minimal immersion. Thus we have the following
lemma.

L E M M A 3.1. Let f: Sm-^Sn~1 be an immersion of order s such that n and r
are the numbers given in § 1. Then (3.22) is a necessary and sufficient condition
for this immersion f to be isometric and minimal.

T H E O R E M 3.2. // s—3, the tensor fs>s of an isometric minimal immersion f
is a tensor such that

(3.26)3 fUwu wt, w.;vu v2, va) = f ^ ^

Proof. When s—3, (3.24) is equivalent to

f s . s ( v l f v 2 y v s ; u } u , u)— - o Γ m J (

The left-hand-side can be written in the form cUjiuku3u% with constant coefficients
ckji which are symmetric in k, j , i. Hence ckji=0 and we get ckjiw\w{w\—0.
This proves (3.26)3.
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Now let us notice that, according to the definition, the tensor fStS induces a
mapping φs>s: SmxSm->R such that

where fA(p)=FA(u(p), •••, u(p)). If {f\ •••, fn} is an orthonormal basis of the
eigenspace Vs, then the set {f\ •••, fn\ induces an isometric minimal immersion
/ : Sm-^Sn~1 [1], If {'f\ •••, 77i} is also a set of eigenfunctions in Vs, then we
have

'fΛ=SB

ΛfB

where [ S ^ ] is a constant matrix on Sm. If, moreover, {'/*, •••, '/n} induces
an isometric minimal immersion ' / : Sm->Sn~1 such that the tensor 'fStS associated
with ' / is equal to the tensor fs>s associated with /, then we have

namely,

As q can move freely on Sm independent of p, we get

As p can move freely on Sm, we get

hence [S 5

Λ ] is an orthogonal matrix and the immersion 'f is equivalent to the
immersion /. It is easy to see that a similar result is obtained when {f1, •••, fn)
is any basis of Vs inducing an isometric minimal immersion / : Sm->S71"1. Thus
we have the following theorem.

THEOREM 3.3. // / : Sm->Sn-χ and ' / : Sm->Sn~1 are full isometric minimal
immersions of order s, such that f8,s—'fs,8> then ff is equivalent to f.

If s=3, fStS is given by (3.26)3. Thus Theorem 3.2 and Theorem 3.3 prove
the rigidity property of isometric minimal immersions of order 3 [1].

4. The unit element of Bs>s.

In the foregoing paragraph we found that, if / is an isometric minimal im-
mersion: S™-^71"1 of order 3, then the tensor / 8 > 8 is given by (3.26)3. If the
order is 2, / 2 ) 2 is easily obtained from (3.22) in the form
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«M>1,U W2\ VU V2)=—

which is just the formula (7.14) of [6].
If s^4, fs>s acquires some freedom which mcreases rapidly with s. In order

to study this phenomenon we first define the unit element U of Bs>s.
As Rm+1 is endowed with the natural Riemannian metric <, >, we can extend

the inner product to 5S by the formula

(4.1) <tu ίί> = Σtr..t,ίi(e»1, - , els)t2(elv '- , els).

Similarly, if b is an element of Bs>s and t an element of Ss, we can define the
action of Bs>s on Ss, b°t and t°b, by

φ ° t ) ( v l f •••, v s ) = ( t o b ) ( v l 9 ••', v s )

= Σ ι r . ι 8 b ( v u •••, v 8 ; e l v •••, e l s ) t ( e t l , •••, e l s )

= Σ t r . . ι , ^ ί l , •••, β ι s ) b ( e t l , '•-, e t 8 ; v u ~ , v s ) .

