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ON THE RATIONAL HOMOTOPY OF MAF(HPm, HPn)

BY KOHHEI YAMAGUCHI

Let KPn be a n-dimensional real, complex or quartenion projective space for
K=R, C or H, respectively. For each pair of topological spaces (X, A), let
iA: A->X be the inclusion map and Map (A, X) denotes the path-component containing
iA of the space of all continuous maps from A to X with the compact open
topology. Further let Aut(Z)=Maρ(X, X). Then Aut(Z) becomes a homotopy
associative //-space with the multiplication induced from the composition of maps,
and it has its classifying space BAut(Z).

D. Sullivan studied the rational homotopy of BAut(Z) from the point of view
of minimal models, and he also computed the group π*(BAut (CPn))(g)Q in [3].

S. Sasao investigated the homotopy group of Map (CPm, CPn) for m^n, and
determined the rational homotopy of it in [2].

Furthermore, recently W. Meier and R. Strebel also computed the rational
homotopy group π*(Aut (RPn))®Q in [1].

Then the purpose of this paper is to determine the rational homotopy group
π*(Map(HPm, HPn))ξ§Q for m^n, by using the analogous method given in [2].

§ 1. Definitions and Results.

Let R, C and H be the real, the complex and quaternion number field,
respectively. For each field K—R, C or H, let KPn denote the projective space
of dimension n, defined by

KPn=Kn+1-(0, 0, ~ , 0 ) / ~

where
k(z0, zu z2, ••• , zn)~(zOf zu z2f •••, z n ) f o r

If m^nf we define the inclusion map im\ HPm->HPn by

* m ( [ > 0 , Zly " , * m ] ) = l > 0 , ?i, ••• , Zm, 0 , 0 , ••• , 0 ] ,

as usual.
Let map(//Pm, HP71) (resp. mapo(//Pm, HP71)) be the space of all continuous

maps (resp. of all base-point preserving maps) from HPm to HP71 with the com-
pact open topology. In general, the spaces map (HPm, HP71) and map0 {HPm, HP71)
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have infinitely many path-components and we are mainly concerned with the
component containing the inclusion map im. So we denote these components by
Map(#Pm , HPn) and Mapo(#Pw, HP71) respectively.

Let Sp(n) be the n-th sympletic group defined by

S/>(n)={A€=Mat(n, H): A*A=AA*=En},

where Mat(n, K) denotes the ring of (n, n)-matrices with coefficients of K for
K=R, C or H.

The group Sp(n + 1) acts on the space HP71 as usual, and the subgroup of
Sp(n + 1), which fixes the subspace HPm, contains the subgroup Z2xSp(n—m).
Then we have a map

sm : Z2xSp(n-m)\Sp(n + ΐ) —
defined by

i, ••• , Zm])=[>o, *l, - , *m, 0, 0,

for [> 0 , zj, •••, zm~]ξΞHPm a n d

Then the main object of this note is to show the following results:

THEOREM 1. The induced homomorphism

sm.(g)l: πi(Z2xSp(n-m)\Sp(n + l))<g>Q — > πi(Map(iZPm, HPn))®Q

is an isomorphism for l^Lm^n and all z>4.

In particular, for the case m=n, we also obtain

COROLLARY 2. TΛβ induced homomorphism

s n .®l : ^,(Z2\5i(n + l))(g)Q — > πt(Aut (HPn)

is an isomorphism for 7iΞ>l αn<i α// z>4, ẑ /ẑ r̂  Aut(//Pπ) denotes the space of
seίf-homotopy equivalences of HPn which is homotopic to idHpn.

Thus, by using the above results and Sullivan's technique for I^zrg4, we
can establish

COROLLARY 3. (a) ττi(Aut(//P7l))(g)(3=0 for l^z'^β.
(b) For 7g/g4n+3,

<? // 2=3, 7 (mod 8)

0 otherwise

(c)

This paper is organized as follows.
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In § 2 we recall several lemmas and commutative diagram needed for the
proof of Theorem 1. In §3 we give the proof of Proposition 2.5, and in §4 the
proof of Theorem 1 is completed. In § 5 we consider the problem from the
view-point of Sullivan's minimal model theory.

Finally in this section, the author would like to take this opportunity to
thank Professors S. Sasao, A. Kono and H. Shiga for many valuable suggestions.

2. Preliminaries.

Let lfgmrgn and j : HPm~1->HPπι be the inclusion map. Then it induces a
fibration j * : Map(//Pm, //Pn)->Map(//Pm-\ HP71) and we denote by Fm its fibre,
which is defined by

, HP"): f*j=ιn-i}.

Consider the following commutative diagram:

Z2XSp(n-m)\Z2XSp(n-m+l) — >

Z,XSp(n-m)\Sp(n + l) — > Map (HPm, HP")

ZzXSp(n-m+l)\Sp(n + l) ^ > Map(HPm-\ HPn)

Fig. (2.1)

We define the pairing P: FmxΩ*mHPn->Fm by

P(f, ω)=Ί<>(f\/ω)oμ/ for (

where the map μ': HPm=HPm-1{Jηe-ίm -> HPm\/Sim is a co-action map and
1 \ HPn\JHPn-*HPn is a folding map. In particular, we also define the map
Pr: Ω4mHPn-^Fm by

P'(ω)=P(im, ω) for ω^ΩίmHPn .

