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§ 1. Introduction. In their joint paper [2] Gackstatter and Laine offered
the following conjecture: Let aι(z), z—0, 1, ••• , n — k, be meromorphic in \z\ <oo.
Then

does not admit any admissible solution, where an-k(z)^0 and k is an integer
satisfying l^k^n—1. Here the admissible solution means a meromorphic solu-
tion of the given equation satisfying

T(r, aι(z))=o(T(r, w))

for all ι except for at most a set E of r of finite measure. In what follows
this is simply denoted by T{r, aι) — S{r, w).

The above conjecture has a close connection with an unsolved problem due
to Hayman ([4] Problem 1.21). Indeed, if the conjecture is true, then the simplest
case w' = ao(z) implies that T{r, wf) = S(r, w) does not hold. However this is
still unsolved, so far as the present author knows. Another simple case is
w/n = a(wJ

Γa)n~k with a constant a and an integer k(l^k^n — 1). In this case

1 )
Still we cannot decide whether T(r, wf)—S{r, w) or not.

In this paper we shall give a method to attack the above conjecture and
prove the following

THEOREM. Let a^z), /=0, 1, 2, 3, be meromorphic in | z |<oo. Then

does not admit any admissible solution with an exception of the following equation

w/n

with a constant a.
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§ 2. Proof of Theorem. As Gackstatter and Laine remarked in [2] every
meromorphic solution w does not have any pole other than those of coefficients
and the multiplicities of poles of w are less than those of coefficients. Hence

N{r, w) = S{r, w), N(r, w') = S(r, w)

for every admissible solution w. Further nm(r, w')=3?n(r, w)+S(r, w). Hence
S(r, w) — S{r, wr). We may assume that n=4, since the general case n can be
treated quite similarly. Thus we start from

wfA — a3w
s+a2w

2+ ai

By differentiation of this equation we have

From the above two equations we eliminate w. Then we have

(A) (ao^a1w
/+a2w

/2+Λχδo+δ1w
/+δ2w

where

ao=-a1X
2+a2XY+a3XZ-asY

2,

βo=aoX
2-a2XZ+a3YZ,

δo=a1XZ-aoXY-a3Z
2,

δ1—(a1

2a3—2a0a2a3)X—3a0a3Ύ+a1a3

2Z,

δ2=2a1

2a3

3—6a0a2a3

3,

+(a1X-2a3Z+a1a3

2w/)(a3

/wn-Aa3w
nw//)

with

X—a3a2—a3'a2, Y=a3a1

/—a3

/a1, Z=a3a0'—a3'a0.

Let {zn} be the set of zeros of w' for which all of djφco. This set may be
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void or scarce so that N(r, 0, wf) — S{r, w'). If this is not, then from (A)

(1) aQδQ — β 0

2

at {zn}. If (1) is not an identity, then

M r , 0, w')^N{r, 0, a0δ0-β0

2)+S(r, w') = S(r, wf).

If (1) is an identity, then from (A)

(2) a0δ1+a1δ0=2β0β1

at {zn}. If (2) is not an identity, then N{r, 0, w')=S(r, w'). If (2) is an identity,
then from (A)

(3) a0δ2+a1δ1+a2δ0=2β0β2+β1

2

at {zn}. If (3) is not an identity, then N(r, 0, w')=S(r, w').
Assume firstly that (1), (2) and (3) are identities. (1) gives either X=0 or

(4) a0

2X3-a0a1XΎ+(a1

2-2a0a2)X2Z+a0a2XY2+(3aQa3-a1a2)XYZ

J

Γ(a2

2-2a1a3)XZ2-a0a3Y
z+a1a3Y

2Z-a2a3YZ2+aoo

2Z3=0.

(2) gives

(5) (—a1

S J

ΓAa0a1a2-- 12a0

2as)Xs+(a1

2a2—4a0a2

2jr6a0a1a3)X2Y

+(9a1as

2-ia2

2a3)XZ2+3a0a3Ύ
3-3a1a3Ύ

2Zi-3a2asΎZ2-3a3

3Z3=0

(3) is equivalent to

(6) (30a0a1a2a3—7a1

sa3—Aa0a2

s^Γa1

2a2

2—54:a0

2a3

2)X2

+(3a1

2a2a3-12a0a2

2a3+9a0a1a3

2)XY+(18aQa2a3

2-6a1

2a3

2)XZ

+(9a0a2a3

2-3a1

2a3

2)Y2+(3a1a2a3

2-27a0a3

s)YZ

+(9a1a3

3-3a2

2a3

2)Z2=0.

The case X—Q will be considered later. Let us make the following expression
3fls(4)+(5). Then we have either X=0 or

<7) (4a0a1a2-a1

z-9a0

2a3)X2+(a1

2a2-4a0a2

2+3a0a1a3)XY

+(6a0a2a3—2a1

2a3)XZ+(3a0a2a3—a1

2a3)Y2

Jr(a1a2a3—9a0a3

2)YZ+(3a1a3

2—a2

2a3)Z2=0.