This implies that 6 acts as a two-sided linear operator on Ss. The unit element
Z7 of BSιS is defined by

(4.2) ί/of=f

where ί is any element of Ss.
We try to put

(4.3) U(wlf -" , ws; v1} -" , vs)=a0

(&(w)<w1, v{> ••• <ws, vs>

p-1} w2p}

p-lf v2py

(w2p+1, v2p+1y -" (ws, vsy,

where <5 ( l ϋ ) (resp. © ( t ) )) means the symmetric part with respect to wlt •••, ws

(resp. vlf •", v8) and apφ0. The number p, p^[_s/Z]} and the coefficients
a0, au •••, α p are chosen in such a way that U satisfies

(4.4) Σ,iU(eι, elf vZy •••, vs

and (4.2).
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T o that end, w e first define gr,s,s(wu •••, ws; vu •••, vs), O^r^p, and
-2,s(w3, " , ws) vu •••, vs), l g r ^ / > ^ [ s / 2 ] , using P, Q for permutations, by

(4.5) gr,s,s(Wu " , Ws\ VU - , Vs)

(4.6) gr,*-2,s(Ws, •" , Ws) Vlf '•• , V8)

where wlf •••, ws, vu •••, z;s are arbitrary vectors of i ? m + 1 again and P in (4.6)
is a permutation of 3, •••, s.

T h e n we get

(4.7) Σ l i g r , s , s ( e ι , e l f w 3 , •••, M ; , ; V i , ••• , v β )

= 2 r ( 2 s — 2 r + m — l ) ^ r , β - 2 , β ( i ί ; 8 , ••• , w s ) v u •••, ι;β)

+ ( s — 2 r ) ( s — 2 r — l ) g r + i > s - 2 , s ( w 3 , •••, w / s ; V i , •-, v « )

where the second term in the right-hand-side should be deleted if 2r+2>s. As
(4.3) is equivalent to

(4.8) (s l)2U=aQg0ίS>s-\-a1g1>SiS-{- ravgv>SjS)

we get, in view of (4.7),

(4.9) {s(s

where gr stands for gr,s-2,s
From (4.6) we see that gι9 ••-, gr are linearly independent if 2rfgs. Then

we find from (4.9) that s=2p+l if s is an odd number, and that s—2p if s is
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an even number. The ratio of a0, aly •••, ap is obtained from the system of
equations

(4.10) (s-2r+2)(s-2r+l)ar-1+2r(2s+m-2r-l)ar=0

where r ranges 1, 2, •••,/>.
We can write (4.10) in the following form:

{(s 2 "S)-4(r- l )s+2(r- l)(2r- l)} ar-i+ {2rm+4rs-2r(2r+ΐ)} ar=

{(s2-s)-4(p-l)s+2(p-l)(2p-l)} ap-!+ {2pm+4ps-2p(2p + ϊ)}

Summing up these equations side by side we get

••• +pap)+2p(2s-2p-l)ap=0
which becomes

(4.11) ( s 2 - s ) ( α 0 + α 1 + - +ap)+2m(a1+2a2+ ••• +pap)=0

because of

If t is any element of Ss, then we have

Έ ι r . ι8gr.s.s{vlf '",vs; etl, — , e t 8 ) t ( e t l , —, e t g )

=0 if r > 0

= ( s ! ) 2 ^ i , ~,vt) if r = 0

because of (2.7) and (4.5). Hence ί/ is the unit element of BStS if we put ao=l.
Thus we have proved the following theorem.

THEOREM 4.1. The unit element U of BSιS is given by (4.3) when p and
a0, ai, •••, ap are determined by

2/>-l)=0, α o = l
(4.10).

5. Standard minimal immersions.

An isometric minimal immersion / : Sm—>Sn~1 is called a standard minimal
immersion if the set of eigenfunctions {/*, •••, fn} is an orthonormal basis of
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Vs, namely,

(5.1) \ fBfAdω=cδBΛ

where M stands for Sm, dω is the volume element of Sm and c is a certain
constant.

LEMMA 5.1. (5.1) is equivalent to

(5.2) (FB, FA>--=c'δBA,

namely,

Σ l r , / S K > -,ex,)F\exv - , eH)=c'oBA

where cf is a constant and

(5.3) FA(u, - , u) = fΛ.

Proof. When rectangular coordinates are taken in Rm+1 and the components
of FΛ and u are written Ftr..ls

A and uι respectively, (5.3) is written

(5.3/ Flr..lβ

Au*i-ut>=fΛ.