Here we note the following result which is obtained by the standard argu-
ments.

L E M M A 2.2. The map P': Ω4mHPn—>Fm is a weak homotopy equivalence.

Then it follows from the above lemma that we have a map s" : S4n~ίm+:i-+
Ω4mHPn which makes the diagram
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JimHPn

Fig. (2.3)

homotopy commutative.

LEMMA 2.4. Let η:Sin+3~>HPn be the Hopf fibering. Then

Proof. Consider the fibration S3 -̂» S4n+3 -» HP71. Since the inclusion map 1
is null-homotopic, we have a short exact sequence

0 — > Ki(Sin+3) ^X πi{HPn) —> πι-1(S*) —> 0 .

Since HP1—S\ there is an inclusion map j : S4->HPn. Then we define a homo-
morphism γ: πι-1(S3)τ->πι(HPn) by the composite

E /*

where E is the suspension homomorphism. Then it is easy to see that γ is a
splitting homomorphism of the above short exact sequence. This completes the
proof. Q. E. D.

PROPOSITION 2.5. For 2—4n—4m+3, the induced homomorphism

satisfies Im(s#) =

The proof of (2.5) will be given in §3. In particular, it follows from (2.5)
that we also have

COROLLARY 2.6. Let ad(s"): S4n+3->HPn be the adioint map of s". Then
the map ad(s") and η are homotopic.

§ 3. Proof of Proposition 2.5.

First, we remark the inclusion map

is given by
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rEm 0

Z = ( z 0 , z u - - , z n - m ) \ — > t h e c o s e t of > 1 ( Z ) = z 0 z x z 2 -zn-n- m

nm

where s 4 n " 4 m + 3 = {Z=(z0, zu •••, zn-m)^Hn-m+1; Σ k ι Γ = l } Thus the map
1 = 0

s'm: 547l~4m+3->Map(//Pm', HPn) may be regarded as the map

μ : HPmxS4n-im+3 — > HPn

which is defined by

μ(W, Z) = Zw0, wlf ••• , wm, 0, 0, .» , 02Ά(Z)

= ίw0, WU . . « , Wm-U WmZ0, WmZu . « . , l ^ m ^ n - m ]

for Z=(zo,zi, - , v J e S M + 3

and ^=[2^0, ŵ i, •-, wm~]^HPm.

Similarly, the constant map S4 7 l~4 m + 3->Fm is given by

v : HPmxS4n-im+3 — > HPn

which is defined by

vW, Z)=lwo, wl9 ~ , wm, 0, 0, .- , 0] .

Hence two maps μ and v agree on (i/Pm-1xS4 7 1"4 m + 3)W//Pm, and we wish to
know the difference element between them. For this purpose, it is convenient
to replace the pair (HPm, HP771-1) with the pair (D4m, S4771"1) by using a charac-
teristic map of the cell e4m, and so we embed D4mxS4n-4m+3 into S4n+S in the
usual way. Here we identify

C47l + 3 _ Π4m KS O4n-4m + 3\J C4 771-1 y/ Γ\4Π-4Ίϊl f4

Let the variables
W=^(lVo, WU '•• , Wm-i)

and

Z=z{Zof Z\, ••• , Zn-m)

run over S4771'1 and S4 n"4 n ι + 3, respectively. Then the point

, (cosθ)Z)

runs over S4n+3 for Ogβ^π/2, and D4mxS4n-iM+* may be regarded as the subset
of points with the condition O^θ^π/4.

Therefore the characteristic map of the cell e4m,

λ : (D4m, S4711-1) — > (HPm, HPm'^

is given by
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λ((smθ)W)=ί((sin2θ)W, cos20)] for 0^θ^

Now two maps
μ' : J94^χS4n-4m + 3 > flpn

and
j . / . JJim \y O4tt -4771 + 3 ^ HP71

are defined by
μ'((sin0)tF, (cos0)Z)=[(sin20)W, (cos 0)Z]

and
i/((sin0)W, (cos 0)Z)=[(sin20)I7, (cos 0)(1, 0, 0, •••, 0)]

for O^
respectively.

Then the two maps μf and i/ agree on (S4™-iχS4n-4m+8)UZ)4m, and we wish
to know the difference element between them. For this aim, we define the
extensions μ" of μ' and z/' of i/ over s4 m-1xZ)4 n""4 m + 4

 b y s e t t i n g

μ'\(ύnθ)W, (cosθ)Z)=v"((smθ)W, (cos 0)Z)

= [P7, 0] for ττ/4^0^^/2.

The two maps μ" and vr/ now agree on {S^m'ιxD^n-Am+A)^Dim, which is a
contractible space. Therefore their difference element σ is equal to

However, the map i/' clearly factors through Dim and so [i/']=0. Hence σ—
tμ"l^π4n+3(HPn). On the other hand, the map μ" can be lifted to the map

μ : Sin+S — > Sin+S

defined by
[%(s'mθ)W, (cos θ)Z) = ({$mΦ(θ))W, (cos Φ(0))Z),

where the function Φ = Φ(Θ) is given by the equation

f 20 if O^0^τr/4

I τr/2 if π/4^0^ττ/2.