Making the expression (6)—3α3(7), we have either X = 0 or

£>=lSa0a1a2a3—4a1

2a3—4a0a2

BJra1

2a2

2—27a0

2a3

2=0)
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which is equivalent to

Further 2) is the discriminant of aQX3+a1x
2j

Γa2x + as. Hence ^ ) Ξ O implies that

3=a0(x-~ε1)
2(x-\-ε2) with

Since 4^3 is equal to (27a0

2a3-{-2a1

3—9a0a1a2)
2, Vy is one-valued meromorphic in

|z |<co. Hence so are εlt £2. Returning back to the original eqation, we have

Suppose yΦO, that is, ε2Φ — εi. Then we have

0(1/εu w)+θ(-l/ε2,

which is evidently a contradiction by the Nevanlinna theory. Suppose ;y=0.
Then w'4=a3(w-\-a)s, α = —1/βi. In this case by differentiation and by elimina-
tion of w successively we have either w'=0 or

If w/=0, then w is a constant, which may be excluded. Let {zn} be the set of
zeros of wf, for which a3φcof a'φoo. Then at {zn} α/ ;=0. If {zn} is scarce or
if α'Ξ£0, then Mr, 0, w')=S{r, w'). Further

w / w \ w a

Hence m(r, l/w') = S(r, w'). Thus T(r, w') = S(r, w'), which is clearly impossible.
If <χ'=0, then a is a constant. This reduces to w/4=a3(w+aY, α=const, which
is exceptional.

Next we shall consider the case X=0. This means that a2=ca3 with a con-
stant c. Then the original equation can be reduced to

Let us put u = w + c/3. Then the above equation takes the following form:

Thus we may consider the original equation with a2-=0. In this case (4) and
(β) reduce to

-a1Ύ
2-9a0aBYZ+3a1a3Z

2=0,
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respectively. From these two identities

If Y=0, then Z—0. In this case we have wn — az(wl!-fdiv< + e) with constants d
and e. Now we have three possibilities:

The first case is impossible, since

.7 = 1

The second case is impossible too, since

The last case is exceptional.
If -3α 0 αi^ 2 +4α 1

2 FZ+9α 0 β3Z 2 =0, then by —aιΎ
2-9a0asYZ+3a1asZ

2=0
we have

when αofli^O. If Γ=0, then Z = 0 . This case has already been discussed. If
Z=0, then F = 0 . This case has been discussed too. If 27a0

2a3+4:a1

s=0, that is,
the discriminant of a0x

Sj

Γaίx
2jra3 vanishes identically, then

This gives

θ(a, w)+Θ{β,

since a^β. It is easy to prove that ao=O (or αi=0) leads us to ajcontradiction
or an exceptional case.

Suppose (1) is not an identity. In this case (A) reduces to

L13(x)=ML9(x)+M2L5(x)+M2L1(x), x = l/w',

where Lj(x) is a polynomial of x of degree / and Mis a3— ^a3w"/wf. Further
the leading coefficient of L13(x) is just a0δ0—β0

2^0. Then M=a3'
Jr4:a3x'/x. By

the well-known Clunie lemma [1] m(r, x)=S(r, w'). On the other hand we
already remarked that N(r, 0, wf)=S{r, wf). Hence

T(r, w')=N(r, 0, w')+m{r,

= S(r, w').
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This is evidently impossible.
Suppose that (1) is an identity but (2) is not. Then (A) reduces to

The leading coefficient of L12(x) is just aoδ1

J

Γa1δo~2βoβ1^O. Hence the same
reasoning as in the above case does work. Thus we have a contradiction.

Suppose that (1) and (2) are identities but (3) is not. Then (A) has the
following form:

Ln(x)=ML9(x)+M2L6{x)+M3L1(x), x = l/w'.

The leading coefficient of Ln(x) is aoδ2+a1δ1

J

Γa2δ()—2βoβ2—βi

2^Ξθ. So we have
a contradiction similarly. This completes the proof.

§3. A supplement. We shall give a supplementary result.

COROLLARY. Let p be max(^α3, pa2, pai, pao)> where paj ts the order of a3.
Suppose that p ts finite, then any meromorphic solution of

is of order at most p.

In order to prove this corollary we still have several things to be assured.

LEMMA 1. Let Λ{r) and B(r) be convex continuous increasing functions of
log r for r^r0. Further let B(r) be of finite order λ. Suppose that A(r)f^B(r)
+ O(log A(r)+log r) holds for r^E, where E is the set of r of finite linear measure.
Then A(r) is of order at most λ.

The proof of this lemma is very easy. Further this enables us to prove
that there are at most two BoreΓs exceptional functions of the given mero-
morphic function.

LEMMA 2. Let w be a meromorphic solution of w/n = aw3, n^4, where a is
meromorphic of finite order p. Then w is also of order p.

This is simply a special case of the corresponding fact of algebroid functions.

LEMMA 3. ιv'n = a(ιυ—a1)
2(w — a2) with different constants alf a2 and n^4

has no meromorphic solution of order greater than that of a.