Now, for any natural number q and any vector v of Rm+1 we have, in view of
the symmetry property of Sm,

and especially

ί (
J M

which determines kq. As we have

and

u l 2 q v l ί •••
we get

(5.4) f w^ . ut**dω=kgδir..ι ^kqδ1*"1**

J M

w h e r e δir..l2q is t h e s y m m e t r i c p a r t of δill2 ••• δi2q_ll2q, namely,

(5.5) δiv..t2q=&(i)δill2 ••• δi2q_ll2q.
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Hence we have

fΛ being eigenfunctions, FA satisfy

and consequently we get

W.Ό) Γ^Γ^^^s Γis + Γ~ι2s °

( 2 s ) | ° ° r>V'U rH-^s

which proves the lemma.

At the same time we get

(5.7) (2s)\c=2s(s\)2ksc'.

c is obtained from

(5.8) nc

where cm is the volume of the unit sphere Sm.

Remark, We easily get

*q~ (2q+m-l)\l Cm'

From (4.3) we get

(5.9) U(u, •••, u; u, •••, u)=a

w h e r e β = β o + β i + ••• + β ^ a n d aQ=l. T h e n t h e tensor hs>s defined by

(5.10) h8.s=a-lrtU

satisfies

(5.H) h s , s ( u , - , u ] u, - , w ) - r 2 ,

(5.12) I hSίS(u, '-•, u; u, -', u)dω=r2cm.
J M

Now, the inner product defined by (4.1) in S s can be naturally extended to
the inner product in Ss. If C and D belong to SSy <C, Z)> is defined by
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We can also consider any element A of Bs>s as a two-sided linear operator acting
on Ss according to the formula

~,v,)={CoA){vu ' " 9 v 9 )

^ Σ M . ^ I , •••, v s ; e % v ••-, e l f t ) C ( e l v •••, e l s )

= Σ , ι r ~ ι s C ( e l l , •••, e l s ) A ( e % 1 , •••, ̂  v i , •••, v s ) .

We denote by P5 the orthogonal complement of Ss in Ss. If we put n'~
dimP5, we have

n'=dim Ss-dim Sβ=(s+m-2) !/(m !(s-2)!).

We have the following theorem.

THEOREM 5.2. U is the projection operator: SS~->SS.

Proof. Let tjr..Js^Ss be the tensors defined by

= U(vu •••, vs; eJv •••, e ; β ) .

T h e n tJr..js^Ss, a n d e v e r y & E ^ sat i s f ies

Σ t r t A ^ , - , e t ί ) ^ r . . J , ( β l l , •-, el8)=0,
h e n c e

Σ t r . i^C^t!, •••, els)U{eJv •••, e ^ e l χ , ••• , els)=0.

O n t h e o t h e r h a n d , w e c a n p u t , in v i e w of (4.3),

(5.13) U{eJl,.:,ej9;etl,~.,el8)

=<BU)δJlll ••• δJsls+&O)δJlJ2U*(eJ3, •••, eJs, e%v •••, elg)

where U* is a certain tensor of degree 2s—2. As the tensor Es S^BS s defined
by

(5.14) Es,s(eJv •••, ̂ ; s; elχ, •••, e ι , )=©^)δ J l l l ••• δ J β l ,

is clearly the unit element of Bs,s and Z7 satisfies U U=U EStS=U as a linear
operator by virtue of (4.4), we can see that U and V = EStS—U are projection
operators such that U : SS->5S, V : SS->PS.

COROLLARY 5.3. 4̂n element b of Ss belongs to Ps if and only if there exists
an element c of Ss-2 such that

(5.15) b(vlf •" , vs)~<B{v){vι, v2yc(vo} •••, v s ) .
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Proof, It is easy to see that, if b satisfies (5.15), then b belongs to Ps,

Conversely, if b belongs to Ps, we have b—(ESiS—U)b. On the other hand, we

g e t , f r o m ( 5 . 1 3 ) a n d ( 5 . 1 4 ) , — { { E s > s — U ) b ) { v l f •••, v 8 ) = ® i Ό ) < V i , v 2 y c ( v z , •••, v s ) b y

choosing a suitable tensor c.