Since the function Φ(θ) is homotopic to the identity function keeping 0 and π/2,
the required difference element σ is equal to

This completes the proof of Proposition 2.5. Q. E. D.

§ 4. Proof of the Main Result.

In this section we will show Theorem L



ON THE RATIONAL HOMOTOPY OF MAP(//Pm, HPn) 285

Proof of Theorem 1. We will show Theorem 1 by the induction over m,
keeping n fixed.

Suppose the assertion is true for m—1 and that 2^?n^n. Let

denote the iterated suspension homomorphism. Then it follows from Corollary
2.6 that the diagram

44*
Fig. (4.1)

is commutative. Since

and
: πι+US4n+

are both isomorphic for all i (Lemma 2.4), the induced homomorphism

is also isomorphic for all z. Hence the assertion easily follows from the com-
mutative diagram (2.1) and Five Lemma. Thus it is sufficient only to prove the
case m = l .

Here we recall the following lemma.

LEMMA 4.2.

Q if i=:4n — l or 4n + 3

0 otherwise.

Proof. Consider the ίibring

•Sp(n-l)\Sp(n + l)—>Sp

Then the assertion easily follows from the homotopy exact sequence of the above
fibring. Q. E. D.

Let m—1 and consider the commutative diagram of fibrings:
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Si»-i ^ ZtxSp(n-ϊ)\Sp(n+ϊ) > Sin"

si * \V
pi)

F^Ω'HP71 > Uap(HP\ HPn) > HPn

where η is the Hopf fibring and ev denotes the evaluation map defined by

ev (/)=/(*<,) for /<= Map {HP1, HP71).
Here x0 is a base point of HPn. Then if follows from the homotopy exact
sequence of the above diagram that the induced homomorphism

-> π,(Map(i/P1, i/

is clearly isomorphic if z>4. This completes the proof of Theorem 1. Q.E.D.

§ 5. The Model of BAut (HPn).

In this section we consider the rest of the proof of Corollary 3. It follows
from Theorem 1 and Lemma 4.2 that it suffices only to consider πi(Aut(HPn))
®Q for z^4. However, we discuss about Corollary 3 in the more general
situation. For this aim, we recall Sullivan's minimal model theory.

DEFINITION 5.1. Let A* be a non-negative anti-commutative associative dif-
ferential graded algebra over Q, where we denote its differential by

d:Ak—> Ak+1 (6^0).

Then we define a non-negative differential graded Lie algebra over Q associated
to A*, which is denoted by L(A*), as follows:

(a) L(A*)=*ΣUA*)k, where for k>0, let L(A*)k denote the Q-vector space

consisting of all derivations of .A* decreasing dimension k and L(A*)0 be the
ζ)-vector space consisting of all degree zero derivations, commuting d.

(b) Lie bracket [,] : L(A*)kxL(A*)j-^L(A*)k+J is given by

for (φ, φ)

(c) Differential of degree —1, δ: L(A*)k->L(A*)k^u is defined by

δ(φ)=doφ-(-l)kφ°d for φ<ΞL(A*)k.

THEOREM 5.2. (D. Sullivan) Let X be a simply-connected finite CW complex,
and M(X)* be its minimal model. Then L(M(X)*) is a Quillen's type model of
BAut (X). Thus
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//*({L(M(X)*\ δ}) = π*(ΩBAut(X))<g)Q.

Proof. See [3]. Q.E.D.

We apply the above result to the case X=HPn. Since H*(HPn, Q)^
QlXl/(Xn+1) for dimX=4, the minimal model of HP71 is equal to

A(x, y) for xn+1=dy, (dimx—4, dim y—4n+3).

Let (a, b) denote the derivation of A* taking a to b and anihilating the other
generators. Then it is easy to see the following

LEMMA 5.3.

{{y, x3)} if k

{(x, 1)} if k = 4

0 otherwise.

L(M(HPn)*)k =

Furthermore, we note

LEMMA 5.4.

δ(x, l)=±(n + l)(y, xn).

Proof.

δ(x, l)(x)=d((x,

(x, l)(

, xn)(x).
Similarly,

δ(x, l)(y)=d{(x, l)(y))±(x, D(dy)

= d(ΰ)±(x, l)(xn+1)

Hence, δ(x, l) = ±(n + l)(.y, x11). This completes the proof. Q.E.D.

Then it follows from (5.3) and (5.4) that

f Q if ι = 7, 11, 15, •••, 4?2+3.
Hi({L(M(HPn)*), δ})=\

{ 0 otherwise.

Since πi(ΩBAut(HPn)) = πι(Aut(HPn)), we obtain

Q if 2=7, 11, 15, •-, 4 n + 3 .
πi(Aut(HPn) .

0 otherwise.



288 KOHHEI YAMAGUCHI

Therefore Corollary 3 was established.
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