Proof of Lemma 3. Let w be a meromorphic solution of order greater than
the"order p of a. Suppose first that N(r, a2, w) is of order not greater than p.
Let us put u = w—a2, then

u/n = a(u-β1)
2u.
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This implies that

(l + o(l))(n — l)m(r, l/u)^m(r, l/a)-\-nm(r, u'/u)

Sm(r, l/α) + O(log T(r, w) + log r)

for reE^, where £ is the set of linear measure at most 2. Thus for

(l + 0(l))(n —l)T(r, u)<T(r, l/a)-\-(l + o(l))(n — l)Ar(r, 0, w)

+ O(logT(r, κ) + logr).

By Lemma 1 T(r, w), that is, w is of order at most p, which is impossible.
Thus we may suppose that N(r, a2, w) is of order greater than p. Since the

order of a is p, there are infinitely many zeros of w—a2 satisfying aΦQ, oo.
Let zn be one of them. Let v be its multiplicity. Then n(v—l)=v. This is
evidently impossible.

The same fact holds for w/n — a(w — a^){w — a2)(w—as), n^4, if alf a2, a3 are
different constants.

We still have to consider the case £D=0, which appeared already in the
proof of Theorem. In this case we have

where
3a0ε1= — a1+t, 3a0ε2

:=a1+2t,

Saoέ^ — dί—t, 3a0s2= a1—2t,

and t is one-valued meromorphic in | z |<co. Since there exist at most two
BoreΓs exceptional functions of w and oo is a BoreΓs exceptional value of w, at
least three of N(r, l/εu w\ N{r, —l/e2, w), N(r, l/εu w) and N(r, —l/e2, w) are
of order greater than p. Of course we start from the assumptions that the
order of w is greater than p and that yφ.0.

For simplicity's sake we assume that they are

Wr.l/εuw), N{r,-l/6i9w), N(r, l/eu w).

Let {zn} be the set of roots of w(z)=l/ε1(z) and as(zn)Φθ, oo. This set is not
empty. Then either w(zn) = l/έ1(zn) or w(zn)= — l/έ 2 (zj. If w(zn)=l/έ1(zn), then
£i(-2rτι) = έ1(z?ι) and hence ει{z) = εΊ{z), since ε1} έi are of order at most p but {zn}
is of order greater than p. This gives y^O, which contradicts y^O. If w(zn)
——l/ε2{zn), then 3t = 2ax similarly. Let {xn} be the set of roots of w(z)=—l/ε2(z)
and as(xn)Φθ, oo. Then either w(xn)=l/έ1(xn) or w(xn)= — l/έ2(xn). If the
former case occurs, then 3t = — 2a1 similarlg. Hence ί=0, that is, y=ΰ, which
is impossible. If the latter case occurs, then similarly y = 0, which is impossible.
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Therefore y=0. Then

In this case

(w' — a')* _ 1
wn 27α3

Hence
1 T(r, uΌ + log r)

for r ί £ , where £ is the set of r of linear measure at most 2. Let {zj be the
set of zeros of wr being of order greater than p. Then by the above equation
α'(zJ=0. This gives a'(z)=Q, that is, a is a constant, if u/^0. Hence Lemma
2 implies the desired result. M / = 0 implies ι^=const., which may be excluded.
Hence we may assume that N(r, 0, w') is of order at most p. Hence T(r, wf),
that is, wr is of order at most p.

In our final step we can make use of Clunie's lemma in its original form
and then of Lemma 1. Then we have the desired result.

§4. Remarks. For w/n=a2w
2+a1w + a0 (n^3) or w'n = a1w + a0 (n^2) we

can prove the corresponding facts quite easily by the same method. However
in the former case we can make use of Toda's results [5].

In the general case

our method needs very laborious works.
If T{r, aj)=O(log r)2 for / = 0 , 1, 2, 3, then our theorem holds without excep-

tion. This is mainly due to Hayman's result in [3], although we need a further
investigation for algebroid cases.

REFERENCES

[ 1 ] J. CLUNIE, On integral and meromorphic functions, J. London Math. Soc. 37
(1962), 17-27.

[ 2 ] F. GACKSTATTER AND I. LAINE, Zur Theoπe der gewohnlichen Differential-
gleichungen lm Komplexen, Ann. Pol. Math. 38 (1980), 259-287.

[ 3 ] W.K. HAYMAN, On the characteristic of functions meromorphic in the plane
and of their integrals, Proc. London Math. Soc. 14A (1965), 93-128.

[ 4 ] W.K. HAYMAN, Research problems in function theory, Athlone Press, 1967.
[ 5 ] N. TODA, On the functional equation Σ?=oaιfinι = l, Tδhoku Math. J. 23 (1971),

289-299.
[ 6 ] G. VALIRON, Sur la deπvee des functions algebroides, Bull. Soc. Math. France

59 (1931), 17-39.

DEPARTMENT OF MATHEMATICS

TOKYO INSTITUTE OF TECHNOLOGY

OH-OKAYAMA, MEGURO-KU, TOKYO,

JAPAN