Let {a\ •••, a71} and {an+1, - , an+n'} be orthonormal bases of 5 S and Ps

respectively and let the indices ξ, η, ζ run the range n + 1, •••, n + n'. Then for

any element X of BSiS we have

where XBA=XAB> XBξ=XξB, xηξ—^ξη Especially, if X belongs to BSlS, we have

If / is a standard minimal immersion with eigenfunctions f1, •••, fn and

FA~φ(fA)y then {F1, •••, Fn} is an orthonormal basis of S s and satisfies (5.2) as

we have pointed out in Lemma 5.1. Hence we can put

(5.16) U=uBAF
B®FA

where the coefficients uBA are obtained as follows. As U is the unit element of

BStS, we have, in view of (4.2),

hence c'uBCF
B—Fc. Thus we get uBA=δBA/c', and consequently

(5.17) U = ^7YiAF
A®FA.

From this result and (5.10) we get

On the other hand, we have, from (5.17),

U(u, •», u u, -u)=±-%A{fA)*=

From this and (5.9) we get ac'—r2 and consequently

(5.18) hs>s=^A

which proves that ^ s , s is the tensor of degree 2s associated with the standard

minimal immersion.

Thus we have the following theorem.

THEOREM 5.4. The unit element U of Bs>s and the tensors FA of a standard

minimal immersion f: Sm-^Sn~1 are related by the equation
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6. Non standard isometric minimal immersions.

In order to distinguish a standard minimal immersion from a general immer-
sion, both of order s, we denote the former by h and the latter by / hereafter.
The associated tensors of degree s are denoted by HA and FA respectively and
the associated tensors of degree 2s are denoted by hs>s and fSiS respectively.
Thus we can write

(6.1) hs,s

and

(6.2) U ^ ^

Now let us take an arbitrary tensor bs,s^BSiS and look for the condition that
there exists an immersion / : Sm-+Sn-1 of order s such that bs>s=Σ,AFA(g)FA.

As bSiS is an element of Bs>s and {H1, •••, Hn) is an orthonormal basis of
SSj we can express bs>s in the form

(6.3)

where bBA—bAB- From this formula we immediately obtain the following lemma.

LEMMA 6.1. Let bS)S be an element of BStS. Then there exists a symmetric
tensor of Rn with components bBA such that (6.3) holds. A necessary and sufficient
condition that there exists an immersion f of order s such that bSiS~YlAF

A®FA

is that bs,s(u, •••, u; u, •••, u) — r2 and bBA is non-negative, f is full if and only
if

Immersions considered in Lemma 6.1 are not in general isometric minimal
immersions. We now study fs, s for an isometric minimal immersion. According
to Lemma 3.1, an immersion / : Sm->Sn~1 of order s is isometric and minimal if
and only if / S ί S = Σ ^ ® ^ x satisfies (3.22), hence

(6.4) fs,s(vu v2, u, •" , u; u, •••, u)
γ

S\S~j"77l —

s ( s + m - l )

When / is an isometric minimal immersion, we put

(6.5) fs,s=hSίS+ds>s
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for the associated tensor fs>s. Then we have

(6.6) d S t 8 ( u , '•-, u u , •••, M ) = 0 ,

(6.7) d S t S ( v u v 2 , u , •••, u u , •••, M ) = 0

from (6.4) which is satisfied by fSιS and by /zs>s. Hence we have obtained the
following theorem.

THEOREM 6.2. An immersion f : Sm-+Sn~1 of order s is isometric and minimal
if and only if the tensor dStS defined by (6.5) satisfies (6.7) for arbitrary vectors
vlf v2 of Rm+1.

As u in (6.7) is the position vector of a point p of Rm+1 which ranges over
Sm, (6.7) is equivalent to

(6.8) d s > s ( v u v 2 , w, •••, w w, •••, w ) = 0

where vu v2> w are arbitrary vectors of Rm+1. We denote by DStS the linear
space of tensors ds>s^BStS satisfying

d s , s ( v l f v z , w, •••, w M;, •••, w ) = 0

for arbitrary vectors of Rm+1. DStS is nothing but the linear space W2 of do
Carmo and Wallach [1].

Remark. When s=l, Bs>s corresponds to SHι>ί of [1], page 61, but we con-
sider only real valued spherical harmonics. That Ds> s corresponds to W2 follows
directly from Theorem 1.5 of [1] and Theorem 6.2 of the present paper. It is
not immediate perhaps to prove this from the definition of W2 ([1], page 50) and
the definition of Ds>s.

Since ds>s is an element of Bs>s, there exists a symmetric matrix [_dBA~] such
that

(6.9) ds,s=dBAH
B®HA.

In order to get the compact convex body L in W2 (see [1]) we take arbitrarily
an element dSίS of DSίS and search for the range of t such that there exists an
isometric minimal immersion / satisfying

Let us put

If \t\ is sufficiently small, UBΔ is positive and the isometric minimal immersion
/ is full.

As dSίS satisfies (6.6), we get, from (6.9), dBAh
BhA=0. Hence, for non-trivial

dg.s, the largest eigenvalue λ2 of [dBA] is positive and the least eigenvalue Λ of
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[_dBΔ is negative. Thus \_f BΔ is positive if and only if t satisfies

and in this case the immersion / is full. If λ2t= — l or Xj= — 1, the immersion
exists but non-full. If λ2t< — 1 or λj< — l, then there exists no immersion / with
hs>s+tds>s as the associated tensor.

Thus we have proved the following theorem.

THEOREM 6.3. Let f be an isometric minimal immersion of Sm into S71"1.
Then the associated tensor fSiS is expressed by fs,s = hs,s

J

Γtds,s where hStS is the
associated tensor of the standard minimal immersions and dStS is an element of
Ds>s. t belongs to the interval I(ds>s) defined by λ2t^ — l, λj^ — l where λ2 and
λι are the largest and the least eigenvalues respectively of the symmetric matrix
[_dBΔ defined by dStS — dBAH

B®HA and λλ<0<λ2. If t is an interior point of the
interval, f is a full immersion. If t ts a boundary point of the interval, f is a
non-full immersion. Conversely, for any element ds,s of DS!S and a number t
belonging to the interval I(ds>s) stated above, there exists an equivalence class of
isometric minimal immersions f: Sm—>S71"1 whose associated tensor of degree 2s is
hSiS-\-tds,s-

7. Isometric minimal immersions and the Gauss map.

An isometric minimal immersion / : Sm^Sn~1 of order 2 and n=m(m+3)/2
gives a Veronese manifold. Properties of the Gauss map of a Veronese manifold
considered as a submanifold of the Euclidean n-space were studied in [6]. Here
we study more general cases.

1°. We consider isometric minimal immersions / : Sm—>Sn~1, an isometric
embedding i: S71'1-*!?71 whose image iiS71'1) is a hypersphere of radius r, and
the Gauss map Γ: i°f(Sm)—>G{m, n—m). We assume that the Grassmann mani-
fold G(m, n—m) is endowed with the standard Riemannian metric G and the
image Γ(i°f(Sm)) is endowed with the Riemannian metric G induced from G.
Then we can prove the following theorem.

THEOREM 7.1. The Gauss map Γ is homothetic, namely, the image Γ(ι°f(Sm))
is homothetic to the standard sphere (Sm, g).

Let us choose a suitable covering {Uλ, λ^Λ] of Sm by coordinate neighbor-
hoods, namely, a covering such that, for each coordinate neighborhood Uλ, the
image Γ(i°f(Uλ)) is a coordinate neighborhood in Γ(i°f(Sm)). Then the local
coordinates x1, •••, xm valid in Uχ are still valid in Γ(t°f(Uχ)) and the local
components Gμχ of the Riemannian metric G are given by
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where Hμλ

A are the local components of the second fundamental form of i°f(Sm).
If C is an element of D8tS, then we have

(7.1) C(a, b, v, ~ ,v;v, - , ι ; ) = 0 ,

(7.2) C(a, v, •" , v; b, v, •••, v)=0

for any vectors a, b, v of Rm+1. (7.1) comes from {6.8) while (7.2) comes from
(3.23) just as (6.8) came from (6.4) which is equivalent to (3.22). If υ is replaced
by u+c where c is also an arbitrary vector in (7.1), we immediately get

( s — 2 ) C ( α , by c, v , •••, v \ v , •••, v ) + s C ( a , b, v , •••, v ; c , v , •••, v)—0

which implies that C(a, b, v, •••, v; c, v, •••, v) is symmetr ic in a, b, c. On the
other hand, w e get, from (7.2),

C ( α , c, v , •" , v ; b, v , •••, v ) + C ( a , v , •••, v ; b, c, v, •••, v ) = 0 .

Thus we have

(7.3) C(a, b, c, v, - , v ; v, •••, v ) = 0 ,

(7.4) C(a, b, v, •••, v; c, v, •••, v)=0.

Furthermore we get, from (7.3) and (7.4),

(7.5) ( s - 3 ) C ( α , b, c , d , v , •-, v v, - , v)

+ s C ( a y b, c, v , •••, v ; d, v , •••, v ) = 0 ,

(7.6) (s-2)C(α, ft, d, v, - , ι ; ; c , v, - , ι ; )

+ ( s - l ) C ( α , 6, v, - , ι ; ; c , d, v, - , ι ; ) = 0

which are replaced by simpler formulas if s—2 or 3. Thus we get

(7.7) ΣiC(et, a, v, •••, v; et, b, v, •-, v ) = 0

(7.8) Έ i C ( e τ , a , b, v , -•, v ; e l f v , •••, v ) = 0

As we have (3.7) for the second fundamental form, we get, after some cal-
culation using (2.5), (3.17),

Gμχ=(s*r2+2s(s-l)/(s+?n-l))gμλ

+s2(s-l)%,a(7^M, 7 ^ lλu, lσu)g^ .

On the other hand, we have, in view of (3.2) and (3.18),

y eτ)—s-2gμλ,
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and, substituting / S ) S = / ι S ) S + C into the right-hand-side, we get

(7.9) r.*.£lμu9lpu\lλu,lσu)gP°

"=Έihs,s{lμU, elr u, •••, u lλu, et, u, ••• , u) — s~2gμλ

by virtue of (7.7). This implies that the difference between a general isometric

minimal immersion and a standard minimal immersion does not appear in the

metric G and we get the following lemma.

LEMMA 7.2. Let h and f be respectively a standard minimal immersion and

a general isometric minimal immersion, both of Sm into S71'1 and of the same

order. Then the Gauss image of ι°f(Sm) is isometric with the Gauss image of

i°h(Sm).

Now we calculate

hs,s(^μu, V p M , u, •••, u; lλu, l σ u , u, •••, u)gpσ .

Since U is given by (4.3) and u satisfies <M, 7^w> —0 and ϋμu, ^λU) = gμχ, we

immediately get

(7.10) UC7μu, lpu, u, •••, u lλu, lσu, u, ••• , u)gPσ = k8,mgμλ

where kSι7lι is a constant depending on s and m. As hs>s — c'Uy this proves that

the Gauss image of i°h(Sm) is homothetic to the standard sphere (Sm, g). As

we have Lemma 7.2, we have proved Theorem 7.1.

2°. Let (a, b) be an open interval of R and f(t): Sm->Sn~1 be an isometric

minimal immersion depending differentiably on t in (a, b). Then we can prove

the following theorem.

THEOREM 7.3. There exist no t dependent isometric minimal immersions such

that the Gauss image of i°f(t)(Sm) is fixed pomtwise.

Deformations of an immersed submanifold of a Euclidean space such that

the Gauss image is fixed point wise are studied for example in [5]. If the Gauss

image of ι°f(t)(Sm) is fixed pointwise, there exists a (1, l)-tensor field a on Sm

whose local components aμ

λ satisfy

(7.11) dBHdt=aλ°Bi.

As f(t) is an isometric immersion, we get, from (2.6) and dgμz/dt—O,

(7.12) aμλ + aλμ=0

where aμ^ = aμ

σgσλ.

Now we can consider that the parameter t is involved only in the tensors

FA associated with the immersion f(t), and we get, from (3.1) and (7.11),
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(7.13) {dFlr..ls

A/dt)lλu^u1^ ••• ux*=aλ

βF%

Then applying the operator Vμ we get

l)lμu
llaλ

σlσu
x*uιz -" uls).

As we have Ίμaλ

κ=lλaμ

κ by virtue of (7.11), we get

(aμλ-aλμ)Flr..H

Auιi - uχs

hence

Subst i tut ing f s , s ( u , •••, w M, •••, u)=r2=m/(s(sJ

Γ?n — 1)) a n d (3.17) into this equa-
tion, w e get

s'^α^ji —αji J U)=O.

Thus we get α/ /^=0, hence

μλ — a λ μ ) f s > s { u , ••• , u M , •••, M )

from (7.13). Consequently the ?̂  functions

can depend only on t. On the other hand, as we have

ψA(t) are eigenfunctions of order s, hence ψA(t)—O. Thus we have proved the
theorem.

3°. The present author studied Gauss-critical immersions and Gauss-critical
submanifolds in [4]. If i is an immersion of a compact orientable C°° manifold
M of dimension m into the Euclidean n-space Rn and the Gauss map Γ: iM-^
G(m, n—m) is regular, then the submanifold iM of Rn and the submanifold
Γ{iM) of the Grassmann manifold G{m, n—m) can be considered as Riemannian
manifolds {iM, g%) and {Γ{iM), Gt) respectively where gτ and Gt are Riemannian
metrics induced from the standard metrics of Rn and of G(m, n—m) respectively.
Let us assume that {Uλ, λ^Λ} is a suitable covering of M by coordinate neigh-
borhoods such that {Γ{iUλ), λ^Λ) is a covering of the image manifold Γ(iM)
by coordinate neighborhoods so that we can use x1, •••, xm as local coordinates
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of M and of Γ(iM) simultaneously. Using such local coordinates, we see that
the local components of g% and of G% are written gμχ and Gμχ respectively.
Then let us define Vol*(Γ(/M), Gt) by

Vol*(Γ(ιM), Gt)=\ (detlGμβ/detίgμλl)
1/2μ(gt)

J M

where μ(gt) is the volume form of (iM, gτ). A Gauss-critical immersion ιc is
defined as an immersion which is a critical point in JM of the integral
Yol*(Γ(iM), Gt) where JM is the space of immersions i of M such that Γ(iM)
is regular. The resulting submanifold icM is called a Gauss-critical submanifold.
Theorem 4.4 of [4] states the following result.

If i: M->Rn is an immersion such that {iM, gτ) is an Einstein manifold,
Γ:ιM->G{m, n—m) is a homothetic mapping and moreover the components of
the mean curvature vector of iM are eigenfunctions of the Laplacian on {iM, gt)
belonging to an eigenvalue, then i is a Gauss-critical immersion.

In our case, (iM, gt) is i°f(Sm) endowed with the Riemannian metric iso-
metric to the standard sphere (Sm, g), hence an Einstein manifold, the Gauss
map is homothetic and

(7.14)

Hence i°f(Sm) is a Gauss-critical submanifold.
From (7.14) we immediately find that the mean curvature vector of ι°f(Sm)

is parallel in the normal bundle.
Thus we have proved the following theorem (see also [8], [6]).

THEOREM 7.4. Let f: Sm->Sn~1 be an isometric minimal immersion and
i: S71'1-^!?71 be an isometric embedding so that the image is a hypersphere of
radius r. Then i°f(Sm) is a Gauss-critical submanifold and its Gauss map is
harmonic.
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